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Abstract. This article treatises several problems relevant to a-Weyl’s
theorem for bounded operators on Banach spaces. There are presented suf-
ficient conditions for an operator T , such that a-Weyl’s theorem holds for
T . If a-Weyl’s theorem holds for an a-isoloid operator T , and F is a finite
rank operator commuting with T , then a-Weyl’s theorem holds for T + F .
The algebraic view point for a-Weyl’s theorem is considered in the sense of
the spectral mapping theorem for a special part of the spectrum. If T ∗ is
a quasihyponormal operator on a Hilbert space, f is a regular function in a
neighbourhood of the spectrum of T and f is not constant on the connected
components of its domain, we prove that a-Weyl’s theorem holds for f(T ).
The article also contains some related results.

1. Introduction

In this article we only consider bounded operators on a complex infinite-

dimensional Banach space X. We use I to denote the identity operator

on X, and K(X) to denote the ideal of all compact operators on X. For

an arbitrary operator T on X, N (T ) denotes its kernel and R(T ) denotes

its image. We set α(T ) = dimN (T ) and β(T ) = dim X/R(T ). Also,

Φ(X), Φ+(X) and Φ−(X) denote the sets of Fredholm and semi-Fredholm

operators on X respectively. For a semi-Fredholm operator T we define

the index i(T ) = α(T ) − β(T ). Let us consider two classes of operators:
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Φ0(T ) = {T ∈ Φ(X) : i(T ) = 0} is the set of Weyl operators on X, and

Φ−+(X) = {T ∈ Φ+(X) : i(T ) ≤ 0} which is introduced in [11]. It is

well-known that the sets Φ(X), Φ+(X), Φ−(X), Φ0(X) and Φ−+(X) form

multiplicative semigroups in B(X).

For a subset V of an arbitrary topological space, V denotes the closure

of V . Let C denotes the complex plane. If S is a subset of C, then iso S

denotes the set of all isolated points of S and acc S denotes the set of all

points of accumulation of S.

We use σ(T ) and σa(T ) to denote the spectrum and the approximate

point spectrum of T respectively. The Weyl spectrum of T is

σw(T ) =
⋂

K∈K(X)

σ(T + K) = {λ ∈ C : T − λI /∈ Φ0(X)}.

The essential approximate point spectrum of T is (see [11]):

σea(T ) =
⋂

K∈K(X)

σa(T + K) = {λ ∈ C : T − λI /∈ Φ−+(X)}.

Recall that all of these spectra are compact non-empty subsets of C.

Also, we use the following notation: π00(T ) = {λ ∈ C : λ ∈ iso σ(T ) and 0 <

α(T−λI) < ∞}, πa0(T ) = {λ ∈ C : λ ∈ iso σa(T ) and 0 < α(T−λI) < ∞}.
The set π00(T ) (respectively πa0(T )), consists of all isolated eigenvalues of

σ(T ) (σa(T )) of finite geometric multiplicity.

A complex function f belongs to the set Hol(T ), if f is regular in a

neighbourhood of σ(T ) and f is not constant on the connected components

of its domain of definition.

The following terminology may be found in [8],[9],[10], [11] and [13]. We

say that Weyl’s theorem holds for T provided that σw(T ) = σ(T )\π00(T ),

and a-Weyl’s theorem holds for T provided that σea(T ) = σa(T )\πa0(T ). If

T obeys a-Weyl’s theorem, then it obeys Weyl’s theorem and the converse

is not true [13].
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The paper is organized as follows.

In Section 2 we set Ω(T ) = {λ ∈ C : R(T − λI) is closed} and find

sufficient conditions for an operator T such that the next equality holds:

(σa(T )\σea(T )) ∩ Ω(T ) = πa0(T ) ∩ Ω(T ).

In Section 3 we prove a perturbation theorem for a-Weyl’s theorem.

Namely, if a-Weyl’s theorem holds for an a-isoloid operator T , and if F

is a finite rank operator commuting with T , then we prove that a-Weyl’s

theorem holds for T + F .

In Section 4 we consider primitive Banach algebras and the R-spectrum

σR(t) in the sense of Kordula and Müler [7]. We prove the spectral mapping

theorem for the set σR(t)\πR(t), where πR(t) consists of all isolated points

of σR(t) which are eigenvalues of t of finite geometric multiplicity.

In Section 5 we consider quasihyponormal operators on a Hilbert space.

If T ∗ is a quasihyponormal operator, we prove that a-Weyl’ theorem holds

for f(T ), provided that f is a regular function in a neighbourhood of σ(T )

and f is not constant on the connected components of its domain.

