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1. Introduction

Let Mn be the algebra of all n ×n complex matrices. The Moore–Penrose inverse (MP 
inverse for short) of matrix A is the unique matrix A† satisfying

(1) AA†A = A (2) A†AA† = A† (3)
(
AA†)∗ = AA† (4)

(
A†A

)∗ = A†A.

The inverse was introduced by Moore [10] and latter rediscovered independently by 
Bjerhammar [4] and Penrose [12]. When ind(A) ≤ 1 i.e. rank(A) = rank(A2), the group 
inverse of A (see [2]) is unique matrix A# defined by

(1) AA#A = A (2) A#AA# = A# (5) AA# = A#A.

Recently, Baksalary and Trenkler reintroduced in [1] the generalized inverse A−
ρ∗,χ, 

which is originally discussed by Rao and Mitra in [14] (as pointed out in [13]). They 
named it as core inverse and defined by the following definition.

Definition 1.1. (See [1].) A matrix A#© ∈ Mn is the core inverse of A ∈ Mn if it satisfies

AA#© = PA and R
(
A#©)

⊆ R(A). (1)

Here PA stands for the orthogonal projection on R(A). The core inverse exists if and 
only if ind(A) ≤ 1 in which case it is unique. Also, it is proved in [1] that the core inverse 
coincides with Bott–Duffin inverse PA[(A − I)PA + I]−1. In the same paper authors 
defined one more inverse, Ã, which is closely related to core inverse. We call this inverse 
dual core inverse of A and denote it by A#©. It is defined by [1]

A#©A = PA∗ and R(A#©) ⊆ R
(
A∗).

The core inverse is a special case of the core-EP inverse discussed by Manjunatha Prasad 
and Mohana in [13]. They rephrase the term core inverse as core-EP generalized inverse. 
Also, they used the term *core-EP generalized inverse instead of dual core inverse. They 
pointed out that it is the better terminology for the use.

From now on R denotes a ring with involution; we say ∗-ring for short. Our aim is 
to extend the definitions of these inverses to the case of ∗-ring. We will show that all 
four kinds of inverses can be treated in the similar way. The MP and group inverse of 
an element a ∈ R are defined in the same way as in the matrix case; if they exist then 
they are unique. Some characterizations of the MP invertibility of an element of a ring 
are given in [8].

In Section 2 we will give an equivalent definition of the core inverse of matrix which 
serves us as a definition of core inverse of an element of a ring with involution: x ∈ R is 
a core inverse of a ∈ R if

axa = a, xR = aR and Rx = Ra∗.
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The analogous alternative definitions for group, MP and dual core inverse of a ∈ R are 
also given, see (3). In Theorems 2.11, 2.12, 2.14, 2.15, Corollary 2.13, we will characterize 
the existence of these inverses by the existence of idempotent q ∈ R and self-adjoint 
idempotents p, r ∈ R satisfying aR = qR, Ra = Rq, pR = aR and Rr = Ra. Namely, 
a ∈ R is group invertible if and only if idempotent q exists; a is MP invertible if and 
only if p and r exist; a is core invertible if and only if p and q exist; a is dual core 
invertible if and only if r and q exist. Using these idempotents we obtain appropriate 
matrix representations for a, a#, a†, a#© and a#©. We will characterize the core and dual 
core inverse by the set of equations in Theorems 2.14 and 2.15. This result is new even 
in the case R = Mn. We will obtain a number of new properties and generalize most 
of the known properties of core inverse of complex matrix, that make sense in a ∗-ring. 
We note that in the matrix case, the study of generalized inverses uses mainly finite 
dimensional linear algebra methods. In our setting of arbitrary ∗-ring, we cannot use 
these methods.

In Section 3, the EP elements will be characterized.
In Section 4, we will show that considered inverses belong to the class of inverses 

along an element, introduced by Mary in [9] and to the class of outer generalized inverses 
introduced by Drazin in [6].

In a sequel we give some preliminaries. If a ∈ R and there exists x ∈ R such that 
axa = a then we say that a is von Neumann regular (regular for short) and x is inner 
generalized inverse of a. If y ∈ R and yay = y then y is called outer generalized inverse 
of a. An element x is called reflexive generalized inverse of a if x is both inner and outer 
generalized inverse of a. If x satisfies equations q1, q2, ..., qn then x is called {q1, q2, ..., qn}
inverse of a. The set of all such inverses is denoted by a{q1, q2, ..., qn}. For example, 
a{1, 2, 5} = {a#}. We write R(1), R#, R†, R#©, R#© for the set of all regular, group, MP, 
core, dual core invertible elements of a ring R respectively. An element a ∈ R is EP if 
a# and a† exist and a# = a†. We will denote by aR and Ra the right and left ideal 
generated by a; aR = {ax : x ∈ R} and Ra = {xa : x ∈ R}. Also aRb = {axb : x ∈ R}. 
The right annihilator of a is denoted by a◦ and is defined by a◦ = {x ∈ R : ax = 0}. 
Similarly, the left annihilator of a is the set ◦a = {x ∈ R : xa = 0}. Finally, if p, q ∈ R

are idempotents then arbitrary x ∈ R can be written as

x = pxq + px(1 − q) + (1 − p)xq + (1 − p)x(1 − q)

or in the matrix form

x =
[
x1,1 x1,2

x2,1 x2,2

]
p×q

,

where x1,1 = pxq, x1,2 = px(1 −q), x2,1 = (1 −p)xq, x2,2 = (1 −p)x(1 −q). If x = (xi,j)p×q

and y = (yi,j)p×q, then x + y = (xi,j + yi,j)p×q. Moreover, if r ∈ R is idempotent and 
z = (zi,j)q×r, then one can use usual matrix rules in order to multiply x and z.
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2. Equivalent definitions and properties of a#, a†, a#© and a#©

