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Abstract. In this article MC denotes a 2× 2 operator matrix of the form

MC =

�
A C
0 B

�
, which is acting on the product of Banach or Hilbert spaces

X⊕Y . We investigate sets
T

C∈L(Y,X)

στ (MC), where στ (MC) can be equal to

the left (right), essential, left (right) Fredholm, Weyl or Browder spectrum of
MC . Thus, generalizations and extensions of various well-known and recent
results of H. Du and J. Pan (Proc. Amer. Math. Soc. 121 (1994), 761–766),
J. K. Han, H. Y. Lee and W. Y. Lee (Proc. Amer. Math. Soc. 128 (2000),
119–123) and W. Y. Lee (Proc. Amer. Math. Soc. 129 (2000), 131–138) are
presented.

1. Introduction

Let X, Y and X⊕Y denote arbitrary infinite dimensional Banach spaces.

We use L(X, Y ) to denote the set of all bounded linear operators from X

into Y and L(X) = L(X,X). We will also consider operators on Hilbert

spaces. Thus, H and K are infinite dimensional Hilbert spaces and H ⊕K

is their orthogonal sum. We use dim H to denote the orthogonal dimension

of H.

If A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y, X), we denote

MC =
[

A C
0 B

]
∈ L(X ⊕ Y ).
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In the case when A, B and C are operators on Hilbert spaces, we will use

H instead of X, K instead of Y and the orthogonal sum H ⊕K instead of

X ⊕ Y .

For T ∈ L(X, Y ) we use R(T ) and N (T ) to denote the range and kernel

of T , respectively.

We use Gl(X) and Gr(X), respectively, to denote the set of all left and

right invertible operators on X. It is well-known that if T ∈ L(X), then

T ∈ Gl(X) if and only ifN (T ) = {0} andR(T ) is a closed and complemented

subspace of X. Also, T ∈ Gr(X) if and only if R(T ) = X and N (T ) is a

complemented subspace of X. The set of all invertible operators on X is

denoted by G(X).

Let T ∈ L(X), α(T ) = dimN (T ) and β(T ) = dim X/R(T ). Sets of left

and right Fredholm operators, respectively, are defined as

Φl(X) = {T ∈ L(X) : R(T ) is a closed and complemented subspace of X

and α(T ) < ∞}

and

Φr(X) = {T ∈ L(X) : N (T ) is a complemented subspace of X

and β(T ) < ∞}.

The set of Fredholm operators is defined as

Φ(X) = Φl(X) ∩ Φr(X) = {T ∈ L(X) : α(T ) < ∞ and β(T ) < ∞}.

For a left or right Fredholm operator T the index is defined as ind(T ) =

α(T )− β(T ). The set of Weyl operators is defined as

Φ0(X) = {T ∈ Φ(X) : ind(T ) = 0}.

For T ∈ L(X) consider the following inclusions: {0} ⊂ N (T ) ⊂ N (T 2) ⊂
· · · and X ⊃ R(T ) ⊃ R(T 2) ⊃ · · · . The ascent of T , denoted by asc(T ),
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is defined as the least k (if it exists) for which N (T k) = N (T k+1) holds. If

such k does not exist, then we say that the ascent of A is equal to infinity.

The descent of T , denoted by des(T ), is defined as the least k (if it exists)

for which R(T k) = R(T k+1) is satisfied. If such k does not exist, then we

say that the descent of A is equal to infinity. If the ascent and the descent

of T are finite, then they are equal [2].

The Drazin inverse of T ∈ L(X) is the unique operator TD ∈ L(X)

satisfying

T k+1AD = T k, TDTTD = T and TTD = TDT

for some nonnegative integer k. The least k in the previous definition is

known as the Drazin index of T . It is well-known that TD exists if and only

if p = asc(T ) = des(T ) < ∞. In this case the Drazin index of T is equal to

p [1].

The set of Browder operators on X is defined as

B(X) = {T ∈ Φ(X) : asc(T ) = des(T ) < ∞}
= {T ∈ Φ(X) : TD exists}
= {T ∈ Φ(X) : 0 /∈ accσ(T )}.

Corresponding spectra of an operator T ∈ L(X) are defined as:

the left spectrum: σl(T ) = {λ ∈ C : λ− T /∈ Gl(X)},
the right spectrum: σr(T ) = {λ ∈ C : λ− T /∈ Gr(X)},
the spectrum: σ(T ) = {λ ∈ C : λ− T /∈ G(X)},
the left Fredholm spectrum: σle(T ) = {λ ∈ C : λ− T /∈ Φl(T )},
the right Fredholm spectrum: σre(T ) = {λ ∈ C : λ− T /∈ Φr(T )},
the essential spectrum: σe(T ) = {λ ∈ C : λ− T /∈ Φ(X)},
the Weyl spectrum σw(T ) = {λ ∈ C : λ− T /∈ Φ0(X)},
the Browder spectrum σb(T ) = {λ ∈ C : λ− T /∈ B(X)}.



4 DRAGAN S. DJORDJEVIĆ

Also, the approximate point spectrum of T ∈ L(X) is defined as σa(T ) =

{λ ∈ C : T − λ is not bounded below}. The defect spectrum of T ∈ L(X) is

defined as σd(T ) = {λ ∈ C : R(T − λ) 6= X}.
All of these spectra are compact nonempty subsets of the complex plane.

An operator T ∈ L(X, Y ) is g-invertible (or relatively regular), provided

that there exists an operator S ∈ L(Y, X) satisfying TST = T and STS = S.

S is known as a g-inverse of T . It is well-known that T is g invertible if and

only ifR(T ) andN (T ), respectively, are closed and complemented subspaces

of Y and X. In this case TS is the projection from Y onto R(T ) parallel to

N (S) and ST is the projection from X onto R(S) parallel to N (T ).

Operators in sets Gl(X), Gr(X), Φl(X) and Φr(X) are g-invertible oper-

ators.

In this article we use a notation of the “relatively regular” spectrum: if

T ∈ L(X), then σg(T ) = {λ ∈ C : λ−T is not g-invertible}. Also, the point

spectrum of T is denoted by σp(T ). Sets σg(T ) and σp(T ) are not necessary

closed and may be empty.

For a Banach space X we use X ′ to denote the dual space of X. If

T ∈ L(X,Y ), then T ′ ∈ L(Y ′, X ′) is the dual operator of T . It is well-

known that (X ⊕ Y )′ = X ′ ⊕ Y ′ holds. Thus, if MC =
[

A C

0 B

]
∈ L(X ⊕ Y ),

then M ′
C =

[
A′ 0

C′ B′

]
∈ L(X ′ ⊕ Y ′).

