PERTURBATIONS OF SPECTRA
OF OPERATOR MATRICES

DRAGAN S. DJORDJEVIC

ABSTRACT. In this article M denotes a 2 X 2 operator matrix of the form

Mo = [13 g} , which is acting on the product of Banach or Hilbert spaces
X @Y. We investigate sets N or(Mc), where o (Mc) can be equal to

CEL(Y,X)
the left (right), essential, left (right) Fredholm, Weyl or Browder spectrum of
M. Thus, generalizations and extensions of various well-known and recent
results of H. Du and J. Pan (Proc. Amer. Math. Soc. 121 (1994), 761-766),
J. K. Han, H. Y. Lee and W. Y. Lee (Proc. Amer. Math. Soc. 128 (2000),
119-123) and W. Y. Lee (Proc. Amer. Math. Soc. 129 (2000), 131-138) are
presented.

1. Introduction

Let X, Y and X @Y denote arbitrary infinite dimensional Banach spaces.
We use £(X,Y) to denote the set of all bounded linear operators from X
into Y and £(X) = £(X,X). We will also consider operators on Hilbert
spaces. Thus, H and K are infinite dimensional Hilbert spaces and H @& K
is their orthogonal sum. We use dim H to denote the orthogonal dimension
of H.

If Ae L(X), Be L(Y) and C € L(Y, X), we denote

A C

MCZ[O B

] eL(XBY).
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In the case when A, B and C are operators on Hilbert spaces, we will use
H instead of X, K instead of Y and the orthogonal sum H & K instead of
XaY.

For T € L(X,Y) we use R(T) and N (T) to denote the range and kernel
of T, respectively.

We use Gi(X) and G,.(X), respectively, to denote the set of all left and
right invertible operators on X. It is well-known that if 7 € £(X), then
T € G;(X) if and only if N(T") = {0} and R(T) is a closed and complemented
subspace of X. Also, T € G.(X) if and only if R(T) = X and N(T) is a
complemented subspace of X. The set of all invertible operators on X is
denoted by G(X).

Let T € L(X), o(T) = dim N(T) and B(T) = dim X/R(T'). Sets of left

and right Fredholm operators, respectively, are defined as

O)(X)={T € L(X) : R(T) is a closed and complemented subspace of X
and o(T) < oo}

and

®,.(X)={T € L(X) : N(T) is a complemented subspace of X
and B(T) < oo}.

The set of Fredholm operators is defined as
P(X)=(X)NP.(X)={T € L(X) : a(T) < 00 and B(T) < oo}.

For a left or right Fredholm operator T' the index is defined as ind(7") =
a(T) — B(T). The set of Weyl operators is defined as

®(X) = {T € ®(X) : ind(T) = 0}.

For T € L(X) consider the following inclusions: {0} ¢ N(T) C N (T?) C
-and X D R(T) D R(T?) D ---. The ascent of T, denoted by asc(T),
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is defined as the least k (if it exists) for which N (T*) = N (T**!) holds. If
such k does not exist, then we say that the ascent of A is equal to infinity.
The descent of T', denoted by des(T'), is defined as the least k (if it exists)
for which R(T*) = R(T**1) is satisfied. If such k does not exist, then we
say that the descent of A is equal to infinity. If the ascent and the descent
of T are finite, then they are equal [2].

The Drazin inverse of T € L(X) is the unique operator TP € L(X)
satisfying

THIAP =Tk TPTTP =T and TTP =TPT

for some nonnegative integer k. The least k in the previous definition is
known as the Drazin index of T. It is well-known that TP exists if and only
if p = asc(T) = des(T") < co. In this case the Drazin index of T is equal to
p [1].

The set of Browder operators on X is defined as

B(X)=A{T € ®(X) :asc(T) = des(T") < oo}
={T € ®(X): TP exists}
={T €®(X):0¢ acco(T)}.

Corresponding spectra of an operator T' € L(X) are defined as:

the left spectrum: 0;(T) ={A € C: A -T ¢ G;(X)},

the right spectrum: o, (T) ={A e C: A =T ¢ G,.(X)},

the spectrum: o(T) ={ A€ C: A =T ¢ G(X)},

the left Fredholm spectrum: o (T) ={A € C: A\ =T ¢ &;(T)},
the right Fredholm spectrum: o,.(T) ={A € C: A\ -T ¢ &,.(T)},
the essential spectrum: o.(T) ={A € C: A —-T ¢ ®(X)},

the Weyl spectrum 0, (T) ={A € C: A =T ¢ ¢(X)},

the Browder spectrum o,(T) ={A € C: A —-T ¢ B(X)}.
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Also, the approximate point spectrum of 7' € L£(X) is defined as 0,(T) =
{A € C: T — X is not bounded below}. The defect spectrum of T' € £(X) is
defined as 04(T) = {A € C: R(T — \) # X}.

All of these spectra are compact nonempty subsets of the complex plane.

An operator T' € L(X,Y) is g-invertible (or relatively regular), provided
that there exists an operator S € L(Y, X) satisfying TST = T and ST'S = S.
S is known as a g-inverse of T'. It is well-known that T is g invertible if and
only if R(T') and N (T), respectively, are closed and complemented subspaces
of Y and X. In this case T'S is the projection from Y onto R(T') parallel to
N(S) and ST is the projection from X onto R(S) parallel to N (T).

Operators in sets G;(X), G.(X), ®;(X) and ®,(X) are g-invertible oper-
ators.

In this article we use a notation of the “relatively regular” spectrum: if
T € L(X), then 04(T) = {A € C: A—T is not g-invertible}. Also, the point
spectrum of T is denoted by o, (T"). Sets 04(T") and o, (7T") are not necessary
closed and may be empty.

For a Banach space X we use X’ to denote the dual space of X. If
T € L(X,Y), then T € L(Y’',X') is the dual operator of T. It is well-
known that (X @ Y) = X’ @ Y holds. Thus, if Mg = [A C] ELXBY),

0B
then M}, = [gi g} e LX DY)

If S is a subset of X, then S° = {f € X' : f|s = 0} is the annihilator of
S.

