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Abstract

In this paper we consider various aspects of generalized invertibility

of the operator matrix M =
[

A C
0 B

]
acting on a Banach space

X ⊕ Y .

1 Introduction

There are many papers dealing with spectral properties of 2 × 2 operator

matrices, acting on a direct (or orthogonal) sum of Banach or Hilbert spaces

(see all references). In this paper we consider some properties related to

generalized invertibility, left Browder invertibility, and the point spectrum of

a given operator.

Let Z be a Banach space, such that Z = X ⊕ Y for some closed and

complementary subspaces X and Y . This sum will be also denoted by

[
X
Y

]
.

If Z is a Hilbert space, then we always assume that X and Y are closed and

mutually orthogonal subspaces of Z, so Z = X ⊕ Y denotes the orthogonal

sum.

Let L(X,Y ) denote the set of all linear bounded operators from X to Y .

We abbreviate L(X) = L(X,X). The set of all finite rank operators from

X to Y is denoted by F(X, Y ). For A ∈ L(X,Y ) we use R(A) and N (A)
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to denote the range and the null-space of A, respectively. The ascent asc(A)

and the descent dsc(A) of A are given by asc(A) = inf{n ≥ 0 : N (An) =

N (An+1)} and dsc(A) = inf{n ≥ 0 : R(An) = R(An+1)}.
If W is a finite dimensional subspace of a Banach space, then dim W

denotes the dimension of W . If W is infinite dimensional, then we simply

write dim W = ∞. However, if X is a Hilbert space and W is a closed

subspace of X, then dim W is the orthogonal dimension of W .

If Z = X ⊕ Y , then any M ∈ L(Z) satisfying M(X) ⊂ X, can be

decomposed as the following operator matrix

M =

[
A C
0 B

]
:

[
X
Y

]
→

[
X
Y

]
,

for some A ∈ L(X), C ∈ L(Y,X) and B ∈ L(Y ). On the other hand,

any choice of A,C,B (linear and bounded operators on the corresponding

subspaces), produces a linear and bounded operator M on the space Z, such

that X is invariant for M .

If A and B are fixed, then we use the notation MC to show that M

depends on C. For given A and B, we are interested to find C, such that MC

has some prescribed properties. There are several papers that investigate

invertibility of 2× 2 operator matrices (see [1], [2], [4], [5], [6], [8]).

In this paper we extend some results from Hilbert to Banach space set-

tings. Thus, some recent results from, [2], [3] and [9] are generalized.

2 Generalized inverses of MC

We need some properties of generalized inverses. Let B ∈ L(X,Y ) be given.

B is relatively regular (inner invertible) if there exists some D ∈ L(Y, X)

such that BDB = B holds. In this case D is an inner inverse of B. It is

well-known that B is relatively regular, if and only if R(B) and N (B) are

closed and complemented in Y and X, respectively. If DBD = D holds and

D 6= 0, then B is outer invertible, and D is an outer inverse of B. If B 6= 0,

then it is a corollary of the Hahn-Banach theorem that there exists some

non-zero outer inverse D of B. If D is both inner and outer inverse of B,

then D is a reflexive inverse of B. Moreover, if D is an inner inverse of B,

then DBD is a reflexive inverse of B.
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If D ∈ L(Y,X) is a reflexive inverse of B ∈ L(X, Y ), then BD is the

projection from Y onto R(B) parallel to N (D), and DB is the projection

from X onto R(D) parallel to N (B). On the other hand, if X = U ⊕N (B)

and Y = R(B)⊕ V for closed subspaces: U of X and V of Y , then B have

the matrix form

B =

[
B1 0
0 0

]
:

[
U

N (B)

]
→

[ R(B)
V

]
,

and B1 is invertible. It is easy to see that

D =

[
B−1

1 0
0 0

]
:

[ R(B)
V

]
→

[
U

N (B)

]

is the reflexive inverse of B satisfying R(B) = U and N (D) = V .

If H, K are Hilbert spaces, and A ∈ L(H, K), then the Moore-Penrose

inverse of A is the unique operator A† ∈ L(K,H) (in the case when it exists)

which satisfies:

AA†A = A, A†AA† = A†, (AA†)∗ = AA†, (A†A)∗ = A†A.

The Moore-Penrose inverse of A ∈ L(H, K) exists if and only if R(A) is

closed. If A ∈ L(H, K) is left (right) invertible, then A† is a left (right)

inverse of A.