2. Sufficient conditions for a-Weyl’s theorem

We begin with the following useful statement.

Lemma 2.1. If λ ∈ πa0(T ) and R(T − λ) is closed, then

λ ∈ σa(T )\σea(T ).

Proof. If λ ∈ πa0(T ), then λ ∈ isoσa(T ) and 0 < α(T − λI) < ∞. Since

R(T − λI) is closed, we get that T − λI ∈ Φ+(X). Also, there exists a

number ε > 0, such that for all µ ∈ C, if 0 < |λ−µ| < ε then α(T −µI) = 0
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and R(T −µI) is closed, so T −µI ∈ Φ−+(X). By the continuity of the index,

we get that T − λI ∈ Φ−+(X) and λ ∈ σa(T )\σea(T ). ¤

The next important result will be also used in the proof of our main

theorem.

Theorem 2.2. If X = N (T ) ⊕R(T ), then for all complex numbers λ 6= 0

we have: λ ∈ σa(T ) if and only if λ ∈ σa(T1), where T1 is the restriction of

T to its invariant subspace R(T ).

Proof. Since X = N (T )⊕R(T ), then it follows from [6, Satz 72.4 and Satz

101.2] that 0 is the pole of the resolvent of T of order equal to 1 or 0 /∈ σ(T ).

Furthermore, if P is the spectral projection corresponding to {0}, then

N (T ) = R(P ) and R(T ) = N (P ),

hence R(T ) is closed.

If I0 and I1 are the identity operators on N (T ) and R(T ) respectively, we

can write T − λI = (−λI0)⊕ (T1 − λI1) with respect to the decomposition

X = N (T ) ⊕ R(T ). We see that N (T − λI) = N (T1 − λI1), so T − λI

is one-to-one if and only if T1 − λI1 is one-to-one. Also, R(T − λI) =

N (T )⊕R(T1 − λI1). We shall prove that R(T − λI) is closed if and only if

R(T1 − λI1) is closed.

Suppose that R(T1−λI1) is closed and x ∈ R(T − λI). Then there exists

a sequence (xn), xn ∈ X, such that lim(T − λI)xn = x. Now, x = u + v,

xn = un + vn, where u, un ∈ N (T ) and v, vn ∈ R(T ). Let P be a bounded

projection of X onto N (T ), such that N (P ) = R(T ). We get

u = Px = P lim(T − λI)xn = −λ limun.

Now,

v = x− u = lim(T − λI)xn + lim(λun) = lim(T − λI)vn = lim(T1 − λI1)vn.
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It follows that there exists a vector z ∈ R(T ), such that (T − λI)z = (T1 −
λI1)z = v. Now, (T − λI)

(− 1
λu⊕ z

)
= x and we get that R(T − λI) is

closed.

Suppose that R(T − λI) is closed and x ∈ R(T1 − λI1) ⊂ R(T ). Then

there exists a sequence (xn) in R(T ), such that lim(T1 − λI1)xn = x. It

follows that lim(T − λI)xn = x, so there exists a vector z ∈ X such that

(T − λI)z = x = 0 ⊕ x. We can find u ∈ N (T ) and v ∈ R(T ) such that

z = u + v. Now, 0 ⊕ x = (T − λI)z = −λu ⊕ (T1 − λI1)v. Consequently,

0 = −λu and (T1 − λI1)v = x.

The previous consideration shows that λ ∈ σa(T ) if and only if λ ∈
σa(T1). ¤

We say that an operator T is regular (or g-invertible), provided that there

exists an operator S, such that T = TST . It is well-known that T is regular if

and only if R(T ) is closed and N (T ) and R(T ) are complemented subspaces

of X. An operator T is simply polar, provided that X = N (T )⊕R(T ) [5].

If T is simply polar, as in the proof of Theorem 2.2 it follows that R(T ) is

closed. Obviously, if T is simply polar, then T is regular.

In the proof of the main Theorem 2.3 we shall also use the essential

Browder approximate point spectrum of T (see [12]), defined as follows:

(1) σab(T ) =
⋂

K∈K(X)
TK=KT

σa(T + K) = σea(T ) ∪ accσa(T ).

Recall that σab(T ) is non-empty compact subset of C for all bounded oper-

ators T on X [12].