In this section we will give several characterizations for group, MP, core and dual core 
inverse and obtain some properties. We note that the results stated in Theorems 2.7, 
2.8, 2.11, 2.12, 2.14, 2.15, Lemmas 2.9, 2.10, Corollary 2.13 are new even in the case 
R = Mn.

First we show that considered inverses are reflexive generalized inverses with pre-
scribed range and null space. It is known that A† is reflexive generalized inverse of A
with range R(A∗) and null space N (A∗) [2]. We write

A† = A
(1,2)
R(A∗),N (A∗).

Also [2],

A# = A
(1,2)
R(A),N (A).

To find a similar expression for core inverse, recall that A#© = A#PA [1]. This means

A#© = A#AA†, (2)

so we obtain

R(A) = R
(
A#)

= R
(
A#AA†AA#)

⊆ R
(
A#AA†) = R

(
A#©)

⊆ R
(
A#)

N
(
A∗) = N

(
A†) = N

(
A†AA#AA†) ⊇ N

(
A#AA†) = N

(
A#©)

⊇ N
(
A†).

We see at once that

A#© = A
(1,2)
R(A),N (A∗).

Similarly,

A#© = A
(1,2)
R(A∗),N (A).

The definition of A#© given in Definition 1.1 does not make sense in rings. So, we need 
an equivalent definition.

Lemma 2.1. A matrix X ∈ Mn is the core inverse of A ∈ Mn if and only if AXA = A, 
XMn = AMn and MnX = MnA

∗.

Proof. Suppose that X is the core inverse of A. It is clear that XMn ⊆ AMn since 
R(X) ⊆ R(A). By (2), we see that AXA = A and XA = A#A, so A = XA2, 
hence AMn ⊆ XMn. Also, A∗ = A∗(AX)∗ = A∗AX so MnA

∗ ⊆ MnX. Fi-
nally, X = A#AA† = A#(A†)∗A∗ implies MnX ⊆ MnA

∗. Conversely, suppose that 
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A = AXA, XMn = AMn and MnX = MnA
∗. It follows that R(X) ⊆ R(A) and 

there exist V ∈ Mn such that X = V A∗. It is now clear that (AX)2 = AX, and 
X = V A∗ = V A∗X∗A∗ = XX∗A∗. Therefore AX = AX(AX)∗ which is self-adjoint, so 
AX = PA. �

Similarly, we can show the analogous result for dual core inverse.

Lemma 2.2. A matrix X ∈ Mn is the dual core inverse of A ∈ Mn if and only if 
AXA = A, XMn = A∗Mn and MnX = MnA.

Now, we can give the extensions of the concepts of the core and dual core inverse 
from Mn to R.

Definition 2.3. Let a ∈ R. An element a#© ∈ R satisfying

aa#©a = a, a#©R = aR and Ra#© = Ra∗

is called core inverse of a.

Definition 2.4. Let a ∈ R. An element a#© ∈ R satisfying

aa#©a = a, a#©R = a∗R and Ra#© = Ra

is called dual core inverse of a.

In the similar way we can give the characterizations of the group and MP inverse. 
First we need some auxiliary lemmas.

Lemma 2.5. Let a, b ∈ R. Then:

(i) If aR ⊆ bR then ◦b ⊆ ◦a.
(ii) If b ∈ R(1) and ◦b ⊆ ◦a then aR ⊆ bR.

Proof. (i): Suppose that aR ⊆ bR and ub = 0 for some u ∈ R. There exists x ∈ R such 
that a = bx so ua = ubx = 0.

(ii): Suppose now that ◦b ⊆ ◦a and b(1) ∈ b{1}. Since (1 − bb(1))b = 0 we have 
(1 − bb(1))a = 0 so a = bb(1)a. Therefore, aR ⊆ bR. �
Lemma 2.6. Let a, b ∈ R. Then:

(i) If Ra ⊆ Rb then b◦ ⊆ a◦.
(ii) If b ∈ R(1) and b◦ ⊆ a◦ then Ra ⊆ Rb.
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Theorem 2.7. Let a, x ∈ R. The following statements are equivalent:

(i) a is group invertible and x = a#.
(ii) axa = a, xR = aR and Rx = Ra.
(iii) axa = a, ◦x = ◦a and x◦ = a◦.
(iv) axa = a, xR ⊆ aR and Rx ⊆ Ra.
(v) axa = a, ◦a ⊆ ◦x and a◦ ⊆ x◦.