If S is a subset of X, then S◦ = {f ∈ X ′ : f |S = 0} is the annihilator of

S.

For a subset K of C we use acc(K), int(K) and ∂K, respectively, to

denote the set of all points of accumulation of K, the interior of K and the

boundary of K.

Recall that ∂σ(T ) ⊂ σa(T ) ∩ σd(T ) holds for all T ∈ L(X).

The set ⋂

C∈L(K,H)

σ(MC),

where H⊕K is the orthogonal sum of Hilbert spaces H and K, is determined
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in [4]. Some related results concerning the essential and Weyl spectra for

operators on Banach spaces X and Y are proved in [7] and [11].

In this article we determine sets

⋂

C∈L(Y,X)

στ (MC),

where we take στ (MC) to be equal to one of the following parts of the spec-

trum: σe(MC), σw(MC), σb(MC), σle(MC), σre(MC), σl(MC) and σr(MC).

The paper is organized as follows. In Section 2 auxiliary results and

notions are presented. The essential, Weyl and Browder spectra are investi-

gated in Section 3. Some special classes of operators and related results are

also considered in Section 3. In this section we obtain extensions of results

from [7] and [11]. In Section 4 we investigate the left and right Fredholm

spectra. Finally, in Section 5 we consider perturbations of the left and right

spectra. Here a generalization of results from [4] is obtained.

2. Auxiliary results

In this section we recall or introduce necessary notions and results. It

is well-known that the product of two relatively regular operators need not

to be relatively regular. On the other hand, if a product of two relatively

regular operators is again relatively regular, then the following “ghost” of

the index theorem can be proved:

Lemma 2.1 (Harte [8]). If T ∈ L(X, Y ), S ∈ L(Y, Z) and ST ∈ L(X, Z)

are relatively regular, then

N (T )×N (S)× Z/R(ST ) ∼= N (ST )× Y/R(T )× Z/R(S).

We introduce the notion of an “isomorphism up to a finite dimensional

subspace”.
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Definition 2.1. We say that two Banach spaces U and V are isomorphic

up to a finite dimensional subspace, if one of the following statements hold:

(a) there exists a bounded below operator J1 : U → V , such that

dim V/J1(U) < ∞, or

(b) there exists a bounded below operator J2 : V → U , such that

dim U/J2(V ) < ∞.

This definition is reminiscent to a condition introduced by V. Müller [14]:

If M1 and M2 are subspaces of X, then we write M1 ⊂e M2 if there exists a

finite dimensional subspace F ⊂ X such that M1 ⊂ M2 + F . This condition

is also used in [9], [13] and [10].

Firstly, we prove the following auxiliary result.

Lemma 2.2. Let X and Y be Banach spaces, and let M and N be finite

dimensional spaces. If M ⊕ X
∼= N ⊕ Y , then X and Y are isomorphic

up to a finite dimensional subspace. Particularly, if dim M = dim N , then

X
∼= Y .

Proof. Let dim M = m, dim N = n and J : M ⊕ X → N ⊕ Y be a Ba-

nach spaces isomorphism. Let x1, . . . , xk ∈ X denote the system of all

linearly independent vectors in X, such that Jx1, . . . , Jxk are linearly in-

dependent modulo Y . Obviously, 0 ≤ k ≤ n. There exists a system of

n − k vectors z1, . . . , zn−k in N ⊕ Y , which are linearly independent mod-

ulo span{Jx1, . . . , Jxk} ⊕ Y . It follows that 0 ≤ n − k ≤ n. Denote by

yi = J−1zi for all i = 1, . . . , n − k, in the case when n − k > 0. All vectors

y1, . . . , yn−k must be linearly independent modulo X. In general, it follows

that 0 ≤ n−k ≤ m. There exists a system of exactly l = m− (n−k) vectors

u1, . . . ul, which are linearly independent modulo span{y1, . . . , yn−k} ⊕ X.

There exists a Banach space X1, such that

span{x1, . . . , xk} ⊕X1 = X
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and

M ⊕X = span{y1, . . . , yn−k} ⊕ span{u1, . . . , ul} ⊕ span{x1, . . . , xk} ⊕X1.

Let vi = Jui, i = 1, . . . , l. Vectors v1, . . . , vl are linearly independent modulo

span{Jx1, . . . , Jxk} ⊕ span{z1, . . . , zn−k}.

Let Y1 = J(X1). Then Y1 is closed, X1
∼= Y1 and

N ⊕ Y = span{Jx1, . . . , Jxk}⊕ span{z1, . . . , zn−k}⊕ span{v1, . . . , vl}⊕ Y1.

Since span{Jx1, . . . , Jxk}⊕span{z1, . . . , zn−k} is linearly independent mod-

ulo Y , we conclude

N ⊕ Y = span{Jx1, . . . , Jxk} ⊕ span{z1, . . . , zn−k} ⊕ Y.

Hence,

Y
∼=

N ⊕ Y

span{Jx1, . . . , Jxk} ⊕ span{z1, . . . , zn−k}
∼= span{v1, . . . , vl} ⊕ Y1.

We have to add an k-dimensional subspace to X1, to get a space which is

isomorphic to X. We have to add an l-dimensional subspace to Y1 to get a

space which is isomorphic to Y . Since X1
∼= Y1, we conclude that X and Y

are isomorphic up to a finite dimensional subspace.

Particularly, if m = n then k = l, so X and Y are isomorphic. ¤

Remark 2.1. If H and K are Hilbert spaces, then H and K are isomorphic

up to a finite dimensional subspace if and only if either H and K are both

finite dimensional, or H
∼= K.

Using the idea from [15], we introduce the following class of operators:
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S+(X) = {T ∈ L(X) : α(λ− T ) ≥ β(λ− T ) if at least one of these

quantities is finite },
S−(X) = {T ∈ L(X) : α(λ− T ) ≤ β(λ− T ) if at least one of these

quantities is finite }.

Recall that an operator T ∈ L(H) is quasihyponormal, if ‖T ∗Tx‖ ≤
‖T 2x‖ holds for all x ∈ H. The class of all quasihyponormal operators on a

Hilbert space H is contained in S−(H) (see [5]).

We need the following result concerning the Drazin inverse.