For a subset K of C we use acc(K), int(K) and 0K, respectively, to
denote the set of all points of accumulation of K, the interior of K and the
boundary of K.

Recall that 0o (T) C 04(T) Noq(T) holds for all T € L(X).

The set
N o(Moe),

CEeL(K,H)

where H@® K is the orthogonal sum of Hilbert spaces H and K, is determined
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in [4]. Some related results concerning the essential and Weyl spectra for
operators on Banach spaces X and Y are proved in [7] and [11].

In this article we determine sets

m GT(MC)7

CEeL(Y,X)

where we take o, (M¢) to be equal to one of the following parts of the spec-
trum: o.(M¢), ow(Me), op(Me), 01(Mc), 0re(Mc), 01(Me) and o,.(Mc).

The paper is organized as follows. In Section 2 auxiliary results and
notions are presented. The essential, Weyl and Browder spectra are investi-
gated in Section 3. Some special classes of operators and related results are
also considered in Section 3. In this section we obtain extensions of results
from [7] and [11]. In Section 4 we investigate the left and right Fredholm
spectra. Finally, in Section 5 we consider perturbations of the left and right

spectra. Here a generalization of results from [4] is obtained.

2. Auxiliary results

In this section we recall or introduce necessary notions and results. It
is well-known that the product of two relatively regular operators need not
to be relatively regular. On the other hand, if a product of two relatively
regular operators is again relatively regular, then the following “ghost” of

the index theorem can be proved:

Lemma 2.1 (Harte [8]). IfT € L(X,Y), S€ L(Y,Z) and ST € L(X,Z)

are relatively regular, then
N(T) x N(S) x Z/R(ST) = N(ST) x Y/R(T) x Z/R(S).

We introduce the notion of an “isomorphism up to a finite dimensional

subspace”.
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Definition 2.1. We say that two Banach spaces U and V are isomorphic

up to a finite dimensional subspace, if one of the following statements hold:

(a) there exists a bounded below operator J; : U — V, such that
dimV/J;(U) < oo, or

(b) there exists a bounded below operator J, : V. — U, such that
dimU/J2(V) < oo.

This definition is reminiscent to a condition introduced by V. Miiller [14]:
If My and M are subspaces of X, then we write M7 C. My if there exists a
finite dimensional subspace F' C X such that M7 C My + F'. This condition
is also used in [9], [13] and [10].

Firstly, we prove the following auxiliary result.

Lemma 2.2. Let X and Y be Banach spaces, and let M and N be finite
dimensional spaces. If M @ X = N ®Y, then X and Y are isomorphic

up to a finite dimensional subspace. Particularly, if dim M = dim N, then
XZY.

Proof. Let dimM = m, dimN =nand J: M & X — N dY be a Ba-
nach spaces isomorphism. Let x1,...,2x € X denote the system of all
linearly independent vectors in X, such that Jzi,...,Jzy are linearly in-
dependent modulo Y. Obviously, 0 < k < n. There exists a system of
n — k vectors z1,...,zp_; in N @Y, which are linearly independent mod-
ulo span{Jz1,...,Jxi} &Y. It follows that 0 < n — k < n. Denote by
y; = J 'z foralli =1,...,n — k, in the case when n — k > 0. All vectors
Y1, -, Yn—k must be linearly independent modulo X. In general, it follows
that 0 < n—k < m. There exists a system of exactly [ = m — (n—k) vectors
u1,...u;, which are linearly independent modulo span{yi,...,yn—r} ® X.

There exists a Banach space X7, such that

span{xy,...,xp} X1 =X
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and
M @ X = spanf{y1, ..., Yn—k} ® span{uy,...,u} & span{xy,...,xr} ® X;.
Let v; = Ju;, i =1,...,1. Vectors vy,

., vy are linearly independent modulo
span{Jxy,...,Jxr} ® span{z1, ..., 2n_k}.

Let Y1 = J(X1). Then Y; is closed, X; = Y} and

NaY = span{Jzy,...,Jei} @ span{z1, ..., zn—r} ® span{vy,..., v} © Y.
Since span{Jx1, ..., Jxi} P span{z1,

., Zn—k } 18 linearly independent mod-
ulo Y, we conclude

Na@Y = span{Jx,

o Jagt @ span{z1, ..., zn_k} D Y.
Hence,
s NoY
~ spanf{Jxy, ..., Jory @ span{zi, ..., 20k}
= span{vy,...,v} ® Y.

We have to add an k-dimensional subspace to X7, to get a space which is
isomorphic to X. We have to add an [-dimensional subspace to Y; to get a
space which is isomorphic to Y. Since X; = Y7, we conclude that X and Y
are isomorphic up to a finite dimensional subspace.

Particularly, if m = n then k£ =1, so X and Y are isomorphic. [

Remark 2.1. If H and K are Hilbert spaces, then H and K are isomorphic

up to a finite dimensional subspace if and only if either H and K are both
finite dimensional, or H = K.

Using the idea from [15], we introduce the following class of operators:
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S:(X)={T € L(X): a(A=T) > (A —T) if at least one of these
quantities is finite },
S (X)={T e L(X) : a(A=T) < B(A—=T) if at least one of these

quantities is finite }.

Recall that an operator T' € L(H) is quasihyponormal, if ||[T*Tzx| <
|T?z|| holds for all z € H. The class of all quasihyponormal operators on a
Hilbert space H is contained in S_(H) (see [5]).

We need the following result concerning the Drazin inverse.

Lemma 2.3. If asc(A) = des(A) = k and asc(B) = des(B) = [, then the
Drazin inverse of M¢ exists for any C € L(Y, X) and has the form

AP S
=
where
-1
S =(AP)? 1) (AP)"cB"| (I - BB)

n=0

k—1
+(I—AAP) | A"C(BP)"| (BP)? — APCB”.

n=0

If Mc has the Drazin inverse and 0 ¢ acco(A) Uacco(B), then A and B

also have Drazin inverses.

