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1 Introduction

Let A be a complex C∗-algebra with the norm ∥ · ∥, and let M be a complex
linear space. M is a (right) A-module, provided that there exists an exterior
multiplication · : M × A → M, obeying the following properties, for all
x, y ∈ M, all a, b ∈ A and all λ ∈ C:

(x+ y) · a = x · a+ y · a; x · (a+ b) = x · a+ y · b;
x · (ab) = (x · a) · b; λ(xa) = (λx)a = x(λa).

If M is an A-module, then the A-valued inner product is the function
⟨·, ·⟩ : M×M → A, satisfying the following conditions, for all x, y ∈ M, all
a ∈ A:

⟨x, x⟩ ≥ 0 in A; x = 0 if and only if ⟨x, x⟩ = 0;

⟨x, y⟩ = ⟨y, x⟩∗; ⟨x, λy + µz⟩ = λ⟨x, y⟩+ µ⟨x, z⟩;
⟨x, y · a⟩ = ⟨x, y⟩a.
Thus, M becomes a pre-Hilbert A-module.

The norm on a pre-HilbertA-moduleM is defined by ∥x∥M = ∥⟨x, x⟩∥1/2.
This norm satisfies some nice properties, which are related to the Cauchy-
Bunyakovsky-Schwarz inequality:

⟨x, y⟩⟨y, x⟩ ≤ ∥y∥2M ⟨x, x⟩, for all x, y ∈ M;

∥x · a∥M ≤ ∥x∥M ∥a∥, for all x ∈ M and all a ∈ A;

∥⟨x, y⟩∥ ≤ ∥x∥M∥y∥M for all x, y ∈ M.

Finally, if M is a Banach space with respect to the norm ∥ · ∥M, then
M is a Hilbert A-module. We also say that M is a Hilbert C∗-module (over
A). If H is a complex Hilbert space, then H is a Hilbert C-module. Hence,
Hilbert C∗-modules are between Hilbert spaces and Banach spaces.
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Let M,N be Hilbert A-modules, and let T : M → N be a linear map-
ping. T is an operator, if T is bounded (as an operator between Banach
spaces) and T is A-linear, i.e. T (x · a) = T (x) · a for all x ∈ M and all
a ∈ A.

If T is an operator from M to N , and there exists an operator T ∗ from
N to M satisfying ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x ∈ M and all y ∈ N , them T ∗

is the adjoint of T , and T is adjointable. Notice that there exist operators
which are not adjointable. We use Hom∗(M,N ) to denote the set of all
adjointable operators from M to N . Recall that End∗(M) = Hom∗(M,M)
is a C∗-algebra.

If T ∈ Hom∗(M,N ), then R(T ) denote the range of T , and N (T ) denote
the kernel of T . Notice that N (T ) is always closed.

Among the situation that there exists non-adjointable operators between
Hilbert A-modules, there also is the following non-convenient situation. Let
K be a closed submodule of M. The orthogonal complement of K is defined
as K⊥ = {x ∈ M : ⟨x, y⟩ = 0 for all y ∈ K}. Although K⊥ is a closed
submodule of M, we do not have in general M = K ⊕K⊥.

However, in the case which is the most important for this research, we
have the following result.

Theorem 1.1. ([9], [10]) Let M,N be a Hilbert A-modules, and let T ∈
Hom∗(M,N ). If R(T ) is closed, then the following hold:
N (T ) is an orthogonally complemented submodule in M and M = R(T ∗)⊕
N (T );
R(T ) is an orthogonally complemented submodule in N and N = R(T ) ⊕
N (T ∗).

Previous result allows us to investigate adjointable operators between
Hilbert A-modules in a similar way as on Hilbert spaces. For detailed treat-
ment of Hilbert C∗-modules see [9] and [10].

Now, we have the usual definition of the Moore-Penrose inverse. Let
T ∈ Hom∗(M,N ). The operator T † ∈ Hom∗(M,N ) is the Moore-Penrose
inverse of T , provided that the following holds:

TT †T = T, T †TT † = T †, (TT †)∗ = TT †, (T †T )∗ = T †T.