Lemma 2.3. If asc(A) = des(A) = k and asc(B) = des(B) = l, then the

Drazin inverse of MC exists for any C ∈ L(Y,X) and has the form

MD
C =

[
AD S
0 BD,

]

where

S = (AD)2
[

l−1∑
n=0

(AD)nCBn

]
(I −BBD)

+ (I −AAD)

[
k−1∑
n=0

AnC(BD)n

]
(BD)2 −ADCBD.

If MC has the Drazin inverse and 0 /∈ acc σ(A) ∪ accσ(B), then A and B

also have Drazin inverses.

The result from Lemma 2.3 is well-known for matrices (see the paper of

Meyer and Rose [12]). A complete proof for Banach space operators, which

is based on the expansion of the resolvent, is given in [3].

Notice that a special case of Lemma 2.3 appears when A = 0 and B = 0.

If C 6= 0, then ind(MC) = 2 and (MC)d = 0.
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3. Perturbations of the essential, Weyl and Browder spectra

In this section X and Y are infinite dimensional Banach spaces. We

formulate the following statement.

Proposition 3.1. For given A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y,X), the

following inclusion holds:

σe(MC) ⊂ σe(A) ∪ σe(B).

Particularly, if A ∈ Φ(X) and B ∈ Φ(Y ), then MC ∈ Φ(X ⊕ Y ) for all

C ∈ L(Y,X).

Proof. We set M =
[

A 0
0 B

]
. Since N (M −λ) = N (A−λ)⊕N (B−λ) and

R(M−λ) = R(A−λ)⊕R(B−λ), it follows that σre(M) = σre(A)∪σre(B).

Observe that
[

I 0
0 nI

] [
A C
0 B

] [
I 0
0 1

nI

]
=

[
A 1

nC
0 B

]
→ M as n →∞.

It is well-known that similar operators have the same essential spectrum,

so σre(MC) = σe

([
A 1

nC
0 B

])
. Now, the proof follows from the upper

semicontinuity of the essential spectrum. ¤

Extending the method of J. K. Han, H. Y. Lee and W. Y. Lee from [7],

we formulate the basic theorem considering the essential invertibility of MC .

Theorem 3.1. Let A ∈ L(X) and B ∈ L(Y ) be given and consider the

statements:

(1) MC ∈ Φ(X ⊕ Y ) for some C ∈ L(Y,X).

(2) (2a) A ∈ Φl(X);

(2b) B ∈ Φr(Y );

(2c) N (B) and X/R(A) are isomorphic up to a finite dimensional

subspace.
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Then (1) ⇐⇒ (2).

Proof. (1) =⇒ (2) This implication is proved in [7]. For the convenience of

the reader, we give a complete proof.

Let MC ∈ Φ(X ⊕ Y ) for some C ∈ L(Y, X) and denote B1 =
[

I 0

0 B

]
,

C1 =
[

I C

0 I

]
, A1 =

[
A 0

0 I

]
. Obviously, C1 is invertible in L(X ⊕ Y ). From

MC = B1C1A1 ∈ Φ(X ⊕ Y )

it follows that B1, B1C1 ∈ Φr(X ⊕ Y ) and A1, C1A1 ∈ Φl(X ⊕ Y ). We

conclude A ∈ Φl(X) and B ∈ Φr(Y ). Hence (2a) and (2b) are proved.

Applying Lemma 2.1 to MC = (B1C1)A1 we get

N (A)×N (B1C1)× (X ⊕ Y )/R(MC) ∼= N (MC)×X/R(A)× Y/R(B).

Applying Lemma 2.1 to B1C1 we get

N (B)× Y/R(B) ∼= N (B1C1)× Y/R(B).

Since β(B) < ∞, from Lemma 2.2 we obtain

N (B) ∼= N (B1C1).

Finally, the following holds

(3.1) N (A)×N (B)× (X ⊕ Y )/R(MC) ∼= N (MC)×X/R(A)× Y/R(B).

Since N (A), (X ⊕ Y )/R(MC), N (MC) and Y/R(B) are finite dimensional

spaces, from Lemma 2.2 it follows that N (B) and Y/R(A) are isomorphic

up to a finite dimensional subspace. Thus, (2c) is proved.

(2) =⇒ (1) Suppose that A ∈ Φl(X), B ∈ Φr(Y ) and spaces N (B) and

Y/R(A) are isomorphic up to a finite dimensional subspace. There exist

closed subspaces U and V of X and Y , respectively, such that R(A)⊕U = X

and N (B)⊕ V = Y . We consider two cases.



PERTURBATIONS OF SPECTRA OF OPERATOR MATRICES 11

Case I. Suppose that there exists a bounded below operator J : N (B) →
U , such that dim U/J(N (B)) < ∞. There exists a finite dimensional sub-

space W of X, such that J(N (B)) ⊕ W = U . We define C ∈ L(Y, X) as

follows:

C =




J 0
0 0
0 0


 :

[N (B)
V

]
−→




J(N(B))
W
R(A)


 .

Obviously, R(C) = J(N (B)). Now R(MC) = [R(A) ⊕ J(N (B))] ⊕ R(B)

and dim(X⊕Y )/R(MC) = dim W +β(B) < ∞. It also follows that R(MC)

is closed. On the other hand, if MC

[
x

y

]
= 0, then y ∈ N (B) and Ax =

−Cy, implying x ∈ N (A) and y = 0. We get that N (MC) = N (A), so

MC ∈ Φ(X ⊕ Y ).

Case II. Let there exist a bounded below operator J : U → N (B), such

that dimN (B)/J(U) < ∞. There exists a finite dimensional subspace Z of

N (B), such that N (B) = J(U)⊕ Z. Let J1 : J(U) → U denote the inverse

of the truncation J : U → J(U) and define C ∈ L(Y,X) as follows:

C =
[

J1 0 0
0 0 0

]
:




J(U)
Z
V


 −→

[
U

R(A)

]
.

Obviously, R(C) = U . We conclude that R(MC) = X ⊕R(B), so dim(X ⊕
Y )/R(MC) = β(B) < ∞ and R(MC) is closed. Also, N (MC) = N (A)⊕ Z,

so it follows that MC ∈ Φ(X ⊕ Y ). ¤

Immediately, we get the following corollary, concerning perturbations of

the essential spectrum.

