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Abstract

In this paper we present new results related to the reverse order
law for the Moore-Penrose inverse of operators on Hilbert spaces. Some
finite dimensional results are extended to infinite dimensional settings.
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1 Introduction

If S is a semigroup with the unit 1, and if a, b ∈ S are invertible, then the
equality (ab)−1 = b−1a−1 is called the reverse order law for the ordinary
inverse. It is well-known that the reverse order law does not hold for various
classes of generalized inverses. Hence, a significant number of papers treat
the sufficient or equivalent conditions such that the reverse order law holds
in some sense. In this paper we specialize the investigations to the Moore-
Penrose inverse of closed range linear bounded operators on Hilbert spaces.

Let X,Y, Z be Hilbert spaces, and let L(X,Y ) denote the set of all
linear bounded operators from X to Y . We abbreviate L(X) = L(X, X).
For A ∈ L(X, Y ) we denote by N (A) and R(A), respectively, the null-space
and the range of A. An operator B ∈ L(Y, X) is an inner inverse of A, if
ABA = A holds. In this case A is inner invertible, or relatively regular. It is
well-known that A is inner invertible if and only if R(A) is closed in Y . The
Moore-Penrose inverse of A ∈ L(X, Y ) is the operator X ∈ L(Y,X) which
satisfies the Penrose equations

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.

The Moore-Penrose inverse of A exists if and only if R(A) is closed in Y . If
the Moore-Penrose inverse of A exists, then it is unique, and it is denoted
by A†.

If θ ⊂ {1, 2, 3, 4}, and X satisfies the equations (i) for all i ∈ θ, then X
is an θ-inverse of A. The set of all θ-inverses of A is denoted by A{θ}. If

1The authors are supported by the Ministry of Science, Republic of Serbia, grant no.
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R(A) is closed, then A{1, 2, 3, 4} = {A†}. The theory of generalized inverses
on infinite dimensional Hilbert spaces can be found in [4, 8, 10].

It is a classical result of Greville [9], that (AB)† = B†A† if and only if
R(A∗AB) ⊂ R(B) and R(BB∗A∗) ⊂ R(A∗), in the case when A and B are
complex (possibly rectangular) matrices. This result is extended for linear
bounded operators on Hilbert spaces, by Bouldin [2], [3], and Izumino [12].
Among other things, Bouldin and Izumino used gaps between subspaces. In
[13] the reverse order law for the Moore-Penrose inverse is proved in rings
with involutions. Then, in [6], the reverse order law for the Moore-Penrose
inverse is obtained as a consequence of some set equalities. The reader can
find some interesting and related results in [1, 5, 8, 11, 14, 15, 16, 17, 18].

In particular, the paper [15] is related to our investigations. In [15] Tian
obtained some very interesting results concerning the sets of generalized
inverses of complex rectangular matrices. As a corollary, the reverse order
law for the Moore-Penrose inverse follows. Notice that the finite dimensional
methods are used in [15] (mostly the rank of a complex matrix).

In this paper we extend some results from [15] to infinite dimensional
settings. Among other things, we obtain the reverse order law for the Moore-
Penrose inverse as a corollary. We use the matrix form of a linear bounded
operator, and this matrix form is induced by some natural decompositions
of Hilbert spaces.

In the rest of the Introduction we formulate two auxiliary result. In
Section 2 we present the results related to the reverse order rule for the
Moore-Penrose inverse of Hilbert space operators with closed range. The
present paper is the extension of results from [15] to infinite dimensional
settings.

Lemma 1.1. Let A ∈ L(X, Y ) have a closed range. Then A has the matrix
decomposition with respect to the orthogonal decompositions of spaces X =
R(A∗)⊕N (A) and Y = R(A)⊕N (A∗):

A =
[

A1 0
0 0

]
:
[ R(A∗)
N (A)

]
→

[ R(A)
N (A∗)

]
,

where A1 is invertible. Moreover,

A† =
[

A−1
1 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[ R(A∗)
N (A)

]
.

The proof is straightforward.
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Lemma 1.2. Let A ∈ L(X,Y ) have a closed range. Let X1 and X2 be closed
and mutually orthogonal subspaces of X, such that X = X1⊕X2. Let Y1 and
Y2 be closed and mutually orthogonal subspaces of Y , such that Y = Y1⊕Y2.
Then the operator A has the following matrix representations with respect
to the orthogonal sums of subspaces X = X1 ⊕ X2 = R(A∗) ⊕ N (A), and
Y = R(A)⊕N (A∗) = Y1 ⊕ Y2 :

(a)

A =
[

A1 A2

0 0

]
:
[

X1

X2

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 +A2A

∗
2 maps R(A) into itself and D > 0 (meaning D ≥ 0

invertible). Also,

A† =
[

A∗1D
−1 0

A∗2D
−1 0

]
.