Theorem 2.3. Suppose that T is simply polar and suppose that for an ar-

bitrary finite dimensional T -invariant subspace M of R(T ) there exists a

closed T -invariant subspace N of R(T ), such that M ⊕N = R(T ). Then

σa(T )\σea(T ) ⊂ πa0(T ).
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Proof. Suppose that λ ∈ σa(T )\σea(T ). We consider two cases:

Case I. If λ = 0, then T ∈ Φ−+(X) and 0 < α(T ) < ∞. We have to

prove that 0 is an isolated point of σa(T ). By (1) it is enough to prove that

0 /∈ σab(T ). Let P be a continuous projection of X onto N (T ), such that

N (P ) = R(T ). It follows that P ∈ K(X) and we shall prove that TP = PT

and 0 /∈ σa(T + P ). Let x = u + v, where u ∈ N (T ) and v ∈ R(T ). Then

TPx = TPu = 0 = PTx, so P and T mutually commute. If (T + P )x = 0,

then u = Pu = −Tv, where u ∈ N (T ) and −Tv ∈ R(T ), so we get that

u = 0 and v = 0. Since T ∈ Φ−+(X), it follows that T + P ∈ Φ−+(X),

so R(T + P ) is closed. Consequently, 0 /∈ σa(T + P ), 0 /∈ σab(T ) and

0 ∈ iso σa(T ). It follows that 0 ∈ πa0(T ).

Case II. Now, suppose that λ 6= 0. We get that T = 0 ⊕ T1 with respect

to the decomposition X = N (T ) ⊕ R(T ), where T1 is the restriction of

T to R(T ). Since λ ∈ σa(T )\σea(T ), we get that T − λI ∈ Φ−+(X), so

R(T − λI) is closed and 0 < α(T − λI) < ∞. By Theorem 2.2 and its

proof we get that λ ∈ σa(T1), R(T1 − λI1) is closed, 0 < α(T1 − λI1) < ∞
and i(T1 − λI1) = i(T − λI) ≤ 0, so T1 − λI1 ∈ Φ−+(R(T )). There is

a neighbourhood U(λ) of λ, such that 0 /∈ U(λ). So for all µ ∈ U(λ),

using Theorem 2.2 we get that µ ∈ σa(T ) if and only if µ ∈ σa(T1), so

λ ∈ accσa(T ) if and only if λ ∈ accσa(T1). To prove that λ ∈ πa0(T ), it

is enough to prove that λ ∈ isoσa(T ), or λ ∈ iso σa(T1). To prove that

λ ∈ iso σa(T1), it is enough to prove that λ /∈ σab(T1).

We shall use the similar method as the one in the Case I. SinceN (T1−λI1)

is the finite dimensional eigenspace of T1, there exists a closed T1-invariant

subspace M , such that R(T ) = N (T1 − λI1)⊕M . Let Q be the continuous

projection of R(T ) onto N (T1 − λI1), such that N (Q) = M . It is obvious

that Q ∈ K(R(T )). We have to prove that QT1 = T1Q and λ /∈ σa(T1 + Q).

Suppose that x = u + v, such that u ∈ N (T1 − λI1) and v ∈ M . Then

QT1x = QT1u + QT1v = QT1u = −λu = T1Qu + T1Qv = T1Qx.
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The second equality follows from T1v ∈ M = N (Q), and the fourth equality

follows from v ∈ M = N (Q). Since T1 − λI1 ∈ Φ−+(R(T )), it is well-known

that T1 +Q−λI1 ∈ Φ−+(R(T )), so R(T1 +Q−λI1) must be closed in R(T ).

We only have to prove that T1−λI1+Q is one-to-one. Suppose that x = u+v,

u ∈ N (T1 − λI1), v ∈ M and (T1 − λI1 + Q)x = 0. Since (T1 − λI1)u = 0,

Qu = u and Qv = 0, we get that u = −(T1 − λI1)v. Since u ∈ N (T1 − λI1)

and −(T1 − λI1)v ∈ M , we get that u = 0, so v ∈ M ∩ N (T1 − λI1), v = 0

and x = 0. Consequently λ /∈ σa(T1 + Q), λ /∈ σab(T1), so λ ∈ isoσa(T1),

λ ∈ iso σa(T ) and λ ∈ πa0(T ). ¤

Now, following [8], we introduce the next notation: Ω(T ) = {λ ∈ C :

R(T − λI) is closed}. Note that T − λI is assumed to be regular in [8],

which is much stronger condition in Banach spaces. The next corollary

follows from Lemma 2.1 and Theorem 2.3.

Corollary 2.4. Suppose that the conditions from Theorem 2.3 are valid for

T . Then

(σa(T )\σea(T )) ∩ Ω(T ) = πa0(T ) ∩ Ω(T ).