Corollary 3.1. For given A ∈ L(X) and B ∈ L(Y ) the following holds:

⋂

C∈L(Y,X)

σe(MC) = σle(A) ∪ σre(B) ∪W(A,B),

where
W(A,B) = {λ ∈ C : N (B − λ) and X/R(A− λ) are not isomorphic up to

a finite dimensional subspace}.
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Now, we know which part of the set σe(A)∪σe(B) may be perturbed out

by choosing a suitable operator C ∈ L(Y, X).

Proposition 3.2. Assume that there exists an operator C ∈ L(Y, X), such

that the inclusion σe(MC) ⊂ σe(A) ∪ σe(B) is proper. Then for any λ ∈
[σe(A) ∪ σe(B)] \ σe(MC) it follows that λ ∈ σe(A) ∩ σe(B).

Proof. Suppose that λ ∈ [σe(A) \ σe(B)] \ σe(MC). Then A − λ /∈ Φ(X)

and B − λ ∈ Φ(Y ). Since α(B − λ) < ∞, from Corollary 3.1 we conclude

β(A−λ) < ∞. It follows that λ /∈ σe(A), and it is in contradiction with the

choice of λ. Thus,

[σe(A) \ σe(B)] \ σe(MC) = ∅.

Analogously, we can prove

[σe(B) \ σe(A)] \ σe(MC) = ∅.

Thus, the theorem is proved. ¤

For operators in classes S+(X) and S−(Y ) Proposition 3.1 and Theorem

3.1 become more precise.

Proposition 3.3. If A ∈ S+(X) or B ∈ S−(Y ), then for all C ∈ L(Y,X)

we have

σe(MC) = σe(A) ∪ σe(B).

Proof. By Proposition 3.1 it is enough to prove the inclusion ⊃. Suppose

that λ ∈ [σe(A) ∪ σe(B)] \ σe(MC). Then A − λ ∈ Φl(X), B − λ ∈ Φr(Y )

and N (B − λ) and X/R(A − λ) are isomorphic up to a finite dimensional

subspace.

If A ∈ S+(X), then β(A−λ) ≤ α(A−λ) < ∞ and A−λ ∈ Φ(X). Hence,

N (B − λ) must be a finite dimensional subspace and B − λ ∈ Φ(Y ).
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If B ∈ S−(Y ), then α(B − λ) ≤ β(B − λ) < ∞ and B − λ ∈ Φ(Y ). Then

X/R(A− λ) must be a finite dimensional space.

In both cases we obtain A − λ ∈ Φ(X) and B − λ ∈ Φ(Y ), which is in

contradiction with our assumption λ ∈ σe(A) ∪ σe(B). ¤

Now, we consider the Weyl spectrum of MC .

Theorem 3.2. Let A ∈ L(X) and B ∈ L(Y ) be given and consider the

statements:

(1) MC ∈ Φ0(X ⊕ Y ) some C ∈ L(Y,X).

(2) (2a) A ∈ Φl(X);

(2b) B ∈ Φr(Y );

(2c) N (A)⊕N (B) ∼= X/R(A)⊕ Y/R(B).

Then (1) ⇐⇒ (2).

Proof. (1) =⇒ (2) W. Y. Lee proved this implication in [11] (actually, it

follows from (3.1) and Lemma 2.2).

(2) =⇒ (1) Let A ∈ Φl(X), B ∈ Φr(Y ) and

(3.2) N (A)⊕N (B) ∼= X/R(A)⊕ Y/R(B).

There exist closed subspaces Z and V , such that X = R(A) ⊕ Z and Y =

N (B)⊕ V . We consider three cases.

Case I. Let α(A) = β(B)(< ∞). From (3.2) and Lemma 2.2 it follows

N (B) ∼= X/R(A) and let J : N (B) → Z denote an arbitrary isomorphism.

Define C ∈ L(Y,X) as follows:

C =
[

J 0
0 0

]
:
[N (B)

V

]
−→

[
Z

R(A)

]
.

We get that R(MC) = X ⊕R(B), N (MC) = N (A) and MC is Weyl.

Case II. Let α(A) < β(B)(< ∞). From (3.2) and Lemma 2.2 it fol-

lows that there exists a bounded below operator J : Z → N (B), such that
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dimN (B)/J(Z) = β(B) − α(A). The truncation J : Z → J(Z) is invert-

ible, so let J1 : J(Z) → Z denote the inverse of this truncation. There

exists a finite dimensional subspace Z1, such that J(Z) ⊕ Z1 = N (B) and

dim Z1 = β(B)− α(A). Define C ∈ L(Y, X) as

C =
[

J1 0 0
0 0 0

]
:




J(Z)
Z1

V


 −→

[
Z

R(A)

]
.

We get that R(MC) = X⊕R(B) and N (MC) = N (A)⊕Z1, so we conclude

that MC is Weyl.

Case III. Let β(B) < α(A)(< ∞). From (3.2) and Lemma 2.2 it fol-

lows that there exists a bounded below operator J : N (B) → Z, such that

dim Z/J(N (B)) = α(A)− β(B). There exists a finite dimensional subspace

Z2 such that J(N (B)) ⊕ Z2 = Z and dim Z2 = α(A) − β(B). We define

C ∈ L(Y,X) as

C =




J 0
0 0
0 0


 :

[N (B)
V

]
−→




J(N (B))
Z2

R(A)


 .

It follows that R(MC) = [R(A)⊕ J(N (B))]⊕R(B), N (MC) = N (A), and

we conclude that MC is Weyl. ¤

As a corollary, we get the following result.

Corollary 3.2. For given A ∈ L(X) and B ∈ L(Y ) the following holds:

⋂

C∈L(Y,X)

σw(MC) = σle(A) ∪ σre(B) ∪W0(A,B),

where

W0(A,B) = {λ ∈ C : N (A− λ)⊕N (B − λ) is not isomorphic to

X/R(A− λ)⊕ Y/R(B − λ)}.

Now we formulate the following result for the Browder spectrum.
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Corollary 3.3. Let A ∈ L(X) and B ∈ L(Y ) be given. Consider the

following statements:

(1) (1a) A ∈ Φl(X);

(1b) B ∈ Φr(Y );

(1c) N (B) and X/R(A) are isomorphic up to a finite dimensional

subspace;

(1d) A has the Drazin inverse;

(1e) B has the Drazin inverse.

(2) MC ∈ B(X ⊕ Y ) for some C ∈ L(Y,X).

Then (1) =⇒ (2).

Moreover, if 0 /∈ acc(σ(A) ∪ σ(B)), then (1) ⇐⇒ (2).

