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1. Introduction and preliminaries

The original idea of introducing the matrix partial orders comes from the papers 
arising in the middle of last century in which several partial orders were defined in the 
context of semigroups. In 1952, Wagner introduced the notion of inverse semigroup and 
natural partial ordering on it [30]:

a < b ⇐⇒ a−1a = a−1b,

where a−1 is generalized inverse of a in the sense that aa−1a = a and a−1aa−1 = a−1. 
Later on, Clifford and Preston [3] and Lyapin [16] introduced partial ordering on the set 
of idempotents in arbitrary semigroups:

e < f ⇐⇒ e = ef = fe.

It was natural to ask how to extend this relation on a larger class of elements. In 1977,
Drazin considered the problem on semigroup S with proper involution and he defined 
the binary relation on S [5]:

a < b ⇐⇒ a∗a = a∗b and aa∗ = ba∗,

which is known as star partial order. On the set of Moore–Penrose invertible elements 
this relation coincides with the relation

a < b ⇐⇒ aa† = ba† and a†a = a†b.

In 1980, Hartwig [10] and Nambooripad [25] independently introduced the minus partial 
order on semigroup:

a < b ⇐⇒ aa(1) = ba(1) and a(1)a = a(1)b,

for some a(1) such that aa(1)a = a. This order is a partial order relation on regular 
semigroup. Mitsch [23] further generalized the definition of minus order to arbitrary 
semigroups S:

a < b ⇐⇒ xb = xa = a = ay = by for some x, y ∈ S1.

Mitsch’s order is a partial order relation on arbitrary semigroup and coincides with minus 
partial order when S is regular.

After that the other partial orders, such as sharp, core and one-sided orders, are 
introduced on the set of complex matrices. For thorough treatment of the subject of 
matrix partial orders we refer the reader to monograph [22], articles [1,17,18,8,9] and the 
references given there. The unification of these orders on the set of complex matrices has 
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already been done by Mitra in [20]. The aim of this article is to extend Mitra’s approach 
to the ring case.

Although the minus and star order was originally defined on semigroups, the most of 
the theory consider the matrix partial orders. But, in recent years, a number of papers 
was published considering the generalized inverses and associated partial orders in rings, 
see for example [14]. Furthermore, some new generalized inverses, such as core and dual 
core inverse (see [1]), (b, c)-inverse (see [4]) and an inverse along an element (see [19]), 
are introduced. For that reason there is a need of unified theory of partial orders based 
on generalized inverses in rings.

In Section 2 we will introduce a special kind of Dedekind finite ring by requiring 
additional condition on its idempotent elements. This ring, which may be called the finite 
dimensional ring (FD ring for short), is a generalization of the ring of linear operators 
on finite dimensional vector space. The necessary and sufficient condition that makes 
G-based matrix relation a partial order was found in [20] and [22, Chapter 7]. We will 
show in Section 3 that the same result holds for an arbitrary FD ring. A number of 
results will be generalized and we will also prove some new results. The connection with 
some known partial orders will be established.

Unless otherwise stated, R is an arbitrary ring with identity 1 (with or without in-
volution – depending on the context). For the reader’s convenience we recall definitions 
of some known types of generalized inverses and associated partial orders. An element 
a ∈ R is von Neumann regular (regular for short) if there exists an x ∈ R such that 
axa = a in which case x is called an inner generalized inverse of a. If axa = a and 
xax = x then x is reflexive generalized inverse of a. The set of all inner generalized 
inverses of a is denoted by a{1} and the set of all reflexive generalized inverses of a is 
denoted by a{1, 2}. An element a ∈ R has Moore–Penrose inverse if there exists an x ∈ R

such that the following equations hold [26,24]:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (4) (xa)∗ = xa.

In this case x is unique and denoted by a†. An element a ∈ R has group inverse if there 
exists an x ∈ R such that following equations hold [6,2]:

(1) axa = a, (2) xax = x, (5) ax = xa.

In this case x is unique and denoted by a#. Recently, Baksalary and Trenkler [1] intro-
duced a new kind of matrix generalized inverse, called core inverse. Let Mn denote the 
algebra of all n ×n complex matrices. The matrix A#© ∈ Mn is the core inverse of matrix 
A ∈ Mn if it satisfies

AA#© = PA and R
(
A#©)

⊆ R(A),
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where R(A) is the range (column space) of A. It is shown in [28] that X ∈ Mn is the 
core inverse of A if and only if

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (6) XA2 = A, (7) AX2 = X.

Now we can give the definition in ring case. An element a ∈ R has core inverse if there 
exists an x ∈ R such that the following equations hold [28]:

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (6) xa2 = a, (7) ax2 = x.

In this case x is unique and denoted by a#©. Similarly, the matrix A#© ∈ Mn is dual core 
inverse of matrix A ∈ Mn if it satisfies

A#©A = PA∗ and R(A#©) ⊆ R
(
A∗).

As well as the core inverse, the dual core inverse can be characterized by a set of equa-
tions. An element a ∈ R has dual core inverse if there exists an x ∈ R such that the 
following equations hold [28]:

(1) axa = a, (2) xax = x, (4) (xa)∗ = xa, (8) a2x = a, (9) x2a = x.

Let a{i, j, . . . , k} denote the set of all elements x ∈ R which satisfy equations 
(i), (j), . . . , (k) among equations (1)–(9). Using these inverses, several partial orders can 
be defined:

• the minus partial order [10]: a <− b if there exists an a(1) ∈ a{1} such that aa(1) =
ba(1) and a(1)a = a(1)b;

• the star partial order [5]: a <∗ b if aa† = ba† and a†a = a†b;
• the sharp partial order [21]: a <# b if aa# = ba# and a#a = a#b;
• the core partial order [1]: a <#© b if aa#© = ba#© and a#©a = a#©b;
• the dual core partial order [1]: a <#© b if aa#© = ba#© and a#©a = a#©b.