The result from Lemma 2.3 is well-known for matrices (see the paper of
Meyer and Rose [12]). A complete proof for Banach space operators, which
is based on the expansion of the resolvent, is given in [3].

Notice that a special case of Lemma 2.3 appears when A =0 and B = 0.
If C' # 0, then ind(M¢) = 2 and (Mc)? = 0.
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3. Perturbations of the essential, Weyl and Browder spectra

In this section X and Y are infinite dimensional Banach spaces. We

formulate the following statement.

Proposition 3.1. For given A € L(X), B € L(Y) and C € L(Y, X), the

following inclusion holds:

o.(Mc) Co.(A)Uo.(B).
Particularly, if A € ®(X) and B € ®(Y), then Mc € ®(X &Y) for all
Cel(Y,X).

Proof. We set M =
R(M—-X) =R(A-X)
Observe that

I o]fA Cl[r 0)_[A4 3Cl | afusnm o
0 nIf|{0 B||l0 ir|T |0 B asn e

. Since N(M =) = N(A=X)@N(B—-\) and

A
0 B
®R(B—N), it follows that 0,.(M) = 0pc(A) U0, (B).

It is well-known that similar operators have the same essential spectrum,
1
s0 Ore(Mg) = 0e <[61 "BC}) Now, the proof follows from the upper

semicontinuity of the essential spectrum. [J

Extending the method of J. K. Han, H. Y. Lee and W. Y. Lee from [7],

we formulate the basic theorem considering the essential invertibility of M¢.

Theorem 3.1. Let A € L(X) and B € L(Y) be given and consider the
statements:
(1) Mc € (X ®Y) for some C € L(Y, X).
(2) (2a) A e @)(X);
(2b) B € ®,.(Y);
(2¢) N(B) and X/R(A) are isomorphic up to a finite dimensional

subspace.



10 DRAGAN S. DJORDJEVIC
Then (1) <= (2).

Proof. (1) = (2) This implication is proved in [7]. For the convenience of
the reader, we give a complete proof.

Let Mo € ®(X @ Y) for some C € L(Y,X) and denote By = |} 7],

Ci = [(I) (I’Y}, A = [’3 ﬂ Obviously, C; is invertible in £(X ©Y’). From
MC = 3101A1 € (I)(X D Y)
it follows that By, B1C; € &, (X @Y) and A;,C14; € &(X DY), We
conclude A € ®;(X) and B € ®,(Y). Hence (2a) and (2b) are proved.
Applying Lemma 2.1 to M¢c = (B1C1)A; we get

N(A) x N(B1Cy) x (X @Y)/R(Mc) = N(Mc) x X/R(A) x Y/R(B).
Applying Lemma 2.1 to B1C we get
N(B) x Y/R(B) = N (B1C1) x Y/R(B).

Since B(B) < oo, from Lemma 2.2 we obtain

N(B) Z N(BiCy).

Finally, the following holds
(3.1) N(A) x N (B)x (X ®Y)/R(Mc) = N(Mc) x X/R(A) x Y/R(B).

Since N(A), (X ®Y)/R(M¢), N(M¢) and Y/R(B) are finite dimensional
spaces, from Lemma 2.2 it follows that A (B) and Y/R(A) are isomorphic
up to a finite dimensional subspace. Thus, (2¢) is proved.

(2) = (1) Suppose that A € ®;(X), B € ®,.(Y) and spaces N (B) and
Y/R(A) are isomorphic up to a finite dimensional subspace. There exist
closed subspaces U and V of X and Y, respectively, such that R(A)@U = X
and N (B) @&V =Y. We consider two cases.
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Case 1. Suppose that there exists a bounded below operator J : N (B) —
U, such that dimU/J(N(B)) < oo. There exists a finite dimensional sub-
space W of X, such that J(N(B)) @ W = U. We define C € L(Y,X) as

follows: 7o )
o))

Obviously, R(C) = J(N(B)). Now R(M¢) = [R(A) @ JIN(B))] ® R(B)
and dim(X @Y)/R(M¢) = dim W + 3(B) < oco. It also follows that R(M¢)
is closed. On the other hand, if Mg [z] = 0, then y € N(B) and Az =
—Cly, implying x € N(A) and y = 0. We get that N (M¢g) = N(A), so
Mce®d(XaY).

Case II. Let there exist a bounded below operator J : U — N (B), such
that dim NV (B)/J(U) < co. There exists a finite dimensional subspace Z of
N(B), such that N (B) = J(U) & Z. Let J; : J(U) — U denote the inverse
of the truncation J : U — J(U) and define C' € L(Y, X) as follows:

o= e =[]
0 0 0 v R(A)
Obviously, R(C) = U. We conclude that R(M¢) = X @ R(B), so dim(X &
Y)/R(Mc) = 3(B) < oo and R(M¢) is closed. Also, N(M¢g) =N(A) @ Z,
so it follows that Mo € ®(X @Y). O

N(B
C= W
R(A)

Immediately, we get the following corollary, concerning perturbations of

the essential spectrum.

Corollary 3.1. For given A € L(X) and B € L(Y') the following holds:

ﬂ Ue(MC’) :Ule(A)UUre(B)UW(A7B)7
CeL(Y,X)
where
W(A,B) ={\ € C: N(B—\) and X/R(A — \) are not isomorphic up to

a finite dimensional subspace}.
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Now, we know which part of the set o.(A)Uo.(B) may be perturbed out
by choosing a suitable operator C' € L(Y, X).

Proposition 3.2. Assume that there exists an operator C' € L(Y, X), such
that the inclusion o.(Mc) C 0e(A) U oe(B) is proper. Then for any X €
[0c(A)Uae(B)]\ 0c(Mc) it follows that A € 0.(A) No.(B).