Proof. The proof follows from Theorem 3.1 and Lemma 2.3. ¤

More details will be obtained for perturbations of the Browder spectrum.

Theorem 3.3. If A ∈ L(X) and B ∈ L(Y ), then

(3.3)
⋂

C∈L(Y,X)

σb(MC) ⊂ σle(A) ∪ σre(B) ∪W(A,B) ∪W1(A,B),

where W(A,B) is defined in Corollary 3.1 and

W1(A,B) = {λ ∈ C : (A−λ)D does not exist, or (B−λ)D does not exist}.

If accσ(A) ∪ acc σ(B) = ∅, then equality holds in (3.3).

If σa(A) = σ(A) and σd(B) = σ(B), then equality holds in (3.3).

If σ(A)∪ σ(B) does not have interior points, then equality holds in (3.3).

Proof. The result (3.3) follows immediately from Theorem 3.3. If a trivial

assumption acc σ(A)∪ accσ(B) = ∅ is satisfied, from Theorem 3.3 it follows

that equality holds in (3.3).

Suppose that σa(A) = σ(A) and σd(B) = σ(B) hold and

λ /∈
⋂

C∈L(Y,X)

σb(MC).
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There exists some C ∈ L(Y,X) such that MC−λ ∈ B(X⊕Y ). From Theorem

3.1 it follows that A−λ ∈ Φl(X), B−λ ∈ Φr(X) and X/R(A−λ) isomorphic

to N (B − λ) up to a finite dimensional subspace. Let asc(MC − λ) =

des(MC − λ) = p < ∞. Also, λ /∈ accσ(MC). Hence, there exists an ε > 0,

such that if 0 < |z − λ| < ε, then z /∈ σ(MC − λ). For such z the operator

MC−λ−z is invertible and it is easy to prove that A−λ−z is left invertible

and B−λ− z is right invertible. It follows that λ /∈ accσa(A)∪ acc σd(B) =

accσ(A)∪ acc σ(B). From Lemma 2.3 it follows that A− λ and B − λ have

Drazin inverses.

Let int(σ(A) ∪ σ(B)) = ∅. If λ /∈ ⋂
C∈L(Y,X) σb(MC), in the same way

as above we can prove that λ /∈ accσa(A) ∪ accσd(B). We will prove that

λ /∈ accσ(A) ∪ acc σ(B). Since λ can not be an interior point of σ(A) ∪
σ(B), it follows that λ must be a boundary point of σ(A) ∪ σ(B). If λ ∈
accσ(A), then there exists a sequence (xn)n, xn ∈ ∂σ(A) ⊂ σa(A), such

that lim xn = λ. It follows that λ ∈ acc σa(A) and this is in contradiction

with our previous statement λ /∈ accσa(A) ∪ accσd(B). We conclude that

λ /∈ acc σ(A). Similarly, since ∂σ(B) ⊂ σd(B), we get λ /∈ accσ(B).

Now, from Lemma 2.3 it follows that A − λ and B − λ have Drazin

inverses. ¤

4. Perturbations of the left and right Fredholm spectra

We formulate an analogous statement as Proposition 3.1.

Proposition 4.1. For given A ∈ L(X), B ∈ L(Y ) and C ∈ L(Y,X), the

following inclusion holds:

σre(MC) ⊂ σre(A) ∪ σre(B).

Particularly, if A ∈ Φr(X) and B ∈ Φr(Y ), then MC ∈ Φr(X ⊕ Y ) for all

C ∈ L(Y,X).

The notion of the embedded spaces is introduced.
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Definition 4.1. Let X and Y be Banach spaces. We say that X can be

embedded in Y and write X ¹ Y if and only if there exists a left invertible

operator J : X → Y . We say that X can essentially be embedded in Y and

write X ≺ Y , if and only X ¹ Y and Y/T (X) is an infinite dimensional

linear space for all T ∈ L(X, Y ).

Remark 4.1. Obviously, X ¹ Y if and only if there exists a right invertible

operator J1 : Y → X.

If H and K are Hilbert spaces, then H ¹ K if and only if dim H ≤ dim K.

Also, H ≺ K if and only if dimH < dim K and K is infinite dimensional.

Here dim H denotes the orthogonal dimension of H.

The main result of this section follows.

Theorem 4.1. Let A ∈ L(X) and B ∈ L(Y ) be given operators and con-

sider the following statements:

(1) (1a) B ∈ Φr(Y );

(1b) (A ∈ Φr(X)), or (R(A) is closed and complemented in X and

X/R(A) ¹ N (B)).

(2) MC ∈ Φr(X ⊕ Y ) for some C ∈ L(Y,X).

(3) (3a) B ∈ Φr(Y );

(3b) A ∈ Φr(X), or R(A) is not closed, or N (B) ≺ X/R(A) does

not hold.

Then (1) =⇒ (2) =⇒ (3).

Proof. (1) =⇒ (2) Let B ∈ Φr(Y ). If A ∈ Φr(X), then from Proposition 4.1

we get that MC ∈ Φr(X ⊕ Y ) for all C ∈ L(Y, X).

Hence, assume B ∈ Φr(Y ), A /∈ Φr(X), R(A) is closed and complemented

in X and X/R(A) ¹ N (B). There exists a closed subspace U of X such

that R(A) ⊕ U = X. Let J : U → N (B) be a left invertible operator and

J1 : N (B) → U its left inverse. There exists a closed subspace V of Y such
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that N (B)⊕ V = Y . Define an operator C ∈ L(Y, X) in the following way:

C =
[

J1 0
0 0

]
:
[N (B)

V

]
→

[
U

R(A)

]
.

Then R(MC) = X ⊕R(B) and β(MC) = β(B) < ∞. Hence, MC ∈ Φr(X ⊕
Y ).

(2) =⇒ (3) Let MC ∈ Φr(X ⊕Y ) for some C ∈ L(Y, X). Then R(MC) ⊂
[R(A) +R(C)]⊕R(B). If x1, . . . , xn ∈ X are linearly independent modulo

R(A) + R(C) and y1, . . . , ym ∈ Y are linearly independent modulo R(B),

then n + m ≤ β(MC) < ∞. Hence, β(B) < ∞ and B ∈ Φr(Y ). Thus, we

have proved the statement (3a).