From these orders one can define appropriate one-sided orders [22]. The minus and star 
partial orders are originally defined on a semigroup and others on the set of complex 
matrices. In [27] and [29] these orders are considered in the context of arbitrary ring with 
involution. It is shown that these orders are partial orders on appropriate subsets of R. 
One can notice an obvious similarity in definitions of partial orders based on generalized 
inverses.

In the theory of matrix partial orders, the most basic binary relation is the space 
pre-order, [20]. For A, B ∈ Mn, A <s B if R(A) ⊆ R(B) and R(A∗) ⊆ R(B∗). The 
appropriate definition of space pre-order in the ring case is as follows (see Remark 1.6):

a <s b if aR ⊆ bR and Ra ⊆ Rb.
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The relation <s is pre-order, i.e. it is reflexive and transitive but it is not antisymmet-
ric.

As we pointed out, the unified theory of matrix partial orders was done by Mitra, see 
[20] and [22]. Our aim is to present the unified theory in the ring context. For further 
exposition we need some definitions. The notation used in Chapter 7 of [22] can also be 
applied in the ring setting. Thus, we follow this notation.

Definition 1.1. Let P(R) denote the power set (class of all subsets) of R. A g-map is a 
map

G : R −→ P(R)

such that for each a ∈ R, G(a) is a certain subset of a{1}. The set

ΩG =
{
a ∈ R : G(a) �= ∅

}
is called the support of the g-map G. We write Gr(a) for the set G(a) ∩ a{1, 2}.

Definition 1.2. Let G : R −→ P(R) be a g-map. For a, b ∈ R, we say

a <G b if a ∈ ΩG , ga = gb and ag = bg for some g ∈ G(a).

The order relation <G is called G-based order relation.

An element a ∈ R is said to be G-maximal if for any b ∈ R, a <G b implies a = b. 
Observe that the above G-based order relation concept covers as special cases the minus, 
star, sharp, core and dual core partial orders:

• Let G(a) = a{1}. Then the order relation <G is the minus order.
• If G(a) = {a†}, then the order relation <G is the star order.
• If G(a) = {a#}, then the order relation <G is the sharp order.
• If G(a) = {a#©}, then the order relation <G is the core order.
• If G(a) = {a#©}, then the order relation <G is the dual core order.

We see at once that a G-based order relation is reflexive on the support ΩG. Also, for 
a, b ∈ R, a <G b implies a <− b. It is well known that the relation <− is a partial order, 
see [10]. Therefore, <G is always antisymmetric. Our main objective is to examine when 
a G-based order relation is transitive and thus a partial order. We need the following 
definitions.

Definition 1.3. Let G : R −→ P(R) be a g-map and a ∈ R. The class

G̃(a) =
{
g : ga = a(1)a, ag = aa(1) for some a(1) ∈ G(a)

}
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is called the completion of G(a). We say that G(a) is complete if G(a) = G̃(a). If G(a) is 
complete for each a ∈ R, we say that G is complete.

We see at once that G̃(a) ⊆ a{1} and G(a) ⊆ G̃(a) for each a ∈ R.

Definition 1.4. Let G : R −→ P(R) be a g-map. For a, b ∈ R let

G(a, b) =
{
hah : h ∈ G(b)

}
.

A pair (a, b) is said to satisfy the (T)-condition if G(a, b) ⊆ G(a).

Definition 1.5. For a g-map G : R −→ P(R) and a ∈ R, the set G(a) is said to be 
semi-complete if G(a, a) ⊆ G(a). If for each a ∈ R, G(a) is semi-complete, we say the 
g-map G is semi-complete.

Thus, G(a) is semi-complete if and only if (a, a) satisfy the (T)-condition.

Remark 1.6. The proofs of many results stated in [20] are purely algebraic and can be 
applied in a ring case. Some comments are still necessary. Note that condition C(A) ⊆
C(B), where C(A) is column space of matrix A, is equivalent to AMn ⊆ BMn. Similarly, 
C(A∗) ⊆ C(B∗) is equivalent to MnA ⊆ MnB. Thus, when we consider a ring case, the 
conditions C(A) ⊆ C(B) and C(A∗) ⊆ C(B∗) must be replaced by aR ⊆ bR and Ra ⊆ Rb, 
respectively.

The main objective in unified theory is to find the necessary and sufficient condition 
that makes G-based order relation a partial order. The proof of this result uses linear 
algebra techniques that cannot be used in ring case. Instead of that we use two-sided
Peirce decompositions of R relative to the appropriate sets of idempotents (see [11]). 
The notion will be explained in the following remark.

Remark 1.7. An element e ∈ R is idempotent if e2 = e. The set of all idempotents of 
R is denoted by R• = {e ∈ R : e2 = e}. An equality 1 = e1 + e2 + · · · + en where 
ei ∈ R• and eiej = 0 for i �= j is called the decomposition of the identity of the ring R. 
If 1 = e1 + e2 + · · ·+ en and 1 = f1 + f2 + · · ·+ fn are two decompositions of the identity 
of the ring R then any x ∈ R can be represented in the form

x =
(

n∑
i=1

ei

)
x

(
n∑

j=1
fj

)
=

n∑
i,j=1

eixfj =

⎡
⎢⎣
x11 · · · x1n
...

. . .
...

xn1 · · · xnn

⎤
⎥⎦
e×f

,

where xij = eixfj . Let y = [yij ]e×f and z = [zij ]f×e. As fifj = 0 for i �= j, one can 
check that the usual algebraic operations x + y and xz can be interpreted as operations 
between appropriate n × n matrices over R.
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2. FD ring

Let R be an arbitrary ring with identity 1. For e, f ∈ R• we write

e < f if e = ef = fe.