The Moore-Penrose inverse is unique in the case when it exists: this is
standard for all standard structures that admits the existence of the Moore-
Penrose inverse. Moreover, T † exists if and only if R(T ) is closed in N (see
[14]).

In this paper we are interested in the reverse order law for the Moore-
Penrose inverse. If a, b are invertible elements in an unital semigroup, then
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(ab)−1 = b−1a−1 is the reverse order law for the ordinary inverse. However,
the rule (ab)† = b†a† does not hold in general for the Moore-Penrose inverse.
If a, b are Moore-Penrose invertible, then it does not follows that ab is also
Moore-Penrose invertible. Since we consider only Hilbert modules, we refer
to the result which explain when the product of two closed-range adjointalbe
operators also has a closed range. One equivalent condition is proved in [12].

In this paper we prove some equivalencies of the reverse order rule (AB)† =
B†A†, where A,B,AB are adjointable operators between Hilbert modules,
that have closed ranges. This result is known in the case of bounded Hilbert
space operators, and in some parts in rings with involutions. We demostrate
the usefulness of Theorem 1.1 for the geometric theory of generalized inverse.

Let T ∈ Hom∗(M, N) has a closed range. Then T †T is the orthogonal
projection from M onto R(T ∗), and TT † is the orthogonal projection from
N onto R(T ). Using these projections, we see that T has the following
matrix decomposition:

T =

[
T1 0
0 0

]
:

[
R(T ∗)
N (T )

]
→

[
R(T )
N (T ∗)

]
.

The operator T1 is invertible and adjointable, so

T † =

[
T−1
1 0
0 0

]
:

[
R(T )
N (T ∗)

]
→

[
R(T ∗)
N (T )

]
.

This decomposition allows us to reduce some properties of non-invertible T
to invertible T1.

Previous representation is derived from block representations of oper-
ators on Banach and Hilbert spaces, as well as Hilbert C∗-modules (see,
for example, [4], [6], [12], [13]). This representation, and derived ones, are
systematically used in the investigation of generalized inverses.

Let T ∈ Hom∗(M,N ) have a closed range. T is EP if and only if
TT † = T †T . Equivalently, T is EP if and only if R(T ) = R(T ∗) (see [12] for
EP operators on Hilbert modules). Obviously, T is EP if and only if T ∗ is
EP. Notice that selfadjoint and normal operators with closed range are EP
operators.

We use [T, S] = TS − ST to denote the commutator of operators T and
S. In this paper we use the fact that if T and S are selfadjoint, then TS is
selfadjoint if and only if [T, S] = 0.

2 Results

We prove the following main result of this paper.
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Theorem 2.1. Let A be a C∗-algebra, and let M,N ,K be Hilbert A-modules.
Suppose that A ∈ Hom∗(N ,K), B ∈ Hom∗(M,N ) be adjointable operators,
such that A,B,AB have closed ranges. Then the following statements are
equivalent:

(a) (AB)† = B†A†;
(b) [A†A,BB∗] = 0 and [A∗A,BB†] = 0;
(c) R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗);
(d) A∗ABB∗ is EP.

Proof. Using previous ideas, we know that A =

[
A1 0
0 0

]
:

[
R(A∗)
N (A)

]
→[

R(A)
N (A∗)

]
, where A1 is invertible, and consequently A† =

[
A−1

1 0
0 0

]
. Also,

B =

[
B1 0
B2 0

]
:

[
R(B∗)
N (B)

]
→

[
R(A∗)
N (A)

]
. Notice that D = B∗

1B1 + B∗
2B2

is positive and invertible in End∗(R(B∗)). Hence, B† = (B∗B)†B∗ =[
D−1B∗

1 D−1B∗
2

0 0

]
.

We find equivalent forms of (a). Notice that AB =

[
A1B1 0
0 0

]
and

B†A† =

[
D−1B∗

1A
−1
1 0

0 0

]
. Hence, (AB)† = B†A† if and only if (A1B1)

† =

D−1B∗
1A

−1
1 . We have the following: A1B1(D

−1B∗
1A

−1
1 )A1B1 = A1B1 if and

only if
B1D

−1B∗
1B1 = B1. (1)

Also, D−1B∗
1A

−1
1 (A1B1)D

−1B∗
1A

−1
1 = D−1B∗

1A
−1
1 if and only if (1) holds.