Proof. Suppose that A € [0.(A) \ 0e(B)] \ 0e(M¢). Then A — X ¢ &(X)
and B — X € ®(Y). Since a(B — \) < oo, from Corollary 3.1 we conclude
B(A—)) < oco. It follows that A ¢ o.(A), and it is in contradiction with the
choice of A\. Thus,

[0e(A) \ 0e(B)]\ oe(Mc) = 0.

Analogously, we can prove
[0e(B) \ 0e(A)]\ 0e(Mc) = 0.
Thus, the theorem is proved. [

For operators in classes S4(X) and S_(Y) Proposition 3.1 and Theorem

3.1 become more precise.

Proposition 3.3. If A € S.(X) or Be€ S_(Y), then for all C € L(Y,X)

we have

oc(Mc) = 0.(A) Uoe(B).

Proof. By Proposition 3.1 it is enough to prove the inclusion D. Suppose
that A € [0.(A) Uoc(B)]\ 0c(M¢g). Then A— X € &)(X), B— X € ¢,.(Y)
and N(B — \) and X/R(A — \) are isomorphic up to a finite dimensional
subspace.

If Ae S4(X), then B(A—)) <a(A—)) <ocoand A— )\ € &(X). Hence,
N (B — \) must be a finite dimensional subspace and B — X € ®(Y).
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IfBeS_(Y), then a(B—\) < 3(B—)\) <ooand B— )\ € ®(Y). Then
X/R(A — X) must be a finite dimensional space.

In both cases we obtain A — XA € ®(X) and B — XA € ®(Y), which is in
contradiction with our assumption A € g.(4) Uo.(B). O

Now, we consider the Weyl spectrum of M.

Theorem 3.2. Let A € L(X) and B € L(Y) be given and consider the
statements:
(1) Mo € ®o(X ®Y) some C € L(Y, X).
(2) (2a) A e &)(X);
(2b) B e ®,.(Y);
(2¢) N(A) @ N(B) = X/R(A) @ Y/R(B).
Then (1) <= (2).

Proof. (1) = (2) W. Y. Lee proved this implication in [11] (actually, it
follows from (3.1) and Lemma 2.2).
(2) = (1) Let A€ &;(X), Be ®,.(Y) and

(3.2) N(A) e N(B) = X/R(A) @ Y/R(B).

There exist closed subspaces Z and V, such that X = R(A) @ Z and ¥ =
N (B) ® V. We consider three cases.

Case L. Let a(A) = B(B)(< o0). From (3.2) and Lemma 2.2 it follows
N(B) = X/R(A) and let J : N(B) — Z denote an arbitrary isomorphism.
Define C € L(Y, X) as follows:

[xin]
R(A) ]

_[J 0] [NB)
=[5 o) [V~
We get that R(M¢c) = X & R(B), N(M¢) = N(A) and M¢ is Weyl.
Case II. Let a(A) < B(B)(< o0). From (3.2) and Lemma 2.2 it fol-
lows that there exists a bounded below operator J : Z — N(B), such that
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dimN(B)/J(Z) = B(B) — a(A). The truncation J : Z — J(Z) is invert-
ible, so let J1 : J(Z) — Z denote the inverse of this truncation. There
exists a finite dimensional subspace Z;, such that J(Z) & Z; = N(B) and
dim Z, = B(B) — a(A). Define C € L(Y, X) as

C’Z[{)l 8 8} J%)IQ[R(ZA)]-

We get that R(M¢) = X @ R(B) and N (M) = N(A) @ Z;, so we conclude
that M¢ is Weyl.

Case III. Let B(B) < a(A)(< o). From (3.2) and Lemma 2.2 it fol-
lows that there exists a bounded below operator J : N(B) — Z, such that
dim Z/J(N(B)) = a(A) — B(B). There exists a finite dimensional subspace
Zy such that J(N(B)) ® Z2 = Z and dim Zs = «(A) — 5(B). We define
CeL(Y,X) as

o= [0 o] [V@] |
00 R(A)

It follows that R(Mc) = [R(A) ® J(N(B))] & R(B), N(M¢c) = N(A), and
we conclude that M¢ is Weyl. [

As a corollary, we get the following result.

Corollary 3.2. For given A € L(X) and B € L(Y) the following holds:

[ ow(Me) = 01(A) Uo,e(B) UWy(A, B),
CeL(Y,X)

where
Wo(A,B) ={A € C: N(A—X) @ N (B — ) is not isomorphic to
X/RA—N & Y/R(B =N}

Now we formulate the following result for the Browder spectrum.
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Corollary 3.3. Let A € L(X) and B € L(Y) be given. Consider the
following statements:
(1) (1a) A € &(X);
(1b) B e @,.(Y);
(1c) N(B) and X/R(A) are isomorphic up to a finite dimensional
subspace;
(1d) A has the Drazin inverse;
(le) B has the Drazin inverse.
(2) Mc e B(X®Y) for some C € LY, X).
Then (1) = (2).
Moreover, if 0 ¢ acc(o(A) Uo(B)), then (1) <= (2).

Proof. The proof follows from Theorem 3.1 and Lemma 2.3. [

More details will be obtained for perturbations of the Browder spectrum.

Theorem 3.3. If A€ L(X) and B € L(Y), then
(3.3) (| o(Mc) C 01e(A) Uore(B) UW(A, B)UW, (A, B),
CeL(Y,X)

where W(A, B) is defined in Corollary 3.1 and
Wi(A,B) ={Ae C: (A—\P does not exist, or (B —\)P does not exist}.

If acco(A) Uacco(B) =0, then equality holds in (3.3).
If 0,(A) = 0(A) and 04(B) = o(B), then equality holds in (3.3).
If 6(A)Uo(B) does not have interior points, then equality holds in (3.3).

Proof. The result (3.3) follows immediately from Theorem 3.3. If a trivial
assumption acco(A)Uacco(B) = () is satisfied, from Theorem 3.3 it follows
that equality holds in (3.3).
Suppose that 0,(A) = 0(A) and 04(B) = o(B) hold and
A §é ﬂ O'b(Mc).