This is the well-known partial order on the set of idempotents. For a ∈ R we will denote 
by aR the set {ax : x ∈ R}. Similarly, Ra = {xa : x ∈ R} and aRb = {axb : x ∈ R}. We 
need the notion of equivalent idempotents, see [12].

Definition 2.1. (See [12].) Idempotents e, f ∈ R• are equivalent, written e ∼ f , if there 
exist elements x ∈ eRf and y ∈ fRe such that xy = e and yx = f .

For e ∈ R•, from Definition 2.1, we obtain

e ∼ 0 =⇒ e = 0. (2.1)

Remark 2.2. It is not difficult to show that idempotents e and f are equivalent if and 
only if eR and fR are isomorphic as right R-modules if and only if Re and Rf are 
isomorphic as left R-modules. For the proof see Theorem 14 in [12]. From this, it follows 
that ∼ is an equivalence relation on R•, see [12].

Remark 2.3. It is easily seen that e ∼ f if and only if there exist x, y ∈ R such that 
xy = e and yx = f . Indeed, suppose that xy = e and yx = f and set x1 = exf and 
y1 = fye. It is easy to show that x1y1 = e and y1x1 = f .

The ring R is called Dedekind finite (directly finite) if for every x, y ∈ R, xy = 1
implies yx = 1, see [13,7]. We see at once that R is Dedekind finite if and only if for 
every idempotent e ∈ R•,

e ∼ 1 =⇒ e = 1. (2.2)

Let V , W be arbitrary complex vector spaces. We use L(V, W ) to denote the set of all 
linear transformations from V to W . Also, L(V ) = L(V, V ). Identifying a complex n ×n

matrix A with linear operator A : Cn → C
n, we conclude that the set of all complex 

n × n matrices is equal to L(Cn). It is customary to write Mn rather than L(Cn).
For A ∈ L(V, W ), we use R(A) and N (A) to denote the range and the null-space of A, 

respectively. A linear transformation P ∈ L(V ) which is idempotent, that is P 2 = P , 
is called a projection. A class of operators related to idempotent elements on Hilbert 
spaces was studied in [15].

Remark 2.4. It is well known that the complex vector space V is finite dimensional if 
and only if L(V ) is a Dedekind finite ring, see for example [7, pp. 165–166].
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For our purpose we need slightly different characterization of finite dimensional vector 
spaces.

Theorem 2.5. Let V be an arbitrary vector space. The following conditions are equivalent:

(i) dimV < ∞;
(ii) For arbitrary projections P, Q ∈ L(V ) the following holds:

P ∼ Q =⇒ I − P ∼ I −Q.

Proof. (i) ⇒ (ii): Suppose that dimV = n < ∞ and let P, Q ∈ L(V ) be two equivalent 
idempotents. By Remark 2.3, there exist X, Y ∈ L(V ) such that P = XY and Q =
Y X. It is easy to see that P = XQY and Q = Y PX so rank(P ) = rank(Q). By 
the rank-nullity theorem it follows that rank(I − P ) = rank(I − Q), so there exists 
an isomorphism A1 ∈ L(R(I − P ), R(I − Q)). Let A, B ∈ L(V ) be defined by Av =
A1(I − P )v and Bv = A−1

1 (I − Q)v, v ∈ V . It is easy to see that AB = I − Q and 
BA = I − P , so, by Remark 2.3, I − P ∼ I −Q.

(ii) ⇒ (i): By (2.1), it is clear that the condition (ii) implies the condition P ∼
I ⇒ P = I. Thus L(V ) is a Dedekind finite ring, so, by Remark 2.4, it follows that 
dimV < ∞. �
Remark 2.6. Let V be an arbitrary vector space and let P, Q ∈ L(V ) be two projections. 
It is not difficult to prove that P ∼ Q if and only if the subspaces R(P ) and R(Q) are 
isomorphic.

The previous characterization of finite dimensionality is purely algebraic, as one may 
see. Inspired by Theorem 2.5, we introduce a special kind of ring, which may be called 
finite dimensional ring or FD ring for short.

Definition 2.7. A ring R is FD ring if for arbitrary idempotent elements e, f ∈ R• the 
following holds:

e ∼ f =⇒ 1 − e ∼ 1 − f. (2.3)

Remark 2.8. The notion of FD ring is new, as far as we know, and, as we can see, every 
FD ring is Dedekind finite ring. So, by (2.2), if R is an FD ring then for e ∈ R• the 
following holds:

e ∼ 1 =⇒ e = 1. (2.4)

It follows by Theorem 2.5 that Mn is an FD ring, but L(V ), where dimV = ∞, is not 
an FD ring.
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Remark 2.9. From Remark 2.2, it follows that the following conditions are equivalent:

(i) R is FD ring.
(ii) For each idempotents e, f ∈ R• the following holds:

If eR and fR are isomorphic as right R-modules then (1 − e)R and (1 − f)R are 
isomorphic as right R-modules.

(iii) For each idempotents e, f ∈ R• the following holds:
If Re and Rf are isomorphic as left R-modules then R(1 − e) and R(1 − f) are 
isomorphic as left R-modules.

When R is FD ring then the following theorem shows that a condition stronger than 
(2.3) is satisfied.

Theorem 2.10. Let R be an FD ring and let e1, e2, f1, f2 ∈ R• be idempotents in R. Then 
the following implication holds:

(e1 ∼ e2, f1 ∼ f2, e1 < f1, e2 < f2) =⇒ f1 − e1 ∼ f2 − e2. (2.5)

Proof. Suppose that e1 ∼ e2, f1 ∼ f2 and

e1f1 = f1e1 = e1, e2f2 = f2e2 = e2. (2.6)

It is easy to see that f1 − e1 and f2 − e2 are idempotents. Set

p1 = e1, p2 = f1 − e1, p3 = 1 − f1

q1 = e2, q2 = f2 − e2, q3 = 1 − f2.