Proof. (i) ⇒ (ii): We have a = axa = aax = xaa and x = xax = xxa = axx so xR = aR

and Rx = Ra.
(ii) ⇒ (iii) ⇒ (iv) ⇒ (v) follows by Lemmas 2.5 and 2.6.
(v) ⇒ (i): From axa = a it follows that ax − 1 ∈ ◦a ⊆ ◦x and 1 − xa ∈ a◦ ⊆ x◦ so 

(ax − 1)x = 0 and x(1 − xa) = 0. Now, x = ax2 = x2a, hence ax = ax2a = xa and 
xax = x2a = x. By the uniqueness of the group inverse, x = a#. �
Theorem 2.8. Let a, x ∈ R. The following statements are equivalent:

(i) a is MP invertible and x = a†.
(ii) axa = a, xR = a∗R and Rx = Ra∗.
(iii) axa = a, ◦x = ◦(a∗) and x◦ = (a∗)◦.
(iv) axa = a, xR ⊆ a∗R and Rx ⊆ Ra∗.
(v) axa = a, ◦(a∗) ⊆ ◦x and (a∗)◦ ⊆ x◦.

Proof. (i) ⇒ (ii): By the properties of MP inverse we easily obtain a∗ = xaa∗ = a∗ax

and x = a∗x∗x = xx∗a∗ so xR = a∗R and Rx = Ra∗.
(ii) ⇒ (iii) ⇒ (iv) ⇒ (v) follows by Lemmas 2.5 and 2.6.
(v) ⇒ (i): Since a∗x∗a∗ = a∗, we see that (1 − x∗a∗) ∈ (a∗)◦ ⊆ x◦ and (1 − a∗x∗) ∈

◦(a∗) ⊆ ◦x. Therefore, x = xx∗a∗ and x = a∗x∗x. This yields ax = ax(ax)∗ and 
xa = (xa)∗xa; hence ax and xa are self-adjoint. Finally, xax = x(ax)∗ = xx∗a∗ = x. It 
follows that x = a†. �

Definitions 2.3, 2.4 and Theorems 2.7 (ii), 2.8 (ii) show that group, MP, core and dual 
core inverses can be defined analogously:

x ∈ R is group inverse of a if and only if axa = a, xR = aR, Rx = Ra,

x ∈ R is MP inverse of a if and only if axa = a, xR = a∗R, Rx = Ra∗,

x ∈ R is core inverse of a if and only if axa = a, xR = aR, Rx = Ra∗,

x ∈ R is dual core inverse of a if and only if axa = a, xR = a∗R, Rx = Ra. (3)

As we can see, the four inverses are closely related and it can be said that they form a 
certain subclass of the class of all inner inverses. Moreover, we can conclude that core 
and dual core inverse are between group and MP inverse.



D.S. Rakić et al. / Linear Algebra and its Applications 463 (2014) 115–133 121
We will now show that the existence of considered inverses is closely related with 
existence of some idempotents. First, we give some auxiliary results.

Lemma 2.9. If q1 and q2 are idempotents such that Rq1 ⊆ Rq2 and q2R ⊆ q1R then 
q1 = q2.

Proof. If Rq1 ⊆ Rq2 then q1 = uq2 for some u ∈ R so q1q2 = uq2
2 = uq2 = q1. Similarly, 

q2R ⊆ q1R implies q1q2 = q2. �
Lemma 2.10. If p1 and p2 are self-adjoint idempotents such that Rp1 = Rp2 or p1R = p2R

then p1 = p2.

Proof. If Rp1 = Rp2 then, like in previous lemma, p1 = p1p2 and p2 = p2p1. But 
p2 = p∗2 = p∗1p

∗
2 = p1p2 = p1. Similarly, p1R = p2R implies p1 = p2. �

Theorem 2.11. Let a ∈ R. The following assertions are equivalent:

(i) a is group invertible.
(ii) There exists an idempotent q ∈ R such that qR = aR and Rq = Ra.
(iii) a ∈ R(1) and there exists idempotent q ∈ R such that ◦a = ◦q and a◦ = q◦.

If the previous assertions are valid then the assertions (ii) and (iii) deal with the same 
unique idempotent q. Moreover, qa(1)q is invariant under the choice of a(1) ∈ a{1} and

a =
[
a 0
0 0

]
q×q

, a# =
[
qa(1)q 0

0 0

]
q×q

. (4)

Proof. (i) ⇒ (ii): Suppose that a is group invertible and set q = aa# = a#a. Then 
a = qa = aq so qR = aR, Rq = Ra.

(ii) ⇒ (iii): From qR = aR we have q = ax and a = qz for some x, z ∈ R. Therefore, 
qa = q2z = qz = a and axa = qa = a, so a ∈ R(1). The rest of the proof follows by 
Lemma 2.5 (i) and Lemma 2.6 (i).

(iii) ⇒ (i): Suppose that a ∈ R(1) and suppose that there exists an idempotent q such 
that a◦ = q◦ and ◦a = ◦q. Let a(1) ∈ a{1} be arbitrary. Since 1 − a(1)a ∈ a◦ ⊆ q◦ we 
obtain q = qa(1)a. Also, 1 − q ∈ q◦ ⊆ a◦, so a = aq. Similarly, q = aa(1)q and a = qa. 
Set x = qa(1)q. We have x = a#, because

ax = aqa(1)q = aa(1)q = q, xa = qa(1)qa = qa(1)a = q,

axa = qa = a, xax = qx = x.