CeL(Y,X)
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There exists some C' € L(Y, X) such that Mc—X\ € B(X®Y'). From Theorem
3.1 it follows that A—\ € ®;(X), B—\ € ¢,(X) and X/R(A—\) isomorphic
to M(B — A\) up to a finite dimensional subspace. Let asc(Mc — \) =
des(Mc — A) = p < 00. Also, A ¢ acco(M¢). Hence, there exists an € > 0,
such that if 0 < |2 — M| < ¢, then 2 ¢ o(M¢c — A). For such z the operator
Me — A —z is invertible and it is easy to prove that A — A — z is left invertible
and B — X\ — z is right invertible. It follows that A ¢ acco,(A)Uaccoq(B) =
acco(A)Uacco(B). From Lemma 2.3 it follows that A — X and B — X have
Drazin inverses.

Let int(o(A) Uo(B)) = 0. If A ¢ Noerpyx) o6(Mc), in the same way
as above we can prove that A ¢ acco,(A) Uaccoy(B). We will prove that
A ¢ acco(A) Uacco(B). Since A can not be an interior point of o(A) U
o(B), it follows that A must be a boundary point of o(A4) Uao(B). If X €
acco(A), then there exists a sequence (zy,)n, Tn, € do(A) C 04(A), such
that limx,, = A. It follows that \ € acco,(A) and this is in contradiction
with our previous statement A ¢ acco,(A) Uaccoq(B). We conclude that
A ¢ acco(A). Similarly, since do(B) C 04(B), we get A ¢ acco(B).

Now, from Lemma 2.3 it follows that A — A and B — X\ have Drazin

inverses. [

4. Perturbations of the left and right Fredholm spectra

We formulate an analogous statement as Proposition 3.1.

Proposition 4.1. For given A € L(X), B € L(Y) and C € L(Y, X), the

following inclusion holds:
Ore(Mc) C 0re(A) U o, (B).

Particularly, if A € ®,.(X) and B € ®,.(Y), then Mg € ®.(X @Y) for all
Ce LY, X).

The notion of the embedded spaces is introduced.
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Definition 4.1. Let X and Y be Banach spaces. We say that X can be
embedded in Y and write X <Y if and only if there exists a left invertible
operator J : X — Y. We say that X can essentially be embedded in Y and
write X <Y, if and only X < Y and Y/T'(X) is an infinite dimensional
linear space for all T € L(X,Y).

Remark 4.1. Obviously, X <Y if and only if there exists a right invertible
operator J; : Y — X.

If H and K are Hilbert spaces, then H < K if and only if dim H < dim K.
Also, H < K if and only if dim H < dim K and K is infinite dimensional.

Here dim H denotes the orthogonal dimension of H.

The main result of this section follows.

Theorem 4.1. Let A € L(X) and B € L(Y) be given operators and con-

sider the following statements:

(1) (1a) B€ @,.(Y);
(Ib) (A € ®,.(X)), or (R(A) is closed and complemented in X and
X/R(A) = N(B)).
(2) Mc € (X @Y) for some C € LY, X).
(3) (3a) Be ®,.(Y);
(3b) A € ®,.(X), or R(A) is not closed, or N(B) < X/R(A) does
not hold.

Then (1) = (2) = (3).

Proof. (1) = (2) Let B € ®,.(Y). If A € ®,(X), then from Proposition 4.1
we get that Mo € @,.(X @Y) for all C € L(Y, X).

Hence, assume B € @,.(Y), A ¢ ®,.(X), R(A) is closed and complemented
in X and X/R(A) X N(B). There exists a closed subspace U of X such
that R(A) @ U = X. Let J : U — N(B) be a left invertible operator and
J1 : N(B) — U its left inverse. There exists a closed subspace V of Y such
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that N(B) @V =Y. Define an operator C' € L(Y, X) in the following way:

o[t 3:0]- [d)

Then R(M¢) = X @ R(B) and B(M¢) = B(B) < oco. Hence, M¢ € (X @
Y).

(2) = (3) Let M¢ € &,.(X@Y) for some C € L(Y, X). Then R(M¢) C
[R(A) +R(C)] & R(B). If x1,...,z, € X are linearly independent modulo
R(A) + R(C) and y1,...,ym € Y are linearly independent modulo R(B),
then n +m < B(M¢) < oo. Hence, 3(B) < oo and B € ®,.(Y). Thus, we

have proved the statement (3a).

Moreover, assume that the statement (3b) does not hold. Then A ¢

®,.(X), R(A) is closed and N(B) < X/R(A). It follows that X/R(A)

is an infinite dimensional space and hence X is an infinite
’ R(4) + C(N(B))

dimensional linear space. Let z1,...,2, € X be linearly independent mod-

ulo R(A) + C(N(B)). We will prove that zy,...,z, are linearly indepen-

dent modulo (X @ Y)/R(M¢). Suppose that there exist complex numbers

aq,...Qn, such that ay2; + - -apz, = 2 € R(Mg). Then there exists a
vector £ € X @Y, such that Mgz = z. We can find u € X and v € Y
such that x = u +v. Since z = (Au+ Cv) & Bv € X and Bv € Y, we get
Bv=0and ;21 - -+anz, =z € R(A)+C(N(B)). This is in contradiction
with the choice of 21, ..., 2zp, S0 21, ..., 2, € X must be linearly independent
modulo R(M¢). It follows that (X & Y)/R(M¢) is an infinite dimensional
linear space, so M¢ ¢ ©,(X @Y). This is in contradiction with our previous
assumption Mg € ®,.(X @ Y). Thus, we have proved that the statement
(3b) holds. O

As a corollary we get the following result.
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Corollary 4.1. Let A€ L(X) and B € L(Y) be given. Then
Ore(B) U{X € 0,e(A) : R(A — N) is closed and N(B — \) < X/R(A—\)}
c (] ore(Mc)

CeL(Y,X)
C Ore(B)U{X € 0re(A) : R(A — N) is not closed and complemented}U

U{X € 0pe(A) : X/R(A—X) X N(B — )) does not hold}.
Analogously, we can prove similar results for the left Fredholm spectrum.