Using (2.6), an easy verification shows that 1 = p1 + p2 + p3 and 1 = q1 + q2 + q3 are 
two decompositions of the identity of the ring R. From p1 = e1 ∼ e2 = q1, we have that 
there exist x ∈ p1Rq1 and y ∈ q1Rp1 such that xy = p1 and yx = q1. Since x = p1xq1
and y = q1yp1 we have the following representations:

x =

⎡
⎣x 0 0

0 0 0
0 0 0

⎤
⎦
p×q

and y =

⎡
⎣ y 0 0

0 0 0
0 0 0

⎤
⎦
q×p

.

Since R is FD ring, f1 ∼ f2 implies 1 −f1 ∼ 1 −f2, i.e. p3 ∼ q3. So there exist u ∈ p3Rq3
and v ∈ q3Rp3 such that uv = p3 and vu = q3. Since u = p3uq3 and v = q3vp3 we have:

u =

⎡
⎣ 0 0 0

0 0 0
0 0 u

⎤
⎦ and v =

⎡
⎣ 0 0 0

0 0 0
0 0 v

⎤
⎦ .
p×q q×p
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It follows that

(x + u)(y + v) =

⎡
⎣xy 0 0

0 0 0
0 0 uv

⎤
⎦
p×p

=

⎡
⎣ p1 0 0

0 0 0
0 0 p3

⎤
⎦
p×p

.

Thus, (x + u)(y + v) = p1 + p3. Similarly we can show that (y + v)(x + u) = q1 + q3. We 
conclude that p1+p3 ∼ q1+q3. As R is FD ring it follows that 1 −(p1+p3) ∼ 1 −(q1+q3), 
i.e. f1 − e1 ∼ f2 − e2. �

Note that when we set f1 = f2 = 1 in Theorem 2.10 then the condition (2.5) actually 
reduces to condition (2.3).

3. Main result

The main objective of this section is to find a necessary and sufficient condition for 
a G-based relation to be a partial order on R. First we give same introductory results. 
Recall that a <G b, where <G is an arbitrary G-based order relation, implies a <− b. We 
now give some elementary properties of minus partial order which will be used in the 
sequel. If a <− b then, see [27]:

a = bb(1)a = ab(1)b = ab(1)a, (3.1)

for each b(1) ∈ b{1}. It follows that a <− b implies b{1} ⊆ a{1}. Also, from (3.1) we 
obtain

(b− a)b(1)(b− a) = b− a. (3.2)

Theorem 3.1. Let R be a ring and G : R −→ P(R) be a g-map. Let a, b ∈ ΩG. Then the 
following hold:

(i) Suppose that a <G b. Fix h ∈ G(b) and set

e1 = ah, e2 = (b− a)h, e3 = 1 − bh

f1 = ha, f2 = h(b− a), f3 = 1 − hb.

Then

1 = e1 + e2 + e3, and 1 = f1 + f2 + f3

are two decompositions of the identity of the ring R with respect to which a and b
have the following matrix forms:
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a =

⎡
⎣ a 0 0

0 0 0
0 0 0

⎤
⎦
e×f

, b =

⎡
⎣ a 0 0

0 b− a 0
0 0 0

⎤
⎦
e×f

. (3.3)

(ii) If G is semi-complete and a and b have representations (3.3) where 1 = e1 + e2 + e3
and 1 = f1 + f2 + f3 are two decompositions of the identity of the ring R such that 
e1 = ag and f1 = ga for some g ∈ G(a), then a <G b.

Proof. The proof of (i) proceeds along the same lines as the proof of Theorem 3.5 in [27]. 
For the proof of (ii) suppose that a and b have representations (3.3) where e1 = ag and 
f1 = ga for some g ∈ G(a). Let g′ = gag. Since G is semi-complete, we obtain g′ ∈ G(a). 
We have

f1g
′e1 = gagagag = gag = g′,

so

g′ =

⎡
⎣ g′ 0 0

0 0 0
0 0 0

⎤
⎦
f×e

.

Now it is easy to see that

ag′ = bg′ =

⎡
⎣ ag′ 0 0

0 0 0
0 0 0

⎤
⎦
e×e

and g′a = g′b =

⎡
⎣ g′a 0 0

0 0 0
0 0 0

⎤
⎦
f×f

.

By Definition 1.2, a <G b. �
In the next theorem we will characterize all elements which are above some element 

a under the G-based order relation. See Theorem 3.4.3 in [22] for the characterization 
concerning the minus partial order on the set of matrices.

Theorem 3.2. Let G : R −→ P(R) be a semi-complete g-map and a ∈ ΩG. Then
{
b ∈ R : a <G b

}
=

{
a + (1 − ag)d(1 − ga) : g ∈ G(a), d ∈ R

}
. (3.4)

Proof. Let S denote the set on the right hand side of (3.4). Suppose that a <G b. Then 
ag = bg and ga = gb for some g ∈ G(a). Therefore, (b − a)g = 0 and g(b − a) = 0. It is 
easy to check that

b = a + b− a = a + (1 − ag)(b− a)(1 − ga),

so b ∈ S. Suppose now that b ∈ S, i.e. b = a + (1 − ag)d(1 − ga) for some g ∈ G(a) and 
d ∈ R. Let g′ = gag. Since G is semi-complete, we conclude that g′ ∈ G(a). As aga = a, 
it is easily seen that bg′ = ag′ and g′b = g′a. Thus a <G b. �
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From Theorem 3.2 we obtain the following corollary.

Corollary 3.3. Let G : R −→ P(R) be a semi-complete g-map and a ∈ ΩG, b ∈ R. Then 
a <G b if and only if

b =
[
a 0
0 v

]
p×q

,

where p = ag, q = ga for some g ∈ G(a) and v ∈ (1 − p)R(1 − q) is arbitrary.

In the next theorem we will prove that under certain conditions the only maximal 
elements are invertible elements.