Now the invariance of qa(1)q under the choice of a(1) ∈ a{1} follows. Note that we have 
also proved representations (4) since a = qaq and a# = qa(1)q. The uniqueness of q
follows by Lemma 2.9. �
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Theorem 2.12. Let a ∈ R. The following assertions are equivalent:

(i) a is MP invertible.
(ii) There exist self-adjoint idempotents p, r ∈ R such that pR = aR and Rr = Ra.
(iii) a ∈ R(1) and there exist self-adjoint idempotents p, r ∈ R such that ◦a = ◦p and 

a◦ = r◦.

If the previous assertions are valid then the assertions (ii) and (iii) deal with the same 
pair of unique self-adjoint idempotents p and r. Moreover, ra(1)p is invariant under the 
choice of a(1) ∈ a{1} and

a =
[
a 0
0 0

]
p×r

, a† =
[
ra(1)p 0

0 0

]
r×p

. (5)

Proof. (i) ⇒ (ii): Suppose that a is MP invertible and set p = aa† and r = a†a. It is 
clear that p and r are self-adjoint idempotents. Since a = pa = ar we conclude that 
pR = aR and Rr = Ra.

(ii) ⇒ (iii): If we use p instead of q then the proof proceeds along the same lines as 
the proof of Theorem 2.11 (ii) ⇒ (iii).

(iii) ⇒ (i): As in the proof of Theorem 2.11 we can show that a = pa = ar, p = aa(1)p

and r = ra(1)a. Set x = ra(1)p. We have x = a† because

ax = ara(1)p = aa(1)p = p = p∗

xa = ra(1)pa = ra(1)a = r = r∗

axa = pa = a

xax = rx = x.

Now the invariance of ra(1)p under the choice of a(1) ∈ a{1} follows because it is known 
that MP inverse is unique when it exists. Note that we have also proved representa-
tions (5) since a = par and a† = x = ra(1)p. The uniqueness of p and r follows by 
Lemma 2.10. �

Recall that a ∗-ring R is Rickart ∗-ring if for every a ∈ R there exists self-adjoint 
idempotent p such that ◦a = Rp [3]. The analogous property for right annihilators is 
automatically fulfilled in this case. Note that Rp = ◦(1 − p).

Corollary 2.13. Let a ∈ R where R is Rickart ∗-ring. Then a is MP invertible if and 
only if a is regular.

The analogous characterizations of core and dual core inverses using idempotents and 
annihilators are given in the next two theorems. Furthermore, we characterize these 
inverses by the set of equations.
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Theorem 2.14. Let a ∈ R. The following assertions are equivalent:

(i) a is core invertible.
(ii) There exists x ∈ R such that axa = a, ◦x = ◦a and x◦ = (a∗)◦.
(iii) There exists x ∈ R such that

(1) axa = a (2) xax = x (3) (ax)∗ = ax (6) xa2 = a (7) ax2 = x.

(iv) There exist self-adjoint idempotent p ∈ R and idempotent q ∈ R such that pR = aR, 
qR = aR and Rq = Ra.

(v) a ∈ R(1) and there exist self-adjoint idempotent p ∈ R and idempotent q ∈ R such 
that ◦a = ◦p, ◦a = ◦q and a◦ = q◦.

If the previous assertions are valid then x = a#©, a#© is unique and the assertions (iv) 
and (v) deal with the same pair of unique idempotents p and q. Moreover, qa(1)p is 
invariant under the choice of a(1) ∈ a{1} and

a =
[
a 0
0 0

]
p×q

, a#© =
[
qa(1)p 0

0 0

]
q×p

. (6)

Proof. (i) ⇒ (ii): Suppose that a is core invertible and let x = a#©. By definition, 
axa = a, xR = aR and Rx = Ra∗. By Lemmas 2.5 and 2.6, it follows that ◦x = ◦a and 
x◦ = (a∗)◦.

(ii) ⇒ (iii): Suppose that there exists x ∈ R such that axa = a, ◦x = ◦a and x◦ =
(a∗)◦. We can follow the proofs of Theorems 2.7 and 2.8 to obtain that

x = ax2, ax = (ax)∗ and xax = x.

From xa − 1 ∈ ◦x ⊆ ◦a we have

a = xa2.

(iii) ⇒ (iv): Set p = ax and q = xa. From axa = a it follows that p and q are 
idempotents such that pR = aR and Rq = Ra. Eq. (3) shows that p is self-adjoint. From 
a = xa2 = qa and q = xa = ax2a we conclude that qR = aR.

(iv) ⇒ (v): The proof is similar to the proof of Theorem 2.11 (ii) ⇒ (iii).
(v) ⇒ (i): Suppose that a ∈ R(1) and suppose that there exist self-adjoint idempotent 

p ∈ R and idempotent q ∈ R such that ◦a = ◦p, ◦a = ◦q and a◦ = q◦. Fix a(1) ∈ a{1}. 
In the proof of Theorem 2.11 we showed that a = qa = aq and q = qa(1)a = aa(1)q. 
In the proof of Theorem 2.12 we showed that a = pa and p = aa(1)p. Let a− ∈ a{1}
be arbitrary. Then qa−p = qa(1)aa−aa(1)p = qa(1)aa(1)p = qa(1)p, so qa−p is invariant 
under the choice of a− ∈ a{1}. Set x = qa(1)p. We have axa = aqa(1)pa = aa(1)a = a. 
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Also, x = qa(1)p = aa(1)qa(1)p and xa2 = qa(1)pa2 = qa(1)aa = qa = a, so xR = aR. 
Moreover,