Moreover, assume that the statement (3b) does not hold. Then A /∈
Φr(X), R(A) is closed and N (B) ≺ X/R(A). It follows that X/R(A)

is an infinite dimensional space and hence
X

R(A) + C(N (B))
is an infinite

dimensional linear space. Let z1, . . . , zn ∈ X be linearly independent mod-

ulo R(A) + C(N (B)). We will prove that z1, . . . , zn are linearly indepen-

dent modulo (X ⊕ Y )/R(MC). Suppose that there exist complex numbers

α1, . . . αn, such that α1z1 + · · ·αnzn = z ∈ R(MC). Then there exists a

vector x ∈ X ⊕ Y , such that MCx = z. We can find u ∈ X and v ∈ Y

such that x = u + v. Since z = (Au + Cv) ⊕ Bv ∈ X and Bv ∈ Y , we get

Bv = 0 and α1z1 · · ·+αnzn = z ∈ R(A)+C(N (B)). This is in contradiction

with the choice of z1, . . . , zn, so z1, . . . , zn ∈ X must be linearly independent

modulo R(MC). It follows that (X ⊕ Y )/R(MC) is an infinite dimensional

linear space, so MC /∈ Φr(X⊕Y ). This is in contradiction with our previous

assumption MC ∈ Φr(X ⊕ Y ). Thus, we have proved that the statement

(3b) holds. ¤

As a corollary we get the following result.
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Corollary 4.1. Let A ∈ L(X) and B ∈ L(Y ) be given. Then

σre(B) ∪ {λ ∈ σre(A) : R(A− λ) is closed and N (B − λ) ≺ X/R(A− λ)}
⊂

⋂

C∈L(Y,X)

σre(MC)

⊂ σre(B) ∪ {λ ∈ σre(A) : R(A− λ) is not closed and complemented}∪
∪ {λ ∈ σre(A) : X/R(A− λ) ¹ N (B − λ) does not hold}.

Analogously, we can prove similar results for the left Fredholm spectrum.

Theorem 4.2. Let A ∈ L(X) and B ∈ L(Y ) be given operators and con-

sider the following statements:

(1) (1a) A ∈ Φl(X);

(1b) (B ∈ Φl(Y )), or (R(B) and N (B) are closed and complemented

subspaces of Y and N (B) ¹ X/R(A)).

(2) MC ∈ Φl(X ⊕ Y ) for some C ∈ L(Y, X).

(3) (3a) A ∈ Φl(X);

(3b) B ∈ Φl(Y ), or R(B) is not closed, or R(A)◦ ≺ N (B)′ does not

hold.

Then (1) =⇒ (2) =⇒ (3).

Proof. (1) =⇒ (2) If A ∈ Φl(X) and B ∈ Φl(Y ), then from Proposition 4.1

it follows that MC ∈ Φl(X ⊕ Y ). Otherwise, let (1) hold and B /∈ Φl(Y ).

There exist closed subspaces U of X and V,W of Y , such thatR(A)⊕U = X

and N (B) ⊕ V = R(B) ⊕W = Y . Let J : N (B) → U be an arbitrary left

invertible operator. There exists a closed subspace Z such that R(J)⊕Z =

U . Define C ∈ L(Y, X) as

C =
[

J 0
0 0

]
:
[N (B)

V

]
→

[
U

R(A)

]
.

Then R(MC) = R(A)⊕R(J)⊕R(B). From the decomposition

X ⊕ Y = R(A)⊕R(J)⊕ Z ⊕R(B)⊕W
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it follows that R(MC) is closed. Also, it is easy to verify N (MC) = N (A).

Hence, MC ∈ Φl(X ⊕ Y ).

(2) =⇒ (3) Suppose that MC ∈ Φl(X ⊕ Y ) for some C ∈ L(Y,X). If

f ∈ X ′, we may take that f |Y = 0. Hence, (X ⊕Y )′ = X ′⊕Y ′. Notice that

M ′
C =

[
A′ 0
C ′ B′

]
∈ Φr(X ′ ⊕ Y ′).

In the same way as in Theorem 4.1 we can prove A′ ∈ Φr(X ′), so A ∈ Φl(X).

Thus, (3a) is proved.

Suppose that (3b) does not hold. Then B /∈ Φl(Y ), R(B) is closed and

R(A)◦ ≺ N (B)′ holds. Notice that R(A)◦ = N (A′) and

N (B)′ ∼= Y ′/N (B)◦ = Y ′/R(B′).

Since B′ /∈ Φr(Y ′), we know that Y ′/R(B′) is an infinite dimensional space.

In the same way as in Theorem 4.1 we can prove that (X ′ ⊕ Y ′)/R(M ′
C) is

an infinite dimensional linear space. Hence M ′
C /∈ Φr(X ⊕ Y ) and MC /∈

Φl(X ⊕ Y ). Thus, (3b) is proved. ¤

The following result concerning the perturbation of the left Fredholm

spectrum holds.

Corollary 4.2. Let A ∈ L(X) and B ∈ L(Y ) be given operators. Then

σle(A) ∪ {λ ∈ σle(B) : R(B − λ) is closed and R(A− λ)◦ ≺ N (B − λ)′}
⊂

⋂

C∈L(Y,X)

σle(MC)

⊂ σle(A) ∪ {λ ∈ σle(B) : R(B − λ) and N (B − λ)

are not closed and complemented}∪
∪ {λ ∈ σle(B) : N (B − λ) ¹ X/R(A− λ) does not hold}.

Remark 4.2. Notice the difference between statements in Theorem 4.1 (1b)

and Theorem 4.2 (1b). The reason is that the spaces L(Y ′, X ′) and L(X,Y )
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are not isomorphic. Precisely, the mapping T 7→ T ′ from L(X, Y ) into

L(Y ′, X ′) is injective, but not necessarily surjective.

Finally, we get the result for perturbations of the Fredholm spectrum for

Hilbert space operators. This result may be also obtained from Corollary

3.1.

Corollary 4.3. Let H ⊕ K be the orthogonal sum of infinite dimensional

Hilbert spaces. Then

⋂

C∈L(K,H)

σe(MC) = σle(A) ∪ σre(B) ∪W2(A,B),

where

W2(A,B) = {λ ∈ C : dimN (B − λ) 6= dimR(A− λ)⊥ and at least one

of these spaces is infinite dimensional}.

5. Perturbations of the left and right spectra

We begin with the following statement, which can be proved in the same

way as Proposition 3.1.