Theorem 3.4. Let R be an FD ring and let G : R → P(R) be a semi-complete g-map. 
The element a ∈ ΩG is G-maximal under the <G if and only if a is invertible.

Proof. Suppose that a ∈ ΩG is not invertible. We wish to prove that a is not G-maximal. 
Let a(1) ∈ G(a) and g = a(1)aa(1). Since G is semi-complete, we have g ∈ G(a). Also, 
gag = g. Set e = ag and f = ga. Then e ∼ f . If e = 1 or f = 1 then by (2.4), e = f = 1
and a is invertible. Therefore, e �= 1 and f �= 1. As R is FD ring, we have 1 − e ∼ 1 − f . 
Thus, there exist x ∈ (1 − e)R(1 − f) and y ∈ (1 − f)R(1 − e) such that xy = 1 − e and 
yx = 1 − f . Let b = a + x. Since 1 − e �= 0, we have x �= 0 so b �= a. Note that

(1 − f)g = (1 − ga)g = 0 and g(1 − e) = g(1 − ag) = 0.

Therefore, xg = 0 and gx = 0. It follows that bg = ag and gb = ga so a <G b, which 
means that a is not G-maximal.

On the other hand, suppose that a ∈ ΩG is invertible and suppose that a <G b for 
some b ∈ R. Since a is invertible, the only inner inverse of a is a−1, so G(a) = {a−1}. 
Now, a <G b implies aa−1 = ba−1. Thus, a = b. We prove that a is maximal. �

We are now in a position to give a necessary and sufficient condition for a G-based 
relation to be a partial order on R. It turns out that it is much easier to determine a 
sufficient condition.

Theorem 3.5. Let R be a ring and let G : R −→ P(R) be a g-map. Given any a, b ∈ R

suppose that if a <G b and b is not maximal then the pair (a, b) satisfies the (T)-condition. 
Then the binary relation <G is a partial order on ΩG.

Proof. The proof does not differ from the proof in the complex matrix case, see The-
orem 7.2.13 in [22]. We give it here for completeness. Since the relation <G is always 
reflexive and antisymmetric on ΩG, it is sufficient to show that <G is transitive. Suppose 
that a <G b and b <G c. If b is maximal then b = c so a <G c. So, let b be not maximal. 
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Since b <G c, there exists h ∈ G(b) such that bh = ch and hb = hc. As a <G b we have 
that the pair (a, b) satisfies the (T)-condition, so hah ∈ G(a). Let g = hah. As a <G b

implies a <− b, from (3.1) we obtain a = bha = ahb = aha. We have

ag = ahah = ah = bhah = chah = cg.

Similarly, ga = gc. Thus, a <G c. �
Corollary 3.6. Let R be a ring and let G : R −→ P(R) be a semi-complete g-map. For 
a, b ∈ R, the following conditions are equivalent:

(i) If a <G b and b is not maximal then the pair (a, b) satisfies the (T)-condition.
(ii) If a <G b and b is not maximal then G̃(b) ⊆ G̃(a).
(iii) If a <G b and b is not maximal then G(b) ⊆ G̃(a) (i.e. for any h ∈ G(b) there exists 

g ∈ G(a) such that ag = ah and ga = ha).

If one of the conditions (i)–(iii) is satisfied for each a, b ∈ R then the relation <G is a 
partial order on ΩG.

Proof. In view of Theorem 3.5 it is sufficient to show the equivalence of (i), (ii) and (iii). 
If G(b) = ∅ then all the conditions are satisfied. Suppose that G(b) �= ∅.

(i) ⇒ (ii): Suppose that (i) is satisfied and let a <G b and b is not maximal. Let h be 
an arbitrary element of the set G̃(b). This means that there exists b(1) ∈ G(b) such that 
hb = b(1)b and bh = bb(1). Let g = b(1)ab(1). Since (a, b) satisfies the (T)-condition, we 
have g ∈ G(a). Since a <G b implies a <− b, by (3.1), we obtain a = aua = aub = bua

for each u ∈ b{1}. Therefore, a = bha = ahb = ab(1)a. It follows that

ha = h(bha) = b(1)bha = b(1)a = b(1)
(
ab(1)a

)
= ga

ah = (ahb)h = ahbb(1) = ab(1) =
(
ab(1)a

)
b(1) = ag.

Therefore, h ∈ G̃(a), so G̃(b) ⊆ G̃(a).
(ii) ⇒ (iii) is clear since G(b) ⊆ G̃(b), for each b ∈ R.
(iii) ⇒ (i): Suppose that (iii) is satisfied and let a <G b where b is not maximal. For any 

h ∈ G(b) there exists g ∈ G(a) such that ag = ah and ga = ha. Since G is semi-complete, 
we obtain hah = gag ∈ G(a), so the pair (a, b) satisfies the (T)-condition. �

In the next theorem we will show that under certain assumptions, the sufficient con-
ditions given in Theorem 3.5 and Corollary 3.6, are also necessary for a G-based relation 
to be a partial order on R. The equivalence of (i) and (ii) in the next theorem is a 
generalization of the result of Mitra (Theorem 2.6 in [20]) and Mitra, Bhimasankaram 
and Malik (Theorem 7.2.31 in [22]), who have considered the case R = Mn, where Mn

is the algebra of all n × n complex matrices. Note that we cannot use the linear algebra 
techniques which are a dominant tool in matrix case.



216 D.S. Rakić, D.S. Djordjević / Linear Algebra and its Applications 471 (2015) 203–223
Theorem 3.7. Let R be an FD ring and let G : R −→ P(R) be a semi-complete g-map. 
Then the following statements are equivalent:

(i) The relation <G is a partial order on ΩG.
(ii) Let a, b ∈ R. If a <G b then the pair (a, b) satisfies the (T)-condition.
(iii) Let a, b ∈ R. If a <G b then G̃(b) ⊆ G̃(a).
(iv) Let a, b ∈ R. If a <G b then G(b) ⊆ G̃(a).