In this section we investigate relative regularity of MC , and the corre-

sponding relatively regular spectrum σg. Notice that for A ∈ L(X) the

relatively regular spectrum of A is defined as

σg(A) = {λ ∈ C : A− λI is not relatively regular}.

Definition 2.1. [1] If X and Y are Banach spaces, then X can be embedded

in Y , if there exists a left invertible operator W ∈ L(X,Y ). The notation is

X ¹ Y .

If X and Y are Hilbert spaces, then X ¹ Y if and only if dim X ≤ dim Y .

Theorem 2.1. Let A ∈ L(X) and B ∈ L(Y ) be relatively regular. If

N (B) ¹ X/R(A), then there exists some C ∈ L(Y, X) such that MC is

relative regular.

3



Proof. Let A1 ∈ L(X) and B1 ∈ L(Y ) denote reflexive inverses of A and

B, respectively. Then Y = R(B1) ⊕ N (B) and X = N (A1) ⊕ R(A). Let

J : N (B) → N (A1) be a left invertible mapping and let J1 : N (A1) → N (B)

be a left inverse of J . Define C ∈ L(Y, X) and C1 ∈ L(X, Y ) in the following

way:

C =

[
J 0
0 0

]
:

[ N (B)
R(B1)

]
→

[ N (A1)
R(A)

]
,

C1 =

[
J1 0
0 0

]
:

[ N (A1)
R(A)

]
→

[ N (B)
R(B1)

]
.

Consider the operator N =

[
A1 0
C1 B1

]
∈ L(X ⊕ Y ). Then we find

NMC =

[
A1A A1C
C1A C1C + B1B

]
.

Since R(C) ⊂ N (A1) and R(A) ⊂ N (C1), we have A1C = 0 and C1A = 0,

respectively. Also, B1B is the projection from Y onto R(B1) parallel to

N (B), and C1C is the projection from Y onto N (B) parallel to R(B1).

Hence C1C + B1B = I, and

NMC =

[
A1A 0

0 I

]
.

Since AA1A = A and A1AA1 = A1, we have

MCNMC =

[
A C
0 B

] [
A1A 0

0 I

]
=

[
AA1A C

0 B

]
= MC ,

and MC is relatively regular.

As a corollary, we get the following results.

Corollary 2.1. Let A ∈ L(X) and B ∈ L(Y ) be given operators. Then the

following inclusion holds:

⋂
C∈L(Y,X) σg(MC) ⊆ σg(A) ∪ σg(B)

∪{λ ∈ C : N (B − λI) ¹ X/R(A− λI) does not hold}.
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We state the following result concerning the Moore-Penrose inverse of

MC .

Theorem 2.2. Let H, K be mutually orthogonal Hilbert spaces and Z =

H⊕K. If A ∈ L(H) and B ∈ L(K) both have closed ranges, and if nul(B) =

def(A), then there exists some C ∈ L(K,H) such that MC has a closed range,

and

M †
C =

[
A† 0
C† B†

]
.

Proof. Recall the notations from the proof of Theorem 2.1, with one assump-

tion: J is invertible. We have the following:

NMCN =

[
A1A 0

0 I

] [
A1 0
C1 B1

]
=

[
A1AA1 0

C1 B1

]
= N,

and

MCN =

[
AA1 + CC1 CB1

BC1 BB1

]
.

Since R(B1) = N (C) and R(C1) = N (B), it follows that CB1 = 0 and

C1B = 0. Also, AA1 is the projection on R(A) parallel to N (A1). Since J

is invertible, we have that CC1 is the projection on N (A1) parallel to R(A).

Hence, AA1 + CC1 = I. Thus, N is a reflexive inverse of MC .

Now, we take A1 = A† and B1 = B†. Then all previous results holds, with

one more nice property: we have orthogonal decompositions. Precisely, X =

N (A1)⊕R(A) = N (A∗)⊕R(A) and Y = N (B)⊕R(B1) = N (B)⊕R(B∗).
Since J is invertible, we have J1 = J−1 and consequently C1 = C†. The

operator NC is still a reflexive inverse of MC . Furthermore, we have

NMC =

[
A†A 0

0 I

]
:

[
X
Y

]
→

[
X
Y

]
,

and

MCN =

[
I 0
0 BB†

]
:

[
X
Y

]
→

[
X
Y

]
.