3. Perturbations by a commuting finite rank operator

If a-Weyl’s theorem holds for T , T is a-isoloid and F is a finite rank

operator commuting with T , then we prove that a-Weyl’s theorem holds for

T + F . This problem for Weyl’s theorem is proposed in [10] and solved in

[9]. It is convenient to give the proof of the next statement.

Lemma 3.1. If α(T ) = n and dimR(F ) = m, then

α(T + F ) ≤ n + m,
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where m and n are nonnegative integers.

Proof. We have that X = N (T )⊕M for a closed subspace M of X. Notice

that the restriction T |M is one-to-one. Let W = {v ∈ M : Tv ∈ R(F )}.
Since T |M is one-to-one, we get that dim W ≤ m, and dim(N (T ) ⊕W ) ≤
n+m. Now, suppose that x ∈ N (T +F ). Then x = u+v, where u ∈ N (T ),

v ∈ M and

0 = (T + F )(u + v) = Tv + Fx.

It follows that Tv = −Fx ∈ R(F ) and v ∈ W . We get that if x ∈ N (T +F ),

then x ∈ N (T )⊕W , so α(T + F ) ≤ n + m. ¤

The next result is very useful.

Theorem 3.2. If F is an arbitrary finite rank operator on X, such that

FT = TF , then for all µ ∈ C:

µ ∈ accσa(T ) if and only if µ ∈ accσa(T + F ).

Proof. Firstly, we prove that if T is one-to-one and TF = FT , then R(F ) ⊂
R(T ). Since F is a finite rank operator, there exist two systems: a system of

linearly independent vectors (yi)n
i=1, and a system of non-zero bounded linear

functionals (gi)n
i=1 on X, such that for all x ∈ X: F (x) =

∑n
i=1 gi(x)yi.

Now, we get that TFx =
∑n

i=1 gi(x)Tyi and FTx =
∑n

i=1 gi(Tx)yi. Since

T is one-to-one, we get that Ty1, . . . ,Tyn are linearly independent, so we get

that {∑n
i=1 gi(x)Tyi : x ∈ X} = span{y1, . . . , yn} = span{Ty1, . . . , T yn},

and R(F ) ⊂ R(T ). Similarly, if T − λI is one-to-one for a number λ ∈ C,

then R(F ) ⊂ R(T − λI).

Now, suppose that µ /∈ accσa(T ). There exists a number ε > 0, such

that for all λ ∈ C, if 0 < |λ − µ| < ε then α(T − λI) = 0 and R(T − λI)

is closed. Also, there exists a bounded operator T1 : R(T − λI) → X, such

that (λI − T )T1 = IR(T−λI) and T1(λI − T ) = IX . Notice that R(F ) is a
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finite dimensional subspace of a Banach space R(T − λI), so we may find a

closed subspace M , such that R(F )⊕M = R(T − λI).

Suppose that λ ∈ σa(T +F ). Then there exists a sequence (xn)n, xn ∈ X

and ‖xn‖ = 1 for all n ≥ 1, such that lim(T + F − λI)xn = 0. We can

assume that lim Fxn = x ∈ R(F ). Now,

0 = lim T1(T + F − λI)xn = lim(xn + T1Fxn).

Since the limit lim T1Fxn = T1x exists, we get lim xn = −T1x. Since ‖xn‖ =

1, it follows that x 6= 0. We verify that x = lim Fxn = −FT1x ∈ R(F ). Also,

(T −λI)x = −(T −λI)FT1x = −Fx and (T + F −λI)x = 0. We get that if

λ ∈ σa(T +F ), then λ is an eigenvalue of T +F . It is known that eigenvectors

corresponding to distinct eigenvalues of T +F are linearly independent. But,

we get that all such eigenvectors are contained in the finite dimensional

subspace R(F ). It follows that σa(T + F ) may contain only finitely many

points λ, such that 0 < |λ − µ| < ε. We get that µ /∈ accσa(T + F ). The

opposite implication is analogous. ¤

Definition 3.3. We say that an operator T is a-isoloid, if all isolated points

of σa(T ) are eigenvalues of T .

Recall that an operator T is isoloid, provided that all isolated points of

σ(T ) are eigenvalues of T . Now, σa(T ) contains all isolated points of σ(T ),

so if T is a-isoloid then it is also isoloid.

The next theorem is the main result in this section.

Theorem 3.4. Suppose that F is an arbitrary finite rank operator and

TF = FT . If T is a-isoloid and a-Weyl’s theorem holds for T , then a-

Weyl’s theorem holds for T + F .