Proof. (i) ⇒ (ii): Suppose that R is an FD ring, G is semi-complete g-map and suppose 
that <G is transitive. Let a, b be elements in R such that a <G b. Obviously, if G(b) = ∅
then (a, b) satisfies the (T)-condition. Therefore, assume that G(b) �= ∅. Let b(1) ∈ G(b). 
We need to prove that b(1)ab(1) ∈ G(a). Let h = b(1)bb(1). Since G is semi-complete, we 
have h ∈ G(b) ⊆ b{1}. It is easy to see that hbh = h. Also, from (3.1) we obtain

hah = b(1)
(
bb(1)a

)
b(1)bb(1) = b(1)

(
ab(1)b

)
b(1) = b(1)ab(1). (3.5)

Let ei and fi, i = 1, 2, 3, be as in Theorem 3.1. Then a and b have representations 
(3.3). From Remark 2.3, we have that bh ∼ hb. R is an FD ring, and consequently 
e3 = 1 − bh ∼ 1 − hb = f3. It follows that there exist x ∈ e3Rf3 and y ∈ f3Re3 such 
that e3 = xy and f3 = yx. Note that hah = f1h = he1 so hah ∈ f1Re1. Similarly 
h(b − a)h ∈ f2Re2. It follows that

h = hbh = hah + h(b− a)h =

⎡
⎣hah 0 0

0 h(b− a)h 0
0 0 0

⎤
⎦
f×e

. (3.6)

Let c = b + x and z = h + y. Therefore,

c =

⎡
⎣ a 0 0

0 b− a 0
0 0 x

⎤
⎦
e×f

and z =

⎡
⎣hah 0 0

0 h(b− a)h 0
0 0 y

⎤
⎦
f×e

. (3.7)

From (3.1) and (3.2) we conclude that

cz =

⎡
⎣ ahah 0 0

0 (b− a)h(b− a)h 0
0 0 xy

⎤
⎦
e×e

=

⎡
⎣ e1 0 0

0 e2 0
0 0 e3

⎤
⎦
e×e

= 1.

Similarly, zc = 1, so c is invertible and z = c−1. We next prove that b <G c. From (3.3), 
(3.6), (3.7) we obtain that

bh = ch =

⎡
⎣ ahah 0 0

0 (b− a)h(b− a)h 0
0 0 0

⎤
⎦ =

⎡
⎣ e1 0 0

0 e2 0
0 0 0

⎤
⎦ .
e×e e×e
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Similarly, hb = hc = f1 + f2. By definition, we conclude that b <G c. Since <G is 
transitive, we have a <G c. It follows that there exists g ∈ G(a) such that ag = cg and 
ga = gc. We thus get a = aga = cgc. It follows that

g = c−1ac−1 =

⎡
⎣hah 0 0

0 h(b− a)h 0
0 0 y

⎤
⎦
f×e

⎡
⎣ a 0 0

0 0 0
0 0 0

⎤
⎦
e×f

⎡
⎣hah 0 0

0 h(b− a)h 0
0 0 y

⎤
⎦
f×e

=

⎡
⎣hahahah 0 0

0 0 0
0 0 0

⎤
⎦
f×e

= hah.

From (3.5), we conclude that b(1)ab(1) = g ∈ G(a).
(ii) ⇒ (i) follows by Theorem 3.5.
The proofs of (ii) ⇒ (iii) ⇒ (iv) ⇒ (ii) proceed along the same lines as the proof of 

Corollary 3.6. �
Corollary 3.8. Let R be a ring and let G : R −→ P(R) be a g-map such that G(x) = {gx}
where gx is a certain inner inverse of x. For a, b ∈ R the following conditions are 
equivalent:

(i) If a <G b then gbagb = ga.
(ii) If a <G b then aga = agb and gaa = gba.
(iii) If a <G b then G̃(b) ⊆ G̃(a).

If one of the conditions (i)–(iii) is satisfied for each a, b ∈ R then the relation <G is a 
partial order on ΩG.

Proof. The proof follows by Corollary 3.6. �
Corollary 3.9. Let R be an FD ring and let G : R −→ P(R) be a g-map such that, for 
x ∈ R, G(x) = {gx} where gx is a certain reflexive generalized inverse of x. Then the 
following conditions are equivalent:

(i) The order relation <G is a partial order on ΩG.
(ii) Let a, b ∈ R. If a <G b then gbagb = ga.
(iii) Let a, b ∈ R. If a <G b then aga = agb and gaa = gba.
(iv) Let a, b ∈ R. If a <G b then G̃(b) ⊆ G̃(a).

Proof. Since for any x ∈ ΩG , gx is a reflexive generalized inverse of x, it follows that G
is semi-complete. Now, the proof follows by Theorem 3.7. �

We have already proved in Theorem 3.7 that under certain conditions a <G b implies 
G(b) ⊆ G̃(a). It is natural to ask if the converse is true.
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Theorem 3.10. Let R be a ring and let G : R −→ P(R) be a semi-complete g-map. For 
a, b ∈ ΩG, if G(b) ⊆ G̃(a) and a <s b then a <G b.

Proof. Suppose that G(b) ⊆ G̃(a) and a <s b and fix h ∈ G(b). Then h ∈ G̃(a) so there 
exists a g ∈ G(a) such that ha = ga and ah = ag. As a <s b, we have a = xb = by

for some x, y ∈ R. We conclude that bha = bhby = by = a. Similarly, a = ahb. Since 
G is semi-complete, we have f := gag ∈ G(a). It is easy to see that faf = f and 
fa = gaga = ga = ha. It follows that af = bhaf = bfaf = bf . Similarly, af = ah and 
fa = fb. By definition, a <G b. �

We proved in Theorem 3.7 that under certain conditions a <G b implies that (a, b)
satisfies (T)-condition, i.e. for each h ∈ G(b) there exists a g ∈ G(a) such that hah = g. 
Also, a <G b implies a <− b. The converse result is proved in matrix case for some kind 
of matrix partial order. Namely, in Theorem 2.4 in [21] it is proved that for A, B ∈ Mn

if A <− B and B#AB# <s A# then A <# B. The same result is proved when the 
Moore–Penrose inverse and star order are considered instead of group inverse and sharp 
order. In the next theorem we will obtain the stronger result in the ring setting. Recall 
that Gr(a) = G(a) ∩ a{1, 2}.