x = qa(1)p∗ = qa(1)(aa(1)p
)∗ = qa(1)p

(
a(1))∗a∗ and

a∗ax = a∗aqa(1)p = a∗aa(1)p = a∗p = (pa)∗ = a∗,

so Rx = Ra∗. It follows that x = a#©, i.e. a is core invertible.
The uniqueness of p and q follows by Lemmas 2.10 and 2.9. If x is core inverse of a

then we showed that x has properties given in (ii) and (iii). Suppose that there exist 
two elements x and y satisfying equations in (iii). By the proof of (iii) ⇒ (iv) and the 
uniqueness of p and q we conclude that p = ax = ay and q = xa = ya. Therefore, 
x = xax = yay = y. We also proved that if there exists some x satisfying equations 
in (iii) then a is core invertible but its core inverse must satisfies equations in (iii) which 
uniquely determine x. It follows that x appearing in (ii) and x appearing in (iii) are both 
equal to a#© and that core inverse of a is unique. Representations (6) follow by a = paq

and a#© = x = qa(1)p. �
The theorem concerning the dual core inverse can be proved similarly.

Theorem 2.15. Let a ∈ R. The following assertions are equivalent:

(i) a is dual core invertible.
(ii) There exists x ∈ R such that axa = a, ◦x = ◦(a∗) and x◦ = a◦.
(iii) There exists x ∈ R such that

(1) axa = a (2) xax = x (4) (xa)∗ = xa (8) a2x = a (9) x2a = x.

(iv) There exist self-adjoint idempotent r ∈ R and idempotent q ∈ R such that Rr = Ra, 
qR = aR and Rq = Ra.

(v) a ∈ R(1) and there exist self-adjoint idempotent r ∈ R and idempotent q ∈ R such 
that a◦ = r◦, ◦a = ◦q and a◦ = q◦.

If the previous assertions are valid then x = a#©, a#© is unique and the assertions (iv) 
and (v) deal with the same pair of unique idempotents r and q. Moreover, ra(1)q is 
invariant under the choice of a(1) ∈ a{1} and

a =
[
a 0
0 0

]
q×r

, a#© =
[
ra(1)q 0

0 0

]
r×q

.

We will use qa, pa and ra for the idempotents associated with a ∈ R, given in The-
orems 2.11, 2.12, 2.14, 2.15. We will write q, p and r instead of qa, pa and ra when no 
confusion can arise.
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Let us look at the equations in Theorems 2.14 (iii) and 2.15 (iii) that characterize 
core and dual core inverse respectively. Note that these equations are combinations of 
equations that characterize group inverse and equations that characterize MP inverse. 
To see that it is enough to check that the following sets of equations are equivalent:

(i) axa = a, xax = x, ax = xa;
(ii) axa = a, xax = x, xa2 = a, a2x = a;
(iii) axa = a, xax = x, x2a = x, ax2 = x.

It is clear that (i) implies (ii) and (iii). If axa = a, xax = x, xa2 = a, a2x = a then 
ax = xa2x = xa, so (ii) implies (i). Similarly, (iii) implies (i).

Remark 2.16. In Theorems 2.11, 2.12, 2.14, 2.15 the connection between the generalized 
invertibility of a and the existence of idempotents p = pa, q = qa and r = ra with 
given properties is provided. It follows that a is both group and MP invertible if and 
only if a is both core and dual core invertible. If a is core or dual core invertible then 
a is group invertible. In other words, R# ∩ R† = R#© ∩ R#© and R#© ∪ R#© ⊆ R#. 
It should be noted that inner invertibility of a (there exists x such that axa = a) 
implies MP invertibility of a in the case when R is C∗-algebra (see [7]) or Rickart ∗-ring 
(Corollary 2.13).

Remark 2.17. The statements (ii) and (iii) in Theorem 2.14 and the statements (ii) 
and (iii) of Theorem 2.15 can be used as equivalent definitions of core inverse and dual 
core inverse, respectively.

Suppose that a ∈ R# ∩ R†. By Theorems 2.11 and 2.12, it follows that there exist 
unique idempotent q = qa and unique self-adjoint idempotents p = pa and r = ra with 
given properties. By the uniqueness, we conclude that these idempotents are the same 
as idempotents in Theorems 2.14 and 2.15. Therefore,

q = aa# = a#a = a#©a = aa#©

p = aa† = aa#©

r = a†a = a#©a. (7)

Now, it is easy to show that

pq = q, qp = p, rq = r, qr = q. (8)

Moreover,

q∗p = (pq)∗ = q∗, pq∗ = (qp)∗ = p, q∗r = (rq)∗ = r, rq∗ = (qr)∗ = q∗. (9)