Proof. It is enough to prove that 0 ∈ σa(T + F )\σea(T + F ) if and only

if 0 ∈ πa0(T + F ). Firstly we prove the implication =⇒ . Now, if 0 ∈
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σa(T + F )\σea(T + F ), then T + F ∈ Φ−+(X) and 0 < α(T + F ) < ∞.

We need to prove that 0 ∈ isoσa(T + F ). It follows that T ∈ Φ−+(X), so

0 /∈ σea(T ). It is possible that 0 /∈ σa(T ). In this case we get 0 /∈ acc σa(T )

and by Theorem 3.2 it follows that 0 /∈ accσa(T + F ), so 0 ∈ πa0(T + F ).

The second possibility is that 0 ∈ σa(T ). Since a-Weyl’s theorem holds for

T , we get that 0 /∈ accσa(T ) and again 0 ∈ πa0(T + F ).

To prove the opposite implication ⇐= , suppose that 0 ∈ πa0(T + F ).

Then 0 ∈ iso σa(T + F ) and 0 < α(T + F ) < ∞. By Theorem 3.2 we get

0 /∈ acc σa(T ) and by Lemma 3.1 it follows that 0 ≤ α(T ) < ∞. Again, we

distinguish two cases. Firstly, if 0 /∈ σa(T ), then T ∈ Φ−+(X) and T + F ∈
Φ−+(X), so 0 ∈ σa(T + F )\σea(T + F ). On the other hand, if 0 ∈ σa(T )

then 0 ∈ isoσa(T ). Since T is a-isoloid, we get that 0 < α(T ) < ∞ and

0 /∈ σea(T ). Now, we have T ∈ Φ−+(X), T + F ∈ Φ−+(X) and 0 ∈ σa(T +

F )\σea(T + F ). ¤

4. Spectral mapping theorems in Banach algebras

In this section we shall prove a spectral mapping theorem for a part of

the spectrum, which is relevant to Weyl’s theorems. Also, we shall use

the partial case of Theorem 4.4 to prove an important result in Section 5

(Theorem 5.6). Let A be a primitive Banach algebra with the identity 1,

and let Min(A) be the set of all minimal idempotents in A. If t ∈ A and

e ∈ Min(A) then t∧ denotes the element in B(Ae) defined as t∧(ae) = tae

for all ae ∈ Ae. Notice that we use B(X) to denote the set of all bounded

operators on the Banach space X. The mapping t → t∧ is called the left

regular representation of the primitive Banach algebra A on the Banach

space Ae. It is well-known that the rank, nullity and defect of t∧ do not

depend on the choice of e ∈ Min(A) (see [1]), so we write α(t) = α(t∧).

Notice that (ts)∧ = t∧s∧ and (t − λ)∧ = t∧ − λI, where I denotes the



OPERATORS OBEYING a-WEYL’S THEOREM 11

identity operator on Ae. Let A−1 denote the set of all invertible elements

in A.

We restate a result which enable us to define the point spectrum of an

element in a primitive Banach algebra A.

Lemma 4.1 ([1, Example F.2.2]). Let X be a Banach space and T ∈ B(X).

Then

σp(T ) = σp(T∧).

Definition 4.2. If t ∈ A and e ∈ Min(A), then the point spectrum of t is

defined by σp(t) = σp(t∧), where t∧ ∈ B(Ae).

By [1], Definition 4.2 does not depend on the choice of e ∈ A and by

Lemma 4.1 it coincides with the usual definition of the point spectrum of a

bounded operator on a Banach space. We say that the set σp(t) consists of

eigenvalues of t.

Let R 6= ∅ be a regularity of A (see [7]), i.e. R satisfies the following

conditions:

(a) if a ∈ A and n ∈ N, then a ∈ R ⇐⇒ an ∈ R;

(b) if a, b, c, d are mutually commuting elements of A and ac + bd = 1,

then ab ∈ R ⇐⇒ a ∈ R and b ∈ R.

The R-spectrum of t ∈ A is defined as follows:

σR(t) = {λ ∈ C : t− λ /∈ R}.

It is well known that if a ∈ A−1 and ab = ba, then ab ∈ R if and only if b ∈ R,

and A−1 ⊂ R. Also, the spectral mapping theorem f(σR(t)) = σR(f(t))

holds for all t ∈ A and f ∈ Hol(t). We shall always assume that R is an

open regularity of A, so σR(t) is (possibly empty) compact subset of σ(t)

[7].
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Consider the set πR(t) = {λ ∈ C : λ ∈ iso σR(t) and 0 < α(t− λ) < ∞}.
The set πR(t) consists of all isolated points of σR(t) which are eigenvalues

of t of finite geometric multiplicity. Now, we introduce a general definition

inspired by Definition 3.3.