Theorem 3.11. Let a, b ∈ R and let G : R −→ P(R) be a g-map. Suppose that a <− b

and suppose that there exist h ∈ G(b) and g ∈ Gr(a) such that hah <s g. Then a <G b.

Proof. Suppose that a <− b and suppose that hah <s g for some h ∈ G(b) and g ∈ Gr(a). 
Therefore, hah = xg = gy for some x, y ∈ R. As a <− b we have a = aha = ahb = bha. 
We obtain

g = gag = g(aha)g = gahahag = ga(hah)ag

= ga(xg)ag = gax(gag) = gaxg = ga(xg)

= ga(gy) = (gag)y = gy,

so hah = g. Now

gb = hahb = h(ahb) = ha = haha = (hah)a = ga

bg = bhah = (bha)h = ah = ahah = a(hah) = ag.

It follows that a <G b. �
Theorem 3.12. Let a, b ∈ R and let G : R −→ P(R) be a g-map. Then the following hold:

(i) If G is semi-complete and a <G b then a <− b and a = bgb for some g ∈ Gr(a).
(ii) If b ∈ ΩG, a <− b and if there exists g ∈ Gr(a) such that bgb <s a then a <G b.
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Proof. (i): Suppose that G is semi-complete and a <G b. Then a <− b and there exists 
a(1) ∈ G(a) such that aa(1) = ba(1) and a(1)a = a(1)b. Set g = a(1)aa(1). Since G is 
semi-complete, we obtain g ∈ G(a). It is easy to see that bgb = a.

(ii): Suppose that a <− b and suppose that there exists g ∈ Gr(a) such that bgb <s a. 
Therefore, there exist x, y ∈ R such that bgb = xa = ay. Fix h ∈ G(b). From a <− b, we 
obtain a = aha = bha = ahb. We have

a = aga = (ahb)g(bha) = ah(bgb)ha = ah(xa)ha

= ahx(aha) = ahxa = ah(xa) = ah(ay) = (aha)y = ay,

so bgb = a. It follows that

bg = bgag = bg(bha)g = (bgb)hag = ahag = ag

gb = gagb = g(ahb)gb = gah(bgb) = gaha = ga,

so a <G b. �
Theorem 3.12 is a generalization of Theorem 2.3 in [21] where Mitra considers the 

case R = Mn, G(A) = {A†} and G(A) = {A#}. The following straightforward result is 
inspired by (and is much stronger than) Theorem 21 in [18].

Theorem 3.13. Let a, b ∈ R. If a <s b and b{1} ∩ a{1, 2} �= ∅ then a = b.

Proof. Let g ∈ b{1} ∩ a{1, 2}, that is bgb = b, aga = a and gag = g. Since a <s b

there exist x, y ∈ R such that a = xb = by. Therefore, bga = bgby = by = a and 
agb = xbgb = xb = a. It follows that

b = bgb = bgagb = agb = a. �
It is known that for minus, star and sharp matrix partial orders A < B implies 

B − A < B, where < ∈ {<−, <†, <#}. But, when < ∈ {<#©, <#©}, A < B does not 
imply B − A < B. In the next theorem we give the answer to the question when this 
property is valid for G-based order relation. See also Theorem 2.8 in [20].

Theorem 3.14. Let R be an FD ring and let G : R −→ P(R) be a g-map such that 
G(x) = {gx} where gx is a certain reflexive generalized inverse of x. Suppose that <G

is a partial order on ΩG and suppose that a <G b. Then b − a <G b if and only if 
gb−a = gb − ga.

Proof. Suppose that a <G b and b −a <G b. From Corollary 3.9 it follows that gbagb = ga
and gb(b −a)gb = gb−a. Thus, gb−a = gbbgb−gbagb = gb−ga. On the other hand suppose 
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that a <G b and gb−a = gb − ga. From Corollary 3.9, it follows that aga = agb and 
gaa = gba. Thus, we obtain

(b− a)gb−a = (b− a)(gb − ga) = b(gb − ga) − agb + aga = bgb−a.

In the same manner we obtain gb−a(b − a) = gb−ab so b − a <G b. �
In the sequel we will consider specific known partial orders and their properties. It 

is known that minus, star, sharp, core and dual core partial orders are indeed partial 
order relations. For the proof in the matrix case see [22] and [1]. For the proof in the 
ring case see [10] and [29]. In contrast to existing proofs we will prove these facts using 
Corollary 3.8.

G1. The minus partial order is a partial order relation on the set ΩG := {a ∈ R :
a{1} �= ∅}.
By Theorem 3.5 it is sufficient to show that b(1)ab(1) ∈ a{1} for each b(1) ∈ b{1}
whenever a <− b. Suppose that a, b ∈ ΩG , a <− b and b(1) ∈ b{1}. Thus, there 
exists g ∈ a{1} such that ag = bg and ga = gb. We have

ab(1)ab(1)a = agab(1)agab(1)aga = agbb(1)bgbb(1)bga

= agbgbga = agagaga = a,

so b(1)ab(1) ∈ a{1}.
G2. The sharp partial order is a partial order relation on the set ΩG := {a ∈ R :

a# exists}.
By Corollary 3.8 it is sufficient to show that b#ab# = a# when a <# b. So, suppose 
that a# and b# exist and suppose that a <# b. This means that aa# = ba# and 
a#a = a#b. We have

b#ab# = b#aa#ab# = b#ba#bb# = b#ba
(
a#)3

abb#

= b#bb
(
a#)3

bbb# = b
(
a#)3

b = a
(
a#)3

a = a#.