Proposition 5.1. Let A ∈ L(X) and B ∈ L(Y ) be given. Then the inclu-

sion

σl(MC) ⊂ σl(A) ∪ σl(B)

holds for any C ∈ L(Y, X). Particularly, if A and B are left invertible, then

MC is left invertible for all C ∈ L(Y, X).

For a left invertibility of an operator matrix we can prove the following

result.
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Theorem 5.1. Let A ∈ L(X) and B ∈ L(Y ) be given operators and con-

sider statements:

(1) (1a) A ∈ Gl(X);

(1b) N (B) ¹ X/R(A);

(1c) B is g-invertible.

(2) MC ∈ Gl(X ⊕ Y ) for some C ∈ L(Y, X).

(3) (3a) A ∈ Gl(X);

(3b) X/R(A) ≺ N (B) does not hold.

Then (1) =⇒ (2).

If H ⊕K is the orthogonal sum of infinite dimensional Hilbert spaces H

and K, then (2) =⇒ (3).

Proof. (1) =⇒ (2) Assume that A ∈ Gl(X), N (B) ¹ X/R(A) and B is g-

invertible. Let B1 ∈ L(Y ) denote a g-inverse of B. Then Y = R(B1)⊕N (B).

Let A1 ∈ L(X) be a left inverse of A. Then X = N (A1) ⊕ R(A). Let

J : N (B) → N (A1) be a left invertible mapping and J1 : N (A1) → N (B)

denote a left inverse of J . Hence, N (A1) = R(J) ⊕ N (J1). Define C ∈
L(X ⊕ Y ) in the following way:

C =
[

J 0
0 0

]
:
[ N (B)
R(B1)

]
→

[N (A1)
R(A)

]
.

Notice that from the decomposition

X ⊕ Y = R(A)⊕R(J)⊕N (J1)⊕R(B)⊕N (B1)

it follows that R(MC) = R(A)⊕R(J)⊕R(B) is closed.

Define C1 ∈ L(X,Y ) in the following way:

C1 =
[

J1 0
0 0

]
:
[N (A1)
R(A)

]
→

[ N (B)
R(B1)

]
.

Consider the operator N =
[

A1 0
C1 B1

]
∈ L(X ⊕ Y ). Then we find
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NMC =
[

A1A A1C
C1A C1C + B1B

]
.

Notice that: A1A = I, A1C =0 since R(C) ⊂ N (A1), C1A = 0 since

R(A) ⊂ N (C1). Also, B1B is the projection from Y onto R(B1) parallel

to N (B) and C1C is the projection form Y onto N (B) parallel to R(B1).

Hence C1C +B1B = I and N is the left inverse of MC . Thus, (2) is proved.

(2) =⇒ (3) Let H and K be Hilbert spaces and let MC be left invertible.

It immediately follows that A is left invertible, hence (3a) is proved.

Suppose that H/R(A) ≺ N (B) holds, i.e. dimR(A)⊥ < dimN (B), where

dim H denotes the orthogonal dimension of a Hilbert space H (see Remark

4.2).

Assume N (C) ∩ N (B) 6= {0}. Then for all non-zero vectors z ∈ N (C) ∩
N (B) we have MCz = 0. We conclude that MC is not one-to-one and

MC /∈ Gl(H ⊕K).

We conclude thatN (C)∩N (B) = {0} holds. Hence, C|N (B) is one-to-one.

By [6, Problem 42] it follows that dim C(N (B)) = dimN (B). Hence,

dim C(N (B)) = α(B) > β(A).

Since R(A) is closed, we get R(A) ∩ C(N (B)) 6= {0}. We take a non-zero

vector y1 ∈ R(A) ∩ C(N (B)). There exist: some y2 ∈ H and a sequence

(zn) in N (B), such that Ay2 = y1 = lim Czn. Obviously lim zn 6= 0, so we

may assume that there exists an ε > 0, such that for all n: ‖zn‖ ≥ ε. Notice

that ‖y2 − zn‖ ≥
√
‖y2‖2 + ε2. Now,

lim
∥∥∥∥MC

y2 − zn

‖y2 − zn‖

∥∥∥∥ ≤
1√

‖y2‖2 + ε2
lim ‖Ay2 − Czn −Bzn‖ = 0.

It follows that MC /∈ Gl(H ⊕K). Thus, (3b) is proved. ¤

As a corollary, we get the following result.
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Corollary 5.1. Let A ∈ L(X) and B ∈ L(Y ) be given. Then the following

inclusion holds:
⋂

C∈L(Y,X)

σl(MC) ⊂ σl(A) ∪ σg(B)∪

∪ {λ ∈ C : N (B − λ) ¹ X/R(A− λ) does not hold}.

If H⊕K is the orthogonal sum of infinite dimensional Hilbert spaces H and

K, then

σl(A) ∪ {λ ∈ C : dimR(A− λ)⊥ < dimN (B − λ)} ⊂
⋂

C∈L(K,H)

σl(MC).

Analogously, we can prove a similar result concerning the right spectrum

and right invertibility of MC

Theorem 5.2. Let A ∈ L(X) and B ∈ L(Y ) be given and consider the

statements

(1) (1a) B ∈ Gr(Y );

(1b) X/R(A) ¹ N (B).

(1c) A is g-invertible.

(2) MC ∈ Gr(X ⊕ Y ) for some C ∈ L(Y,X).

(3) (3a) B ∈ Gr(Y );

(3b) N (B) ≺ X/R(A) does not hold.

Then (1) =⇒ (2).

If H ⊕ K is the orthogonal sum of infinite dimensional Hilbert spaces,

then (2) =⇒ (3).

Proof. (1) =⇒ (2) Let B1 be a right inverse of B and A1 be a g-inverse of

A. Then X = R(A) ⊕ N (A1) and Y = N (B) ⊕ R(B1) = R(B) ⊕ N (B1).

There exists a left invertible operator J : N (A1) → N (B) and denote by
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J1 : N (B) → N (A1) its left inverse. Define an operator C ∈ L(Y, X) in the

following way:

C =
[

J1 0
0 0

]
:
[ N (B)
R(B1)

]
→

[N (A1)
R(A)

]
.

Then R(MC) = X ⊕ Y . Since N (MC) = N (A), from the decomposition

X ⊕ Y = N (A)⊕R(A1)⊕ Y

we conclude that N (MC) is a complemented subspace of X⊕Y . Hence, MC

is right invertible and (2) is proved.

(2) =⇒ (3). Let MC be right invertible. It immediately follows that

B ∈ Gr(K) and (3a) is proved.