Theorem 4.2. Let A € L(X) and B € L(Y) be given operators and con-
sider the following statements:
(1) (1a) A € By(X);
(1b) (B € ®(Y)), or (R(B) and N'(B) are closed and complemented
subspaces of Y and N (B) = X/R(A)).
(2) Mo € ®(X @Y) for some C € L(Y,X).
(3) (3a) A e &)(X);
(3b) B € ®,(Y), or R(B) is not closed, or R(A)° < N(B)" does not
hold.
Then (1) = (2) = (3).
Proof. (1) = (2) If A € ;(X) and B € ®;(Y), then from Proposition 4.1
it follows that Mo € @;(X & Y'). Otherwise, let (1) hold and B ¢ ®;(Y).
There exist closed subspaces U of X and V, W of Y, such that R(A)®U = X
and N(B)@V =R(B)®W =Y. Let J: N(B) — U be an arbitrary left
invertible operator. There exists a closed subspace Z such that R(J) & Z =
U. Define C € L(Y, X) as

o-[t SE] [l
Then R(Mc) = R(A) ® R(J) ® R(B). From the decomposition

XeY=RAaRJ)&ZeRDB)&W
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it follows that R(M¢) is closed. Also, it is easy to verify N'(M¢) = N(A).
Hence, Mc € &)(X @Y).

(2) = (3) Suppose that Mo € &)(X ®Y) for some C € L(Y,X). If
f € X', we may take that f|y = 0. Hence, (X ®Y) = X'@Y’. Notice that

A/
ML = [C, 39,] €d. (X' DY),

In the same way as in Theorem 4.1 we can prove A" € ®,.(X’), s0 A € ¢;(X).
Thus, (3a) is proved.

Suppose that (3b) does not hold. Then B ¢ ®,(Y), R(B) is closed and
R(A)° < N(B)' holds. Notice that R(A4)° = N(A’) and

N(BY ZY'/N(B)° =Y'/R(B).

Since B’ ¢ ®,.(Y’), we know that Y’ /R(B’) is an infinite dimensional space.
In the same way as in Theorem 4.1 we can prove that (X' @& Y")/R(M(,) is
an infinite dimensional linear space. Hence M/, ¢ ®,(X @ Y) and M¢ ¢
O (X @Y). Thus, (3b) is proved. O

The following result concerning the perturbation of the left Fredholm

spectrum holds.

Corollary 4.2. Let A€ L(X) and B € L(Y') be given operators. Then
01(A) U{X € 01(B) : R(B — \) is closed and R(A — \)° < N (B —\)'}
c (] o)

CEeL(Y,X)
C o1(A)U{N € 0e(B) : R(B — A) and N(B — \)

are not closed and complemented}U

U{X € 01e(B) : N(B = \) 2 X/R(A — X\) does not hold}.

Remark 4.2. Notice the difference between statements in Theorem 4.1 (1b)
and Theorem 4.2 (1b). The reason is that the spaces £(Y’, X') and £(X,Y)
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are not isomorphic. Precisely, the mapping 7' — T’ from L£(X,Y) into

L(Y', X") is injective, but not necessarily surjective.

Finally, we get the result for perturbations of the Fredholm spectrum for
Hilbert space operators. This result may be also obtained from Corollary
3.1.

Corollary 4.3. Let H ® K be the orthogonal sum of infinite dimensional
Hilbert spaces. Then

[ oe(Mc) = 01(A) Uore(B) UWs(A, B),
CeL(K,H)
where
Wy(A,B) = {\ € C: dimN (B — \) # dimR(A — \)* and at least one

of these spaces is infinite dimensional}.

5. Perturbations of the left and right spectra

We begin with the following statement, which can be proved in the same

way as Proposition 3.1.

Proposition 5.1. Let A € L(X) and B € L(Y) be given. Then the inclu-

sion

Ul(Mc) C UZ(A) UUZ(B)

holds for any C € L(Y, X). Particularly, if A and B are left invertible, then
My is left invertible for all C € L(Y, X).

For a left invertibility of an operator matrix we can prove the following

result.
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Theorem 5.1. Let A € L(X) and B € L(Y) be given operators and con-

sider statements:

(1) (la) A € Gi(X);
(1b) N(B) % X/R(A);
(1c) B is g-invertible.
(2) Mc € G(X DY) for some C € LY, X).
(3) (3a) A€ Gi(X);
(3b) X/R(A) < N(B) does not hold.
Then (1) = (2).
If H® K is the orthogonal sum of infinite dimensional Hilbert spaces H
and K, then (2) = (3).

Proof. (1) = (2) Assume that A € G(X), N(B) = X/R(A) and B is g-
invertible. Let By € L(Y') denote a g-inverse of B. Then Y = R(B1)®N (B).
Let A; € L(X) be a left inverse of A. Then X = N(4;) ® R(A). Let
J : N(B) — N (A1) be a left invertible mapping and J; : N (A1) — N(B)
denote a left inverse of J. Hence, N(A1) = R(J) ® N(J1). Define C €
L(X @Y) in the following way:

G [7 0] [N T [N
|0 0] | R(By) R(A) |-
Notice that from the decomposition

XaY =R(A) &R &N() & R(B)SN(B)

it follows that R(M¢c) = R(A) @ R(J) @ R(B) is closed.
Define C € L(X,Y) in the following way:
= Ji 0] [N(4) - N(B)
710 o | RMA R(B1) |

A O

o, BJ € L(X@Y). Then we find

Consider the operator N = [
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A A A C

NMo =104 cy0c+BB|

Notice that: A1A = I, A;C =0 since R(C) C N(4;), C1A = 0 since
R(A) € N(Cy). Also, BB is the projection from Y onto R(B;) parallel
to N(B) and C;C is the projection form Y onto N(B) parallel to R(Bj).
Hence C1C + B1B = I and N is the left inverse of M. Thus, (2) is proved.