Projections NMC and MCN are obviously selfadjoint, so N = M †
C .
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3 Left Browder invertibility of MC

An operator A ∈ L(X, Y ) is right Fredholm, if N (A) is a complemented sub-

space of X, and def(A) = dim Y/R(A) < ∞. The set of all right Fredholm

operators from X to Y is denoted by Φr(X,Y ). An operator A ∈ L(X, Y )

is left Fredholm, if nul(A) = dimN (A) < ∞ and R(A) is a closed and com-

plemented subspace of Y . The set of all left Fredholm operators from X to

Y is denoted by Φl(X,Y ). The set of Fredholm operators from X to Y is

defined as Φ(X, Y ) = Φl(X, Y )∩Φr(X, Y ). The abbreviations Φl(X), Φr(X)

and Φ(X) are clear.

An operator T ∈ B(X) is left Browder, if it is left Fredholm with finite

ascent. Analogously, T is right Browder, if it is right Fredholm with finite

descent. These classes of operators are denoted, respectively, by Bl(X) and

Br(X). The set of all Browder operators on X is defined as B(X) = Bl(X)∩
Br(X).

Among left Browder operators, we distinguish one new class of operators

as follows:

Blc(X) = {T ∈ Bl(X) : R(T ) +N (T asc(T )) is complemented in X}.

Analogously, among right Browder operators we distinguish the following

class of operators:

Brc(X) = {T ∈ Br(X) : R(T dsc(T )) +N (T ) is complemented in X}.

Now, we prove the following result concerning the left Browder invertibil-

ity of MC . See also [2] for a Hilbert space case.

Theorem 3.1. Suppose that the following hold: A ∈ Blc(X), B is relatively

regular, and N (B) is isomorphic to X/(R(A) +N (Aasc(A))). Then there

exists some C ∈ L(Y,X) such that MC ∈ Bl(Z).

Proof. Let A ∈ Blc(X), asc(A) = p, and let W be a closed subspace of X

such that X = R(A) +N (Ap) ⊕ W . Since N (B) is complemented, then

Y = N (B)⊕ V for a closed subspace V . Since there exists a linear bounded

and invertible operator T : N (B) → W , we can define operator C : Y → X

6



by

C =

[
T 0
0 0

]
:

[ N (B)
V

]
→

[
W

R(A) +N (Ap)

]
.

We prove that MC is left Fredholm. Let

[
x
y

]
∈ N (MC), so it is Ax+Cy = 0

and By = 0. We have Ax = −Cy = −Ty ∈ R(A) ∩W ⊆ R(A) +N (Ap) ∩
W = {0}. Since y ∈ N (B) we have Cy = Ty, so x ∈ N (A) and Ty = 0.

Since T is invertible, we have y = 0. It means that

[
x
y

]
∈ N (A)⊕ {0}, so

N (MC) ⊆ N (A)⊕ {0}. It follows that nul(MC) ≤ nul(A) < ∞.

Notice that we have obviously N (A) ⊂ N (MC), so actually we have

nul(MC) = nul(A).

Let S be a reflexive inverse of A, let K be a reflexive inverse of B, and let

L =

[
T−1 0
0 0

]
. We prove that N =

[
S 0
L K

]
is an inner inverse of MC .

We have

MCNMC =

[
ASA + CLA ASC + CLC + CKB

BLA BLC + BKB

]
.

Since R(A) ⊆ R(A) +N (Ap) = N (L), we have LA = 0 which induces

BLA = 0 and CLA = 0. From the fact that S is a reflexive inverse of A, we

have ASA = A, and AS is a projection from X on R(A). Since R(C) = W ,

W ∩R(A) = {0} and AS is a projection on R(A), it follows that ASC = 0.

Analogously, from the fact that K is a reflexive inverse of B, we have BKB =

B and KB is a projection from Y on V . Since V = N (C) and R(KB) = V ,

it holds CKB = 0. We have that LC =

[
I 0
0 0

]
:

[ N (B)
V

]
→

[ N (B)
V

]
,

so R(LC) ⊆ N (B) and then BLC = 0. Obviously, CLC = C holds.

It follows that
[

ASA + CLA ASC + CLC + CKB
BLA BLC + BKB

]
=

[
A C
0 B

]
= MC .

Thus MC is relatively regular. This induces MC ∈ Φl.

Now, we prove that asc(MC) < ∞. It is enough to prove that N (Mp+1
C ) ⊆
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N (Mp
C). Let

[
x
y

]
∈ N (Mp+1

C ), then

{ Ap+1x + ApCy + Ap−1CBy + · · ·+ ACBp−1y + CBpy = 0,
Bp+1y = 0.