Definition 4.3. We say that t ∈ A is R-isoloid, provided that iso σR(t) ⊂
σp(t), i.e. all isolated points of σR(t) are eigenvalues of t.

We shall prove the spectral mapping theorem for the set σR(t)\πR(t). If

T is a bounded operator on a Banach space, the analogous problem for the

set σ(T )\π00(T ) and polynomials is considered in [10].

Theorem 4.4. Let R be an open regularity of A, such that σR(t) 6= ∅ for

all t ∈ A. If t ∈ A is R-isoloid and f ∈ Hol(t) is arbitrary, then

σR(f(t))\πR(f(t)) = f(σR(t)\πR(t)).

Proof. To prove the inclusion ⊂, let us take λ ∈ σR(f(t))\πR(f(t)) ⊂
f(σR(t)) and distinguish three cases.

Case I. If λ is a limit point of σR(f(t)), then λ is also a limit point

of f(σR(t)), so there is a sequence (µn) in σR(t), such that f(µn) → λ.

Now, σR(t) is compact, so we can take that µn → µ ∈ σR(t). We get that

λ = f(µ) ∈ f(σR(t)\πR(t)).

Case II. Now, let λ be an isolated point of t, but α(t− λ) = 0. We have

that

(2) f(t)− λ = (t− µ1) · · · (t− µn)g(t),

where µ1, . . . , µn ∈ σ(t), elements on the right side of (2) mutually commute

and g(t) is invertible. Since λ ∈ f(σR(t)), we know that some µi0 belongs to

σR(t). Since λ is not an eigenvalue of f(t)∧, it follows that non of µ1, . . . , µn

can be an eigenvalue of t∧. Therefore λ = f(µi0) ∈ f(σR(t)\πR(t)).
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Case III. Let λ be an isolated eigenvalue of f(t) of infinite geometric

multiplicity. Notice that (2) also holds. Since λ is an eigenvalue of f(t)∧ of

infinite multiplicity, there exists an µi0 , such that µi0 is an eigenvalue of t∧

of infinite multiplicity. We get that λ = f(µi0) ∈ f(σR(t)\πR(t)).

To prove the inclusion ⊃, let us take λ ∈ f(σR(t)\πR(t)) ⊂ σR(f(t)).

Suppose that λ ∈ πR(f(t)). Then λ is isolated in σR(f(t)) and (2) holds. If

some µi is in σR(t), then µi is isolated in σR(t) and it must be an eigenvalue

of t, since t is R-isoloid. Now, λ is an eigenvalue of f(t) of finite multiplicity,

so all µi ∈ σR(t) are eigenvalues of t of finite multiplicities. We get that all

µi ∈ σR(t) are also in πR(t). This is in contradiction with the assumption

λ ∈ f(σR(t)\πR(t)). ¤

Remark 4.4. Notice that we can prove the inclusion ⊂ in Theorem 4.3 as-

suming that R is an open subset of A, which satisfies the following:

(c) A−1 ⊂ R;

(d) if a, b ∈ R and ab = ba, then ab ∈ R.

Namely, if R satisfies (c) and (d), then the inclusion σR(f(t)) ⊂ f(σR(t))

holds for all t ∈ A and f ∈ Hol(t). In this partial case t need not to be

R-isoloid.

In the rest of this section we shall consider a generalization of the Browder

spectrum. This part of the paper is not the main object of our investigation,

but Theorem 4.7 plays an important role in the Fredholm theory. Till the

end of this section we can assume that A is an arbitrary complex Banach

algebra with the identity 1.

Let J be any closed two-sided ideal of A. If t ∈ A and λ ∈ iso σ(t), let

p = p(λ, t) denote the spectral idempotent of t, corresponding to λ. Define

the set of all isolated points of finite algebraic multiplicity (with respect to

J) as:

π0(t) = {λ ∈ C : λ ∈ isoσ(t) and p(λ, t) ∈ J}.
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We shall prove the spectral mapping theorem for the set σ(t)\π0(t).

If T is a bounded operator on a Banach space X, A = B(X) is the Banach

algebra of all bounded operators on X, and J = K(X) is the ideal of all

compact operators on X, then σ(T )\π0(T ) is the Browder spectrum of T .