(2) = (3) Let H and K be Hilbert spaces and let M¢ be left invertible.
It immediately follows that A is left invertible, hence (3a) is proved.

Suppose that H/R(A) < N(B) holds, i.e. dim R(A4)* < dim N (B), where
dim H denotes the orthogonal dimension of a Hilbert space H (see Remark
4.2).

Assume N (C) NN (B) # {0}. Then for all non-zero vectors z € N(C) N
N(B) we have Mgz = 0. We conclude that M¢ is not one-to-one and
Mc ¢ Gi(H @ K).

We conclude that N'(C)NN(B) = {0} holds. Hence, C|xr(p) is one-to-one.
By [6, Problem 42] it follows that dim C'(N(B)) = dim N (B). Hence,

dim C(NV(B)) = a(B) > B(A4).

Since R(A) is closed, we get R(A) N C(N(B)) # {0}. We take a non-zero
vector y; € R(A) N C(N(B)). There exist: some yo € H and a sequence
(2n) in N(B), such that Ays = y; = lim Cz,. Obviously lim z,, # 0, so we
may assume that there exists an ¢ > 0, such that for all n: ||z,|| > e. Notice

that [y — zn|l > V/ly2[/* + €. Now,

Y2 — Zn
ly2 — 2l

lim HMC lim || Ays — Cz — Bz = 0.

‘ 1
<
Vly2l? + €

It follows that M¢c ¢ G;(H @ K). Thus, (3b) is proved. O

As a corollary, we get the following result.
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Corollary 5.1. Let A€ L(X) and B € L(Y) be given. Then the following

inclusion holds:

(| o(Mc) Coi(A)Uoy(B)U
CeL(Y,X)
U{AN€eC: N(B—)\) X X/R(A—)) does not hold}.
If H® K is the orthogonal sum of infinite dimensional Hilbert spaces H and
K, then

a(A)U{AeC:dimR(A- N <dmNB-N}c ()| a(Mo).
CeL(K,H)

Analogously, we can prove a similar result concerning the right spectrum

and right invertibility of M¢

Theorem 5.2. Let A € L(X) and B € L(Y) be given and consider the

statements

(1) (1a) B € G, (Y);
(1b) X/R(A) < N(B).
(1c) A is g-invertible.
(2) Mo € G.(X ®Y) for some C € L(Y,X).
(3) (3a) B € G (Y);
(3b) N(B) < X/R(A) does not hold.
Then (1) = (2).
If H ® K is the orthogonal sum of infinite dimensional Hilbert spaces,
then (2) = (3).

Proof. (1) = (2) Let By be a right inverse of B and A; be a g-inverse of
A. Then X = R(A) @ N (A1) and Y = N(B) & R(B1) = R(B) ® N(By).
There exists a left invertible operator J : N(A4;) — N(B) and denote by
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J1 : N(B) — N(A;) its left inverse. Define an operator C' € L(Y, X) in the
following way:
[ 0] [NB)] [N
“= [ 0 0] | [R(Bn ~ R |-

Then R(M¢) = X @Y. Since N (M¢c) = N(A), from the decomposition
XY =NA)eRA)®Y

we conclude that N (M) is a complemented subspace of X &Y. Hence, M¢
is right invertible and (2) is proved.
(2) = (3). Let M¢ be right invertible. It immediately follows that
B € G.(K) and (3a) is proved.
Assume that (3b) is not satisfied. Then dim N(B) < dimR(A)*. Con-
sider the conjugate operator of Mc:
Mg = {éi g] € L(H & K).

If N(C*) NN (A*) # 0, then there exists some z € N (C*) N N(A*) and
z # 0. It follows Mgz = 0, M} is not left invertible and hence M¢ is not
right invertible.

We conclude that N (C*) N N(A*) = {0} holds. Then

dim C(N(A%)) = dimN'(A*) > dim N(B) = dim R(B*)*.
Since R(B) is closed, we obtain
C(N(A*))NR(B) # {0}.

We can prove that M} ¢ G/(H @& K) holds similarly as in the proof of
Theorem 5.1. Thus, (3b) is proved. O

As a corollary, we get the following result.
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Corollary 5.2. For given A € L(X) and B € L(Y) the inclusion
() or(Mc) Con(B)Uay(AU
CeL(Y,X)
U{AeC: X/R(A—X) X N(B—\) does not hold}

holds.
Moreover, if H @& K is the orthogonal sum of Hilbert spaces, then

or(B)U{A € C:dimN(B—)\) <dmR(A-N*}c ()  on(Mc)
CeL(K,H)

holds, where dim H denotes the orthogonal dimension of a Hilbert space H .

The main result of Du and Pan follows.

Corollary 5.3. Let H ® K be the orthogonal sum of infinite dimensional
Hilbert spaces. For given A € L(H) and B € L(K) the following equality
holds:

(| o(Mc)=o0i(A)Uo,(B)U{X € C: dimN(B-X) # dim R(A—X)*}.
CeL(K,H)

Proof. The proof follows from Corollary 5.1, Corollary 5.2 and the following
facts: 04(A) C o(A), 04(B) C o(B) and o(T) = oy(T) U 0,(T) for all
TelL(H) O

In the rest of this section we will consider special classes of operators and

related result.

Theorem 5.3. Let H and K be Hilbert spaces, A € L(H) and B € L(K).
If A € S¢(H) and B € S_(K), then for all C € L(K,H) we have
o1(Mc) = 01(A) Uoy(B).
If Ae S4(H) or Be S_(K), then 0(M¢) = 0(A)Uo(B).

A) C 0;(M¢), by Proposition 5.1 it is enough to prove that
Suppose that A € 0y(B) \ 0;(M¢). From Corollary 5.1 we

Proof. Since oy

(
(B) C Ul(Mc)
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get that A — X is left invertible and dim N (B — \) < dimR(A4 — \)*. Since
A e S84, we conclude (A —)A) < a(A—A) =0. Now a(B —\) =0 and
B(B — ) =0. Hence, A — X and B — X are invertible and M¢c — X must be
invertible. Thus, the equality o;(M¢) = 0y(A) U 0;(B) is proved.