The operator A1B1D
−1B∗

1A
−1
1 is Hermitian if and only if

[A∗
1A1, B1D

−1B∗
1 ] = 0. (2)

Finally, D−1B∗
1A

−1
1 A1B1 is Hermitian if and only if

[D,B∗
1B1] = 0. (3)

Now we find equivalent forms of (b). We have A†A =

[
I 0
0 0

]
, A∗A =[

A∗
1A1 0
0 0

]
, BB∗ =

[
B1B

∗
1 B1B

∗
2

B2B
∗
1 B2B

∗
2

]
and BB† =

[
B1D

−1B∗
1 B1D

−1B∗
2

B2D
−1B∗

1 B2D
−1B∗

2

]
.

Hence, [A†A,BB∗] = 0 if and only if

B1B
∗
2 = 0. (4)
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Also, [A∗A,BB†] = 0 if and olny if

[A∗
1A1, B1D

−1B∗
1 ] = 0 (5)

and

B2D
−1B∗

1 = 0. (6)

We find equivalent conditions for (c). Notice that R(A∗AB) ⊂ R(B)
holds if and only if BB†A∗AB = A∗AB. Also, R(BB∗A∗) ⊂ R(A∗) if and
only if A†ABB∗A∗ = BB∗A∗. From previous decompositions of operators
we see that A†ABB∗A∗ = BB∗A∗ if and only if

B2B
∗
1 = 0, (7)

which the same as (4). We have BB†A∗AB = A∗AB if and only if

B1D
−1B∗

1A
∗
1A1B1 = A∗

1A1B1 (8)

and

B2D
−1B∗

1A
∗
1A1B1 = 0. (9)

Thus, (c) is equivalent to (7), (8) i (9).

Finally, (d) is equivalent to

R(A∗ABB∗) = R(BB∗A∗A), (10)

assuming that this submodule is closed.

(b) =⇒ (a): We prove the following:(
(4) ∧ (5) ∧ (6)

)
=⇒

(
(1) ∧ (2) ∧ (3)

)
.

Suppose that (4), (5) and (6) hold. Obviously, (2) holds. Also,

B∗
1 = DD−1B∗

1 = (B∗
1B1 +B∗

2B2)D
−1B∗

1 = B∗
1B1D

−1B∗
1 .

Thus, (1) holds. We see thatB∗
1B1D

−1B∗
1B1 = B∗

1B1 is satisfied, soR(B∗
1B1)

is closed. We have the following matrix form of B∗
1B1: B∗

1B1 =

[
C1 0
0 0

]
:[

R(B∗
1B1)

N (B∗
1B1)

]
→

[
R(B∗

1B1)
N (B∗

1B1)

]
. Since R(B∗

2B2) ⊂ N (B∗
1B1) we have B∗

2B2 =[
0 0
C3 C4

]
:

[
R(B∗

1B1)
N (B∗

1B1)

]
→

[
R(B∗

1B1)
N (B∗

1B1)

]
. However, B∗

2B2 is Hermitian, so
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C3 = 0. Thus, D =

[
C1 0
0 C4

]
and it obviously commutes with B∗

1B1. Thus,

(3) holds.

(a) =⇒ (b): We prove(
(1) ∧ (2) ∧ (3)

)
=⇒

(
(4) ∧ (5) ∧ (6)

)
.

Suppose that (1), (2) and (3) hold. Since D commutes with B∗
1B1, we get

that D−1 commute with B∗
1B1. Hence, we get

B1 = B1D
−1B∗

1B1 = B1(D −B∗
2B2)D

−1 = B1 −B∗
2B2D

−1.

It follows that B1B
∗
2B2 = 0. Since R(B∗

2) = R(B∗
2B2) and R(B∗

2B2) ⊂
N (B1), we get R(B∗

2) ⊂ N (B1), so B1B
∗
2 = 0. Thus, (4) is proved. Also,

(5) is obvious. From B1B
∗
2 = 0 we get B∗

1B1B
∗
2 = 0 and B∗

1B1D
−1B∗

2 = 0.
Hence, B2D

−1B∗
1B1 = 0. In the same manner as before, we conclude that

B2D
−1B∗

1 = 0, so (6) holds.