Recall that a projection is a compact operator if and only if it is a finite

rank operator. So, we may call the set σ(t)\π0(t) the Browder spectrum of

an element t in a Banach algebra A. Other generalizations of the Browder

spectrum may be found in [1], [5] and [7].

We shall need the following result of Dunford and Schwartz [3, Theorem

19, p. 574] (interpreted for elements of an arbitrary Banach algebra).

Theorem 4.5. Let t ∈ A, f is a regular function in neighbourhood of σ(t),

and let κ be a spectral set of σ(f(t)). Then σ(t)∩ f−1(κ) is a spectral set of

σ(t) and

p(κ, f(t)) = p(f−1(κ), t).

Also, we shall use the next statement.

Lemma 4.6. Let A be an algebra and let J be a two-sided ideal of A. If

a, b are idempotents in A, such that a + b ∈ J and ab = ba, then a, b ∈ J .

Proof. Since ab = ba, we get (a + b)2 = a + 2ab + b ∈ J and ab ∈ J . Now

a(a + b) = a + ab ∈ J and a ∈ J . ¤

We prove the spectral mapping theorem for the Browder spectrum.

Theorem 4.7. If a ∈ A and f ∈ Hol(a), then

σ(f(a))\π0(f(a)) = f(σ(a)\π0(a)).

Proof. Let λ ∈ σ(f(a))\π0(f(a)) ⊂ f(σ(a)). We distinguish two cases.
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Case I. Suppose that λ is not an isolated point of σ(f(a)). Then there

exists a sequence (µn), µn ∈ σ(a), such that f(µn) → λ and µn → µ0. Now

λ = f(µ0) ∈ f(σ(a)\π0(a)).

Case II. Suppose that λ is an isolated point of σ(f(a)), but p(λ, f(a)) /∈ J .

We have

(3) f(a)− λ = (a− µ1) · · · (a− µn)g(a),

where g(a) is invertible and all µi are isolated points of σ(a). By Theorem

4.5, it follows that

(4) p(λ, f(a)) = p({µ1, . . . , µn}, a) = p(µ1, a) + · · ·+ p(µn, a).

If µ is not a point of accumulation of σ(a), then it is well-known that

p(µ, a) = 0 if and only if µ /∈ σ(a). If all idempotents on the right side

of (4) are in J , then p(λ, f(a)) ∈ J also. So there exists an µi ∈ σ(a), such

that p(µi, a) /∈ J and λ = f(µi) ∈ f(σ(a)\π0(a)).

We prove the opposite inclusion. Let λ ∈ f(σ(a)\π0(a)) ⊂ σ(f(a)). Sup-

pose that λ ∈ π0(f(a)). Then λ is isolated in σ(f(a)) and we get again (3)

and (4). It is well-known that idempotents on the right side of (4) are mutu-

ally orthogonal. Since p(λ, f(a)) ∈ J , by Lemma 4.6 we get p(µi, a) ∈ J for

all i. So if λ = f(µ) and µ ∈ σ(a), then µ ∈ π0(a). This is in contradiction

with the assumption λ ∈ f(σ(a)\π0(a)). ¤

Remark 4.8. Notice that the spectral mapping theorem for the Browder

spectrum holds for bounded operators on Banach spaces. Constructions in

[1], [5] and [7] also imply the spectral mapping theorem for the Browder

spectrum.
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5. Quasihyponormal operators

Throughout this section H denotes a complex infinite–dimensional Hilbert

space and T is always a bounded operator on H. We say that an operator

T on a Hilbert space H is hyponormal, provided that ‖T ∗x‖ ≤ ‖Tx‖ holds

for all x ∈ H. T is quasihyponormal, provided that ‖T ∗Tx‖ ≤ ‖T 2x‖ for all

x ∈ H. Obviously, if T is hyponormal, then it is quasihyponormal. If T ∗ is a

quasihyponormal operator, we prove that a-Weyl’s theorem holds for f(T ),

provided that f is a regular function in a neighbourhood of σ(T ) and f is

not constant on the connected components of its domain. This problem for

Weyl’s theorem and hyponormal operators is partially proposed in [10] and

solved in [9]. A general solution for Weyl’s theorem may be found in [15].

The next lemma is proved in the Erovenko’s paper [4].

Lemma 5.1. Let T be a quasihyponormal operator on H. If λ ∈ C\{0},
then α(T − λI) ≤ α(T − λI)∗. If α(T ) < ∞ or β(T ) < ∞, then α(T ) ≤
α(T ∗).