To prove the second equality, notice that o(M¢) C o(A) Uo(B) [4] (or
repeat the proof of Proposition 3.1 for the spectrum instead of the essential
spectrum). Let A € (6(A)Uo(B))\o(M¢). From Corollary 5.3 we get A— A
is left invertible, B — X is right invertible and a(B — X) = B(A — \).

If Ae S_(H), then we get

a(B—X) =B(A—-)\) < ald—\) =0.

Hence, A — X and B — X are invertible, which is in contradiction with the
assumption A € o(A4) Uo(B).
If BeS_(K), then

BA=X) =a(B—X) < B(B-N =0.

We also get that A — X\ and B — X are invertible.
Thus, o(M¢) = o0(A)Uo(B) for any C € L(K,H) . O

Finally, we consider four block operator matrices. For given A € L(H),
Be L(K)and C € L(K,H), let us take T € L(H, K) and

A C
o [0 €]
We prove the following result.
Theorem 5.4. Let A € L(H), B € L(K) and C € L(K,H) be given
operators and X € C\ o;(A).

(1) IFN(C)NN(B —X) # {0}, then X\ € 0,(Gr) for all T € L(H, K).
(2) If R(A— X) NR(C) # {0}, then there exists a rank-one operator
T € L(H,K), such that X\ € 0,(Gr).



28 DRAGAN S. DJORDJEVIC

(3) If neither (a) nor (b) is satisfied, then X ¢ o,(Gr) for all T €
B(H, K).

Proof. To prove (1), suppose that N'(C) NN (B — \) # {0}. There exists a
non-zero vector v € N(C)NN(B—M\),so (Gr—A)v=0forall T € L(H, K),
and A € 0,(G7).

To prove (2), suppose that R(A — A) N R(C) # {0}. Let us take an
arbitrary non-zero vector z € R(A — \) N R(C). There exists an operator
Ayt R(A—X) — H, such that A;(A—X) = Ig and (A — X\) A1 = Ig(a—x).
There exist vectors: x1 = A1z € H, and 29 € K, such that Cxzo = 2. We
define a rank-one operator T' € L(H, K), such that for any x € H:

T() = —(2,21)(B — \aa.

(Bl

Taking © = —z1 + x2, we get (Gr — Az =0, 50 X € 0,(Gr).
To prove (3), suppose that neither (1) nor (2) is satisfied. Let 0 # x €
N(Gr = )) for some T' € L(H,K). Then z =u+v,u € H, v € K and

(A= MNu+Cv=0=Tu+ (B — Mv.

Since R(A — A) NR(C) = {0}, we get (A — N)u = Cv = 0. Also, u = 0,
v e N(C)NN(B—X) and v = 0. The obtained contradiction completes the
proof. [

Acknowledgement. I am grateful to Professor Woo Young Lee for the
oportunity to see his results before publication. I am also grateful to the
Referee for helpful comments and suggestions which led to the improved

presentation of the paper.

REFERENCES
[1] S. R. Caradus, Generalized inverses and operator theory, Queen’s paper in pure
and applied mathematics, Quenn’s University, Kingston, Ontario, 1978.
2] S. R. Caradus, W. E. Pfaffenberger, B. Yood, Calkin algebras and algebras of

operators on Banach spaces, Marcel Dekker, New York, 1974.



PERTURBATIONS OF SPECTRA OF OPERATOR MATRICES 29

D. S. Djordjevi¢ and P. S. Stanimirovié, On the generalized Drazin inverse and
generalized resolvent, Czech. Math. J. (to appear).

H. Du and J. Pan, Perturbation of spectrums of 2 X 2 operator matrices, Proc.
Amer. Math. Soc. 121, 3 (1994), 761-766.

B. A. Eposenko, K sonpocy Obepau o cyuecmeennom cnexmpe, Jloriann
Axanemuu nasyx BCCP 28, 12 (1984), 1068-1071.

P. R. Halmos, A Hilbert space problem book, van Nostrand—Reinhold, Princeton,
New Yersey, 1967.

J. K. Han, H. Y. Lee and W. Y. Lee, Invertible completions of 2 X 2 upper
triangular operator matrices, Proc. Amer. Math. Soc. 128, 1 (2000), 119-123.

R. E. Harte, The ghost of an index theorem, Proc. Amer. Math. Soc. 106 (1989),
1031-1034; Correction of “The ghost of an index theorem”, Proc. Amer. Math.
Soc. 128 (2000), 3145-3148.

V. Kordula and V. Miiler, On the aziomatic theory of spectrum, Studia Math.
119, 2 (1996), 109-128.

J. J. Koliha, M. Mbekhta, V. Miiller and Pak Wai Poon, Corrigendum and ad-
dendum: “On the aziomatic theory of spectrum II” 130, 2 (1998), 193-198.

W. Y. Lee, Weyl spectra of operator matrices, Proc. Amer. Math. Soc. 129, 1
(2001,), 131-138.

C. D. Meyer, Jr., N. J. Rose, The index and the Drazin inverse of block triangular
matrices, SIAM J. Appl. Math. 33, 1 (1977), 1-7.

M. Mbekhta and V. Miiller, On the axiomatic theory of spectrum, Studia Math.
119, 2 (1996), 129-147.

V. Miiller, On the regular spectrum, J. Operator Theory 31 (1994), 363-380.

C. Schmoeger, The spectral mapping theorem for the essential approrimate point
spectrum, Colloq. Math. 74, 2 (1997), 167-176.

J. Operator Theory (to appear)

UNIVERSITY OF NiI§, FACULTY OF SCIENCES AND MATHEMATICS
DEPARTMENT OF MATHEMATICS
CiriLa 1 METODIIA 2, 18000 Ni§
YUGOSLAVIA
E-mail: dragan@archimed.filfak.ni.ac.yu ganedj@EUnet.yu