Since Bpy ∈ N (B), it follows that Ap+1x + ApCy + Ap−1CBy + · · · +

ACBp−1y = −CBpy ∈ R(A) ∩W ⊆ R(A) +N (Ap) ∩W = {0}. Thus
{ Ap+1x + ApCy + Ap−1CBy + · · ·+ ACBp−1y = 0,

CBpy = 0.

From the definition of C and from Bp ∈ N (B), we know that CBpy =

TBpy = 0. Since T is invertible, we conclude that Bpy = 0.

From the fact that Ap+1x + ApCy + Ap−1CBy + · · ·+ ACBp−1y = 0, we

have that x1 = Apx+Ap−1Cy+Ap−2CBy+· · ·+ACBp−2y+CBp−1y ∈ N (A).

Then
{ Apx + Ap−1Cy + Ap−2CBy + · · ·+ ACBp−2y − x1 + CBp−1y = 0,

Bpy = 0.

Thus Bp−1y ∈ N (B). It induces that Apx + Ap−1Cy + Ap−2CBy + · · · +
ACBp−2y− x1 = −CBp−1y ∈ (R(A) +N (A))∩W ⊆ R(A) +N (Ap)∩W =

{0}, then Bp−1y = 0 and Apx + Ap−1Cy + Ap−2CBy + · · ·+ ACBp−2y = x1.

Since x1 ∈ N (A), it follows that Ap−1x+Ap−2Cy+Ap−3CBy+· · ·+CBp−2y ∈
N (A2). Let x2 = Ap−1x + Ap−2Cy + Ap−3CBy + · · ·+ CBp−2y. Then

{ Ap−1x + Ap−2Cy + Ap−3CBy + · · ·+ ACBp−3y − x2 + CBp−2y = 0
Bp−1y = 0.

If we continue this process, we gets
{ A2x + ACy − xp−1 + CBy = 0

B2y = 0,

where xp−1 ∈ N (Ap−1). Then there exists xp ∈ N (Ap) such that
{ Ax + Cy − xp = 0

By = 0.

Thus Ax − xp = −Cy ∈ R(A) +N (Ap) ∩ W = {0}. It follows that x ∈
N (Ap+1) = N (Ap) and y = 0, so

[
x
y

]
∈ N (Mp

C). Since N (Mp+1
C ) ⊆

N (Mp
C), we get asc(MC) ≤ p.
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4 Point spectrum of MC

In this section we investigate the one-one property of MC .

Theorem 4.1. Suppose that A ∈ L(X) and B ∈ L(Y ) satisfy the following:

A is left invertible, N (B) is complemented, and N (B) ¹ X/R(A). Then

there exists some C ∈ L(Y, X) such that MC is one-one.

Proof. There exist closed subspaces V of Y and W of X, such that Y =

N (B)⊕ V and X = W ⊕R(A). Since N (B) ¹ X/R(A), there exists a left

invertible operator C0 ∈ L(N (B),W ). Define C ∈ L(Y, X) as follows:

C =

[
C0 0
0 0

]
:

[ N (B)
V

]
→

[
W
R(A)

]
.

We prove that MC is injective. Let z =

[
x
y

]
∈ (X ⊕ Y ). From MCz = 0,

we have [
A C
0 B

] [
x
y

]
=

[
0
0

]
.

Then, Ax + Cy = 0 and By = 0. From the first equation we have Ax =

−Cy ∈ R(A) ∩ R(C) ⊆ R(A) ∩ W = {0}. Now, we have Ax = Cy = 0.

Since A is injective, we get x = 0. From By = 0, it follows that y ∈ N (B).

Now, we have Cy = C0y = 0. Since C0 is left invertible, it is also injective.

From C0y = 0 we conclude that y = 0. Thus,

[
x
y

]
=

[
0
0

]
and this proves

that MC is injective. The proof is completed.

As a corollary, we obtain the following result. Notice that σl(A) denotes

the left spectrum of A.

Corollary 4.1. For the given operators A ∈ L(X) and B ∈ L(Y ), we have

⋂
C∈L(X,Y )

σp(MC) ⊆ σl(A)∪
∪{λ ∈ C : N (B − λI) ¹ X/R(A− λI) does not hold}
∪{λ ∈ C : N (B − λI) is not complemented in Y }
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