If f is an arbitrary regular function in a neighbourhood of σ(T ), then it is

well-known that σea(f(T )) ⊂ f(σea(T )) [12]. This inclusion may be proper

even if f is a polynomial [11]. For the class of quasihyponormal operators

we have the more precise result.

We use the notation Φ+(T ) = {λ ∈ C : λI − T ∈ Φ+(X)}. Recall the

notation [14]

S+(X) = {T ∈ B(X) : i(λI − T ) ≤ 0 for all λ ∈ Φ+(T ),

or i(λI − T ) ≥ 0 for all λ ∈ Φ+(T )}.
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Theorem 5.2. If T ∗ is a quasihyponormal operator, f ∈ Hol(T ), then

σea(f(T )) = f(σea(T )).

Proof. If T ∗ is quasihyponormal, λ ∈ C and λI − T ∈ Φ+(X), then i(λI −
T ) ≥ 0, by Lemma 5.1. From [14, Theorem 2] it follows that

σea(f(T )) = f(σea(T ))

for all f ∈ Hol(T ), since T ∈ S+(X). ¤

Also, we shall use the next result (see [2]).

Theorem 5.3. If T ∗ is quasihyponormal, then a-Weyl’s theorem holds for

T .

The next theorem is a generalization of the Oberai’s theorem [10].

Theorem 5.4. Let T be a-isoloid and let T obey a-Weyl’s theorem. If

f ∈ Hol(T ), then f(T ) obeys a-Weyl’s theorem if and only if f(σea(T )) =

σea(f(T )).

Proof. We shall use Theorem 4.4 assuming that the regularity R is the set of

all operators on H, which are one-to-one with closed range. Now the proof

follows from

f(σa(T )\πa0(T )) = σa(f(T ))\πa0(f(T )). ¤

Now, the next statement is expected.
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Theorem 5.5. If T ∗ is quasihyponormal, then T is a-isoloid.

Proof. Suppose that λ ∈ iso σa(T ). Then there exists a number ε > 0, such

that for all µ ∈ C, if 0 < |λ − µ| < ε then α(T − µI) = 0 and R(T − µI)

is closed. By Lemma 5.1 it follows that α(T − µI)∗ = 0, so T − µI and

(T −µI)∗ are invertible. It follows that λ is an isolated point of σ(T ∗). It is

well-known that the quasihyponormal operator T ∗ is isoloid, i.e. all isolated

points of σ(T ∗) are eigenvalues of T ∗ (see the comment in [4,Teorema 5]).

We get that 0 < α(T − λI)∗ ≤ α(T − λI), so λ is an eigenvalue of T . ¤

We are able to prove the following general result.

Theorem 5.6. Let T ∈ B(X) be a-isoloid and let T obey a-Weyl’s theorem.

Then the following assertions are equivalent:

(1) T ∈ S+(X);

(2) for each f ∈ Hol(T ) a-Weyl’s theorem holds for f(T );

(3) for each non-constant polynomial p a-Weyl’s theorem holds for p(T ).

Proof. (1) =⇒ (2) Let T ∈ S+(X). In [14, Theorem 2] it is proved that

σea(f(T )) = f(σea(T )) for all f ∈ Hol(T ). From Theorem 4.4 we get

σa(f(T )) \ πa0(f(T )) = f(σa(T ) \ πa0(T )) for all f ∈ Hol(T ). Since a-

Weyl’s theorem holds for T , it follows that a-Weyl’s theorem holds for f(T )

for all f ∈ Hol(T ).

(2) =⇒ (3) Obvious.

(3) =⇒ (1) Suppose that T /∈ S+(X). In [14, Theorem 2] Schmoeger

constructed a non-constant polynomial p, such that σea(p(T )) 6= p(σea(T )).

From Theorem 4.4 we still have σa(p(T )) \ πa0(p(T )) = p(σa(T ) \ πa0(T )).

Since a-Weyl’s theorem holds for T , it follows that a-Weyl’s theorem does

not hold for p(T ). ¤

The analogous result for Weyl’s theorem is considered in [15, Theorem 1].
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Now, the next statement is very general and considered in [9], [10], [15].

Corollary 5.7. If T ∗ is a quasihyponormal operator, f is a regular func-

tion in a neighbourhood of σ(T ) and f is not constant on the connected

components of its domain, then a-Weyl’s theorem holds for f(T ).

Proof. This proof follows from Theorems 5.2 – 5.6. ¤
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University of Nǐs, Faculty of Philosophy, Department of Mathematics
Ćirila i Metodija 2, 18000 Nǐs, Yugoslavia
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