G3. The star partial order is a partial order relation on the set ΩG := {a ∈ R : a† exists}.
By Corollary 3.8 we need to show that b†ab† = a† whenever a <∗ b. Suppose that 
a† and b† exist and suppose that a <† b. Thus, aa† = ba† and a†a = a†b. We have

b†ab† = b†aa†ab† = b†ba†bb† = b†ba†aa†aa†bb†

=
(
b†b

)∗(
a†a

)∗
a†
(
aa†

)∗(
bb†

)∗ =
(
a†ab†b

)∗
a†
(
bb†aa†

)∗
=

(
a†bb†b

)∗
a†
(
bb†ba†

)∗ =
(
a†b

)∗
a†
(
ba†

)∗ =
(
a†a

)∗
a†
(
aa†

)∗ = a†.

G4. The core partial order is a partial order relation on the set ΩG := {a ∈ R :
a#© exists}.
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Suppose that a#© and b#© exist and suppose that a <#© b. That is, aa#© = ba#© and 
a#©a = a#©b. Of course, we want to show that b#©ab#© = a#©. Using the equations 
which define the core inverse

(1) axa = a, (2) xax = x, (3) (ax)∗ = ax, (6) xa2 = a, (7) ax2 = x,

we obtain

b#©ab#© = b#©aa#©ab#© = b#©ba#©bb#© = b#©ba
(
a#©)2

bb#©

= b#©bb
(
a#©)2

bb#© = ba#©a#©aa#©bb#© = a
(
a#©)2(

aa#©)∗(
bb#©)∗

= a#©(
bb#©aa#©)∗ = a#©(

bb#©ba#©)∗ = a#©(
ba#©)∗ = a#©(

aa#©)∗ = a#©.

G5. The dual core partial order is a partial order relation on the set ΩG := {a ∈ R :
a#© exists}.
In the same manner as we do for the core partial order, one can show that when 
a#© and b#© exist, a <#© b implies b#©ab#© = a#©.

By Corollaries 3.6 and 3.8 and by the items G1–G5, it follows that a < b implies 
G̃(b) ⊆ G̃(a), where < ∈ {<−, <#, <†, <#©, <#©} and G is an appropriate g-map. We 
close this section characterizing the sets G̃(a) for these g-maps.

• It is clear that G̃(a) = a{1} when G(a) = a{1} �= ∅.
• Suppose that a# exists and G(a) = {a#}. Then G̃(a) = a{1, 5}.

Suppose that g ∈ G̃(a), that is ga = a#a and ag = aa#. Then aga = aa#a = a

and ag = aa# = a#a = ga so g ∈ a{1, 5}. Conversely, suppose that g ∈ a{1, 5}, i.e. 
aga = a and ag = ga. Then

ga = gaa#a = gaaa# = agaa# = aa# = a#a

ag = aa#ag = a#aag = a#aga = a#a = aa#,

so g ∈ G̃(a).
• Suppose that a† exists and G(a) = {a†}. Then G̃(a) = a{1, 3, 4}.

Suppose that g ∈ G̃(a). Then ga = a†a and ag = aa†. We have aga = aa†a = a and 
ag = aa†, ga = a†a which are self-adjoint. Therefore, a ∈ a{1, 3, 4}. Suppose now 
that a ∈ a{1, 3, 4}. We obtain

aa† = agaa† = (ag)∗
(
aa†

)∗ =
(
aa†ag

)∗ = (ag)∗ = ag

and similarly a†a = ga. Thus, a ∈ G̃(a).
• Suppose that a#© exists and G(a) = {a#©}. Then G̃(a) = a{3, 6}.
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Suppose that g ∈ G̃(a), that is ga = a#©a and ag = aa#©. Then ga2 = a#©a2 = a

and ag = aa#© which is self-adjoint. Therefore, g ∈ a{3, 6}. Conversely, suppose that 
ag = (ag)∗ and ga2 = a. We obtain

ga = gaa#©a = ga
(
a
(
a#©)2)

a = a
(
a#©)2

a = a#©a.

This gives aga = aa#©a = a. Also

ag = aa#©ag =
(
aa#©)∗(ag)∗ =

(
agaa#©)∗ =

(
aa#©)∗ = aa#©.

It follows that g ∈ G̃(a).
• Suppose that a#© exists and G(a) = {a#©}. Then G̃(a) = a{4, 8}.

We can show this statement in the same manner as in the case of core inverse.

Remark 3.15. Let G : R −→ P(R) be a g-map such that G(a) = {gx} where gx is a 
certain reflexive generalized inverse of x. Suppose that a ∈ ΩG . Then

G̃(a) =
{[

ga 0
0 g4

]
q×p

: g4 ∈ (1 − q)R(1 − p)
}
,

where p = aga and q = gaa.
Indeed, suppose that g belongs to the set of the right hand side. Since a = paq and 

ga = qgap, we obtain

a =
[
a 0
0 0

]
p×q

and ga =
[
ga 0
0 0

]
q×p

.

Now it is easy to see that ga = gaa and ag = aga, i.e. g ∈ G̃(a). Conversely, suppose that 
g ∈ G̃(a) and let g =

[ g1 g2
g3 g4

]
q×p

. From ag = aga it follows that

[
ag1 ag2
0 0

]
p×p

=
[
aga 0
0 0

]
p×p

.

Therefore, ag1 = aga and ag2 = 0. Multiplying these equations by ga from the left side 
we obtain qg1 = ga and qg2 = 0, respectively. Since g1 ∈ qRp and g2 ∈ qR(1 − p) we 
conclude that g1 = ga and g2 = 0. Similarly, from ga = gaa we obtain g3 = 0.
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