126 D.S. Rakić et al. / Linear Algebra and its Applications 463 (2014) 115–133
We also proved in Theorems 2.11, 2.12, 2.14, 2.15 that

a = qaq = paq = qar = par, a# = qa(1)q,

a† = ra(1)p, a#© = qa(1)p, a#© = ra(1)q, (10)

where a(1) ∈ a{1} is arbitrary. By (8)–(10), it follows that

a =
[
a 0
0 0

]
q×q

=
[
a 0
0 0

]
p×q

=
[
a 0
0 0

]
q×r

=
[
a 0
0 0

]
p×r

a# =
[
a# 0
0 0

]
q×q

=
[
a# 0
0 0

]
p×q

=
[
a# 0
0 0

]
q×r

=
[
a# 0
0 0

]
p×r

a† =
[
a† 0
0 0

]
r×p

=
[
a† 0
0 0

]
q∗×p

=
[
a† 0
0 0

]
r×q∗

=
[
a† 0
0 0

]
q∗×q∗

a#© =
[
a#© 0
0 0

]
q×p

=
[
a#© 0
0 0

]
p×p

=
[
a#© 0
0 0

]
q×q∗

=
[
a#© 0
0 0

]
p×q∗

a#© =
[
a#© 0
0 0

]
r×q

=
[
a#© 0
0 0

]
q∗×q

=
[
a#© 0
0 0

]
r×r

=
[
a#© 0
0 0

]
q∗×r

. (11)

The elements in upper left corners in (11) belong to the sets of the forms p1Rp2, where 
p1 and p2 are idempotents. When p1 
= p2 we cannot consider the invertibility of the 
corner element in p1Rp2, but it has some similar property. Let us look, for example, the 
representation a#© =

[
a#© 0
0 0

]
q×q∗

∈ qRq∗. There exists unique element x ∈ q∗Rq such 

that xa#© = q∗ and a#©x = q. Namely, x = q∗aq. The analogous property can be shown 
for all corner elements in (11). The proof is left to the reader.

It is clear that (a#)# = a and (a†)† = a. The expressions for (A#©)† and (A#©)#©, 
where A ∈ Mn, are given in [1]. We give expressions for other “double” inverses.

Theorem 2.18. Let a ∈ R# ∩R†. Then:

(i) pa# = pa, qa# = qa, ra# = ra and

(
a#)# = a,

(
a#)† = raapa,

(
a#)#© = apa,

(
a#)

#© = raa.

(ii) pa† = ra, qa† = q∗a, ra† = pa and

(
a†
)# = q∗aaq

∗
a,

(
a†
)† = a,

(
a†
)#© = q∗aa,

(
a†
)
#© = aq∗a.

(iii) p
a#© = q

a#© = r
a#© = pa and

(
a#©)# =

(
a#©)† =

(
a#©)#© =

(
a#©)

#© = apa.



D.S. Rakić et al. / Linear Algebra and its Applications 463 (2014) 115–133 127
(iv) pa#© = qa#© = ra#© = ra and

(a#©)# = (a#©)† = (a#©)#© = (a#©)#© = raa.

Proof. We give the proof only for the statement (iii); the other statements may be proved 
in the same manner. Since a#©R = aR = paR and Ra#© = Ra∗ = (aR)∗ = (paR)∗ = Rpa, 
we conclude that

p
a#© = q

a#© = r
a#© = pa.

By (10), we obtain

(
a#©)# =

(
a#©)† =

(
a#©)#© =

(
a#©)

#© =
[
pa(a#©)(1)pa 0

0 0

]
pa×pa

=
[
paapa 0

0 0

]
pa×pa

=
[
apa 0
0 0

]
pa×pa

. �

From Theorem 2.18 it follows that a#© and a#© are EP. The properties of core inverse 
given in the following theorem are a generalization of the case R = Mn (see [1]) to the 
case of arbitrary ∗-ring.

Theorem 2.19. Let a ∈ R#© and n ∈ N. Then:

(i) a#© = a#pa;
(ii) (a#©)2a = a#;
(iii) (a#©)n = (an)#©;
(iv) ((a#©)#©)#© = a#©;
(v) If a ∈ R† then

a# = a#©aa#©, a† = a#©aa#©, a#© = a#aa†, a#© = a†aa#.

Proof. Since a ∈ R#© we have the existence of a#, qa and pa.

(i): By Theorem 2.14 (iii) and (7), we have a#© = a#©aa#© = a#aa#© = a#pa.
(ii): (a#©)2a = a#©qa

(i)= a#paqa
(8)= a#qa = a#.

(iii): Since a = an(a#)n−1 = (a#)n−1an we conclude that Ran = Ra = Rqa and 
anR = aR = qaR = paR. Using a(a#©)2 = a#© we see that an(a#©)n = aa#© so 
an(a#©)nan = aa#©an = an, i.e. (a#©)n ∈ an{1}. By Theorem 2.14, we obtain

(
an

)#© = qa
(
an

)(1)
pa = qa

(
a#©)n

pa =
(
a#©)n

.

(iv): By the proof of (iii) of Theorem 2.18, we obtain

((
a#©)#©)#© = a#©p #© = a#©pa = a#©.
a
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(v): If a ∈ R† then, by (7), a# = a#aa# = a#©aa#©, a† = a†aa† = a#©aa#©, a#© =
a#©aa#© = a#aa† and a#© = a#©aa#© = a†aa#. �

The analogous result for dual core inverse of a ∈ R#© is valid. The expressions in (v) 
in Theorem 2.19 perhaps best illustrate the connection between the group, MP, core and 
dual core inverse. Once again, we see that the core and dual core inverse are between 
group and MP inverse and vice versa.

3. Characterizations of EP elements

In this section, we consider the equivalent conditions for EP-ness of a ∈ R. Recall 
that a ∈ R is EP if a ∈ R# ∩ R† and a# = a†. EP matrices and EP operators have 
been extensively studied. Recently, the EP elements are investigated in the context of 
rings with involution. For a recent account of the theory see, for example, [5,11] and the 
references given there.