(a)∧(b) =⇒ (c): It is enough to observe the following elementary impli-
cations:

(5) ∧ (1) =⇒ (8), (4) ⇐⇒ (7), (6) =⇒ (9).

(c) =⇒ (b): We prove the implication:(
(7) ∧ (8) ∧ (9)

)
=⇒

(
(4) ∧ (5) ∧ (6)

)
.

Obviously, (7) ⇐⇒ (4). From (9) we get R(B∗
1A

∗
1) = R(B∗

1A
∗
1A1B1) ⊂

N (B2D
−1), implying that B2D

−1B∗
1A

∗
1 = 0, so (6) follows. We multiply (8)

by (A1B1)
† and use the equality G∗GG† = G∗ whenever G is Moore-Penrose

invertible. Hence, we get B1D
−1B∗

1A
∗
1 = A∗

1A1B1(A1B1)
†, implying that

B1D
−1B∗

1A
∗
1A1 = A∗

1(A1B1(A1B1)
†)A1. We know that A1B1(A1B1)

† is self-
adjoint, so A∗

1(A1B1(A1B1)
†)A1 is selfadjoint. Now, B1D

−1B∗
1A

∗
1A1 is self-

adjoint. Since both B1D
−1B∗

1 and A∗
1A1 are selfadjoint, we get [B1D

−1B∗
1 ,

A∗
1A1] = 0, so (5) follows.

(d) =⇒ (c): Let A∗ABB∗ be EP. Then we have

R(A∗AB) = R(A∗ABB∗) = R(BB∗A∗A) ⊂ R(B)

and

R(BB∗A∗) = R(BB∗A∗A) = R(A∗ABB∗) ⊂ R(A∗).

Hence, (c) holds.

6



(c) =⇒ (d): Suppose that all conditions (7),(8),(9) hold. We find the
equivalent form of (10). Under these assumptions, we have that (10) is
equivalent to

R
([

A∗
1A1B1B

∗
1 A∗

1A1B
∗
1B2

0 0

])
=

([
B1B

∗
1A

∗
1 0

B2B
∗
1A

∗
1A1 0

])
.

Since (7) holds, we see that (1) is equivalent to

R(A∗
1A1B1B

∗
1) = R(B1B

∗
1A

∗
1A1).

The operator A1 is invertible, so the last equality is equivalent to

R(A∗
1A1B1B

∗
1) = R(B1B

∗
1).

Using the closed-range assumptions, the last one is equivalent to

R(A∗
1A1B1) = R(B1),

which is the same as

B1B
†
1A

∗
1A1B1 = A∗

1A1B1. (11)

Now we start from (8) and obtain the following:

B1B
†
1A

∗
1A1B1 = B1B

†
1B1D

−1B∗
1A

∗
1A1B1 = B1D

−1B∗
1A

∗
1A1B1 = A∗

1A1B1.

Thus, (8) implies (11). Hence, we have just proved that (c) implies (d).

This theorem represents an extension of well-know results for matrices
and operators on Hilbert spaces (see [1], [2], [3], [7], [8]) to the more general
settings: we considered the Moore-Penrose inverse of a product of closed-
range adjointable operators on Hilbert C∗-modules. See also [5] and [11] for
some algebraic aspects.
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[11] D. Mosić, D. S. Djordjević, Reverse order laws in rings with invo-
lution, Rocky Mountain J. Math. 44 (4) (2014), 1301–1319.

[12] K. Sharifi, The product of operators with closed range in Hilbert
C∗-modules, Linear Algebra Appl. 435 (2011), 1122–1130.

[13] K. Sharifi, EP modular operators and their products, J. Math. Anal.
Appl. 419 (2014), 870–877.

[14] Q. Xu, L. Sheng, Positive semi-definite matrices of adjointable op-
erators on Hilbert C∗-modules, Linear Algebra Appl. 428 (2008),
992–1000.

8