Assume that (3b) is not satisfied. Then dimN (B) < dimR(A)⊥. Con-

sider the conjugate operator of MC :

M∗
C =

[
A∗ 0
C∗ B∗

]
∈ L(H ⊕K).

If N (C∗) ∩ N (A∗) 6= ∅, then there exists some z ∈ N (C∗) ∩ N (A∗) and

z 6= 0. It follows M∗
Cz = 0, M∗

C is not left invertible and hence MC is not

right invertible.

We conclude that N (C∗) ∩N (A∗) = {0} holds. Then

dim C(N (A∗)) = dimN (A∗) > dimN (B) = dimR(B∗)⊥.

Since R(B) is closed, we obtain

C(N(A∗)) ∩R(B) 6= {0}.

We can prove that M∗
C /∈ Gl(H ⊕ K) holds similarly as in the proof of

Theorem 5.1. Thus, (3b) is proved. ¤

As a corollary, we get the following result.
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Corollary 5.2. For given A ∈ L(X) and B ∈ L(Y ) the inclusion
⋂

C∈L(Y,X)

σr(MC) ⊂ σr(B) ∪ σg(A)∪

∪ {λ ∈ C : X/R(A− λ) ¹ N (B − λ) does not hold}
holds.

Moreover, if H ⊕K is the orthogonal sum of Hilbert spaces, then

σr(B) ∪ {λ ∈ C : dimN (B − λ) < dimR(A− λ)⊥} ⊂
⋂

C∈L(K,H)

σr(MC)

holds, where dim H denotes the orthogonal dimension of a Hilbert space H.

The main result of Du and Pan follows.

Corollary 5.3. Let H ⊕ K be the orthogonal sum of infinite dimensional

Hilbert spaces. For given A ∈ L(H) and B ∈ L(K) the following equality

holds:

⋂

C∈L(K,H)

σ(MC) = σl(A)∪σr(B)∪{λ ∈ C : dimN (B−λ) 6= dimR(A−λ)⊥}.

Proof. The proof follows from Corollary 5.1, Corollary 5.2 and the following

facts: σg(A) ⊂ σ(A), σg(B) ⊂ σ(B) and σ(T ) = σl(T ) ∪ σr(T ) for all

T ∈ L(H). ¤

In the rest of this section we will consider special classes of operators and

related result.

Theorem 5.3. Let H and K be Hilbert spaces, A ∈ L(H) and B ∈ L(K).

If A ∈ S+(H) and B ∈ S−(K), then for all C ∈ L(K, H) we have

σl(MC) = σl(A) ∪ σl(B).

If A ∈ S+(H) or B ∈ S−(K), then σ(MC) = σ(A) ∪ σ(B).

Proof. Since σl(A) ⊂ σl(MC), by Proposition 5.1 it is enough to prove that

σl(B) ⊂ σl(MC). Suppose that λ ∈ σl(B) \ σl(MC). From Corollary 5.1 we
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get that A− λ is left invertible and dimN (B − λ) ≤ dimR(A− λ)⊥. Since

A ∈ S+, we conclude β(A − λ) ≤ α(A − λ) = 0. Now α(B − λ) = 0 and

β(B − λ) = 0. Hence, A− λ and B − λ are invertible and MC − λ must be

invertible. Thus, the equality σl(MC) = σl(A) ∪ σl(B) is proved.

To prove the second equality, notice that σ(MC) ⊂ σ(A) ∪ σ(B) [4] (or

repeat the proof of Proposition 3.1 for the spectrum instead of the essential

spectrum). Let λ ∈ (σ(A)∪σ(B))\σ(MC). From Corollary 5.3 we get A−λ

is left invertible, B − λ is right invertible and α(B − λ) = β(A− λ).

If A ∈ S−(H), then we get

α(B − λ) = β(A− λ) ≤ α(A− λ) = 0.

Hence, A − λ and B − λ are invertible, which is in contradiction with the

assumption λ ∈ σ(A) ∪ σ(B).

If B ∈ S−(K), then

β(A− λ) = α(B − λ) ≤ β(B − λ) = 0.

We also get that A− λ and B − λ are invertible.

Thus, σ(MC) = σ(A) ∪ σ(B) for any C ∈ L(K,H) . ¤

Finally, we consider four block operator matrices. For given A ∈ L(H),

B ∈ L(K) and C ∈ L(K, H), let us take T ∈ L(H, K) and

GT =
[

A C
T B

]
.

We prove the following result.

Theorem 5.4. Let A ∈ L(H), B ∈ L(K) and C ∈ L(K, H) be given

operators and λ ∈ C \ σl(A).

(1) If N (C) ∩N (B − λ) 6= {0}, then λ ∈ σp(GT ) for all T ∈ L(H, K).

(2) If R(A − λ) ∩ R(C) 6= {0}, then there exists a rank-one operator

T ∈ L(H, K), such that λ ∈ σp(GT ).
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(3) If neither (a) nor (b) is satisfied, then λ /∈ σp(GT ) for all T ∈
B(H,K).

Proof. To prove (1), suppose that N (C) ∩ N (B − λ) 6= {0}. There exists a

non-zero vector v ∈ N (C)∩N (B−λ), so (GT −λ)v = 0 for all T ∈ L(H, K),

and λ ∈ σp(GT ).

To prove (2), suppose that R(A − λ) ∩ R(C) 6= {0}. Let us take an

arbitrary non-zero vector z ∈ R(A − λ) ∩ R(C). There exists an operator

A1 : R(A− λ) → H, such that A1(A− λ) = IH and (A− λ)A1 = IR(A−λ).

There exist vectors: x1 = A1z ∈ H, and x2 ∈ K, such that Cx2 = z. We

define a rank-one operator T ∈ L(H,K), such that for any x ∈ H:

T (x) =
1

‖x1‖2 (x, x1)(B − λ)x2.

Taking x = −x1 + x2, we get (GT − λ)x = 0, so λ ∈ σp(GT ).

To prove (3), suppose that neither (1) nor (2) is satisfied. Let 0 6= x ∈
N (GT − λ) for some T ∈ L(H,K). Then x = u + v, u ∈ H, v ∈ K and

(A− λ)u + Cv = 0 = Tu + (B − λ)v.

Since R(A − λ) ∩ R(C) = {0}, we get (A − λ)u = Cv = 0. Also, u = 0,

v ∈ N (C)∩N (B−λ) and v = 0. The obtained contradiction completes the

proof. ¤
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