Theorem 3.1. Let a ∈ R. The following assertions are equivalent:

(i) a is EP, i.e. a ∈ R# ∩R† and a# = a†.
(ii) a ∈ R† and pa = ra.
(iii) a ∈ R#© and pa = qa.
(iv) a ∈ R#© and ra = qa.
(v) a ∈ R#© and a# = a#©.
(vi) a ∈ R#© and a# = a#©.
(vii) a ∈ R# ∩R† and a† = a#©.
(viii) a ∈ R# ∩R† and a† = a#©.
(ix) a ∈ R# ∩R† and a#© = a#©.

Proof. (i) ⇒ (ii)–(ix): If a is EP then

pa = aa† = aa# = qa = a#a = a†a = ra.

By (10),

a# = a† = a#© = a#© = qaa
(1)qa.

(ii) or (iii) or (iv) ⇒ (i): Suppose that pa = ra. We have paR = aR and Rpa = Rra =
Ra so there exists qa and pa = qa = ra. Hence, a ∈ R# and aa† = pa = qa = aa#. Hence, 
aa# = a#a is self-adjoint, so a† = a#. Similarly, pa = qa or ra = qa imply pa = ra = qa
and we can proceed as before.

(v) ⇒ (i): Suppose that a ∈ R#© and a#© = a#. Multiplying both sides by a from the 
left, we obtain pa = aa#© = aa# = qa. From the previous part of the proof, it follows 
that a is EP.

The remaining implications may be shown similarly. �
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Thus, a is EP if and only if a ∈ R# ∩ R† and a# = a† = a#© = a#©. Some charac-
terizations in the next theorem involve only group and MP inverse. Note that some of 
these characterizations are known. We give them for completeness. For x, y ∈ R we write 
[x, y] = xy − yx.

Theorem 3.2. Let a ∈ R† ∩R#. Then the following assertions are equivalent:

(i) a is EP.
(ii) At least one (any) element of the set

{[
a, a†

]
,
[
a, a#©]

, [a, a#©],
[
a#, a†

]
,
[
a#, a#©]

,
[
a#, a#©

]}

is equal to zero.
(iii) At least one (any) element of the set

{
apa, raa, raapa, q

∗
aa, aq

∗
a, q

∗
aaq

∗
a

}

is equal to a.
(iv) apa = raa.
(v) raapa = raa.
(vi) raapa = apa.
(vii) q∗aa = apa.
(viii) aq∗a = raa.

Proof. Write p = pa, q = qa and r = ra.
(i) ⇒ (ii)–(ix): If a is EP then by Theorem 3.1, a# = a† = a#© = a#© and q = p =

r = q∗. Now, the proofs easily follow.
For the proofs of converse implications we use (7)–(10) and Theorem 3.1 or one of the 

preceding already establish conditions.
(ii) ⇒ (i): We need to show that if there exists some element from the set which is 

equal to zero then a is EP. If aa#© = a#©a then p = q. By Theorem 3.1, a is EP. Suppose 
that [a#, a#©] = 0, that is a#a#© = a#©a#. Multiplying both sides from the left by a
we obtain qa#© = pa#. By (10), a#© = a#, so a is EP. Suppose that a#a† = a†a#. 
Multiplying both sides from the left by a we obtain a#© = pa# = a#, so a is EP. Other 
cases ([a, a†] = 0, [a, a#©] = 0, [a#, a#©] = 0) may be proved similarly.

(iii) ⇒ (i): If ap = a then, multiplying both sides from the left by a#, we obtain 
qp = q, hence, p = q. Therefore, a is EP. If ra = a then q = aa# = raa# = rq = r, thus 
a is EP. If rap = a then a = qa = qrap = qap = ap. If q∗a = a then a = q∗a = rq∗a = ra. 
If aq∗ = a then a = aq∗ = aq∗p = ap. Finally, if q∗aq∗ = a then a = q∗aq∗p = ap.

(iv) ⇒ (i): Suppose that ap = ra. Since qr = q we have a = qa = qra = qap = ap. By 
the previous part of the proof, we conclude that a is EP.

(v) ⇒ (i): If rap = ra then a = qa = qra = qrap = qap = ap.
(vi) ⇒ (i): If rap = ap then a = aq = apq = rapq = raq = ra.
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(vii) ⇒ (i): Suppose that q∗a = ap. Since pq∗ = p we obtain a = pa = pq∗a = pap =
ap. By the part (iii) ⇒ (i) it follows that a is EP.

(viii) ⇒ (i): As q∗r = r we conclude that aq∗ = ra implies a = ar = aq∗r = rar = ra, 
so a is EP. �

Combining Theorem 2.18 with Theorem 3.2, we can generalize results from [1] and 
obtain a large number of new characterizations of EP-ness of a.

4. Connection with some classes of generalized inverses

In this section we will show that group, MP, core and dual core inverse belong to some 
specific classes of generalized inverses. Recently, Mary introduced in [9] a new generalized 
inverse in semigroup S called the inverse along an element. We consider the case when 
S is a ∗-ring R. For a, b ∈ R, pre-order relation H is defined in [9] by

a ≤H b ⇐⇒ Ra ⊆ Rb and aR ⊆ bR.

Definition 4.1. (See [9].) Let a, d ∈ R. We say that x ∈ R is an inverse of a along d if it 
satisfies

xad = d = dax and x ≤H d.

It is proved that if an inverse of a along d exists, it is unique and it is outer generalized 
inverse of a. Mary proved in Theorem 11 in [9] that a ∈ R is group invertible if and only 
if it is invertible along a in which case the inverse of a along a coincides with the group 
inverse of a. Also, a ∈ R is MP invertible if and only if it is invertible along a∗ in which 
case the inverse of a along a∗ coincides with the MP inverse of a.

Recently, Drazin independently defined in [6] a new outer generalized inverse in semi-
group S that is actually similar to the inverse along an element. We consider the case 
when S is a ∗-ring R.

Definition 4.2. (See [6].) Let a, b, c, x ∈ R. Then we shall call x a (b, c)-inverse of a if both:

(1) x ∈ (bRx) ∩ (xRc) and
(2) xab = b, cax = c.

It is proved that there can be at most one (b, c)-inverse x of a and xax = x. Drazin 
proved in [6] that a# is (a, a)-inverse of a and that a† is (a∗, a∗) inverse of a.

Our aim is to connect the core and dual core inverse of a with generalized inverses 
given in Definitions 4.1 and 4.2.

Theorem 4.3. Let a ∈ R†. Then:

(i) a is core invertible if and only if it is invertible along aa∗. In this case the inverse 
along aa∗ coincides with core inverse of a.
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(ii) a is dual core invertible if and only if it is invertible along a∗a. In this case the 
inverse along a∗a coincides with dual core inverse of a.

Proof. (i): Suppose that a ∈ R† ∩R# and let us prove that x = a#© is inverse of a along 
d = aa∗. Recall that xa2 = a and (ax)∗ = ax, by Theorem 2.14. We see at once that

xad = xaaa∗ = aa∗ = d and

dax = aa∗ax = aa∗(ax)∗ = a(axa)∗ = aa∗ = d.

We proceed with following observation. Let z = (a†)∗a†. Then

aa∗z = aa∗
(
a†
)∗
a† = a

(
a†a

)∗
a† = aa†aa† = aa† and

zaa∗ =
(
a†
)∗
a†aa∗ =

(
a†
)∗(

a†a
)∗
a∗ =

(
aa†aa†

)∗ =
(
aa†

)∗ = aa†. (12)

Since ax2 = x, xax = x and ax = aa† we have

x = ax2 = aa†x = aa∗zx = dzx and

x = xax = xaa† = xzaa∗ = xzd.

It follows that x ∈ dR and x ∈ Rd so xR ⊆ dR and Rx ⊆ Rd; hence x ≤H d. By 
Definition 4.1, we conclude that a#© is inverse of a along aa∗.

Conversely, suppose that there exists inverse of a ∈ R† along aa∗, denote it by x, and 
let us show that a ∈ R#© and x = a#©. By Definition 4.1 we have that

xa2a∗ = aa∗ = aa∗ax (13)

and there exists w ∈ R such that

x = aa∗w. (14)

It is sufficient to show that x satisfies the equations given in Theorem 2.14 (iii). By (12), 
we have

ax = aa†ax = zaa∗ax = zaa∗ = aa†,

so (ax)∗ = ax. Now, axa = aa†a = a. Also,

xa2 = xaaa†a = xa2(a†a)∗ = xa2a∗
(
a†
)∗ (13)= aa∗

(
a†
)∗ = a

(
a†a

)∗ = a (15)

ax2 (14)= axaa∗w = aa∗w = x

xax = xaaa∗w
(15)= aa∗w

(14)= x.

The proof is complete.
(ii): This statement may be proved in the same manner as (i). �
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Theorem 4.4. Let a ∈ R. Then:

(i) a is core invertible if and only if (a, a∗)-inverse of a exists. In this case (a, a∗)-inverse 
of a coincides with core inverse of a.

(ii) a is dual core invertible if and only if (a∗, a)-inverse of a exists. In this case 
(a∗, a)-inverse of a coincides with dual core inverse of a.

Proof. We will only show the statement (i) because the statement (ii) may be proved 
similarly. Suppose that a ∈ R#© and let x = a#©, b = a and c = a∗. By the properties of 
core inverse we obtain

xab = xa2 = a = b

cax = a∗ax = a∗(ax)∗ = (axa)∗ = a∗ = c

x = xax = ax2ax = bx2ax ∈ bRx

x = xax = x(ax)∗ = xx∗a∗ = xx∗c ∈ xRc.

Therefore, by Definition 4.2, x = a#© is (a, a∗)-inverse of a.
Conversely, suppose that (a, a∗)-inverse of a exists, denote it by x, and let us show 

that x satisfies equations given in Theorem 2.14 (iii). By Definition 4.2,

xa2 = a, a∗ax = a∗ (16)

and there exists w ∈ R such that

x = awx. (17)

We obtain

ax
(16)=

(
a∗ax

)∗
x = (ax)∗ax,

so (ax)∗ = ax. Also,

axa = (ax)∗a =
(
a∗ax

)∗ (16)=
(
a∗
)∗ = a (18)

ax2 (17)= axawx
(18)= awx = x

xax
(17)= xaawx

(16)= awx = x.

The proof of the theorem is complete. �
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