(b)

A =
[

A1 0
A2 0

]
:
[ R(A∗)
N (A)

]
→

[
Y1

Y2

]
,

where D = A∗1A1+A∗2A2 maps R(A∗) into itself and D > 0 (meaning D ≥ 0
invertible). Also,

A† =
[

D−1A∗1 D−1A∗2
0 0

]
.

Here Ai denotes different operators in any of these two cases.

Proof. Recall that one special case of this result is proved in [7]. We prove
only the result of (a), since the proof of (b) is analogous.

The operator A has the following representation:

A =
[

A1 A2

A3 A4

]
:
[

X1

X2

]
→

[ R(A)
N (A∗)

]
,

i.e.
A1 = A|X1

: X1 → R(A), A2 = A|X2
: X2 →R(A),

A3 = A|X1
: X1 → N (A∗), A4 = A|X2

: X2 → N (A∗).

Furhtermore,

A∗ =
[

A∗1 A∗3
A∗2 A∗4

]
:
[ R(A)
N (A∗)

]
→

[
X1

X2

]
.
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From A∗(N (A∗)) = {0} we obtain A∗3 = 0 and A∗4 = 0, so A3 = 0 and

A4 = 0. Hence, A =
[

A1 A2

0 0

]
. Notice that

AA∗ =
[

D 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 : R(A) → R(A). From N (AA∗) = N (A∗) it

follows that D is one-one. From R(AA∗) = R(A) it follows that D is onto.
Hence, D is invertible. Finally, we obtain the form for the Moore-Penrose
inverse of A using the formula A† = A∗(AA∗)†.

The following result is well-known, and it can be found in [4], p.127.

Lemma 1.3. Let A ∈ L(Y, Z) and B ∈ L(X,Y ) have closed ranges. Then
AB has a closed range if and only if A†ABB† has a closed range.

Finally, the reader should notice the difference between the following
notations. If A,B ∈ L(X), then [A,B] = AB−BA denotes the commutator
of A and B. On the other hand, if U ∈ L(X, Z) and V ∈ L(Y,Z), then

[U V ] :
[

X
Y

]
→ Z denote the matrix form of the corresponding operator.

2 Reverse order law

In this section we prove the results concerning the reverse order law for the
Moore-Penrose inverse.

Theorem 2.1. Let X,Y, Z be Hilbert spaces, and let A ∈ L(Y, Z) and
B ∈ L(X, Y ) be such that A,B, AB have closed ranges. Then the following
statements are equivalent:

(a) ABB†A†AB = AB;

(b) B†A†ABB†A† = B†A†;

(c) A†ABB† = BB†A†A;

(d) A†ABB† is an idempotent;

(e) BB†A†A is an idempotent;

(f) B†(A†ABB†)†A† = B†A†;
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(g) (A†ABB†)† = BB†A†A;

Notice that A†ABB† has a closed range, according to Lemma 1.3. More-
over, A∗ABB∗ also has a closed range: R(B∗A∗A) = B∗(R(A∗A)) =
B∗(R(A∗)) = R((AB)∗) is closed, so R(A∗ABB∗) = A∗A(R(BB∗)) =
A∗A(R(B)) = R(A∗AB) = R((B∗A∗A)∗) is closed.

Proof. Using Lemma 1.1 we conclude that the operator B has the following
matrix form:

B =
[

B1 0
0 0

]
:
[ R(B∗)
N (B)

]
→

[ R(B)
N (B∗)

]
,

where B1 is invertible. Then

B† =
[

B−1
1 0
0 0

]
:
[ R(B)
N (B∗)

]
→

[ R(B∗)
N (B)

]
.

From Lemma 1.2 it follows that the operator A has the following matrix
form:

A =
[

A1 A2

0 0

]
:
[ R(B)
N (B∗)

]
→

[ R(A)
N (A∗)

]
,

where D = A1A
∗
1 + A2A

∗
2 is invertible and positive in L(R(A)). Then

A† =
[

A∗1D
−1 0

A∗2D
−1 0

]
.

Notice the following:

BB† =
[

I 0
0 0

]
:
[ R(B)
N (B∗)

]
→

[ R(B)
N (B∗)

]
,

AA† =
[

I 0
0 0

]
:
[ R(A)
N (A∗)

]
→

[ R(A)
N (A∗)

]
,

and

A†A =
[

A∗1D
−1A1 A∗1D

−1A2

A∗2D
−1A1 A∗2D

−1A2

]
:
[ R(B)
N (B∗)

]
→

[ R(B)
N (B∗)

]
.

From Lemma 1.3 it follows that A†ABB† has a closed range. We obtain

A†ABB† =
[

A∗1D
−1A1 0

A∗2D
−1A1 0

]
,
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BB†A†A =
[

A∗1D
−1A1 A∗1D

−1A2

0 0

]
.

Consider the following chain of equivalences, which is related to the
statement of (a):

ABB†A†AB = AB

⇐⇒
[

A1 A2

0 0

] [
A∗1D

−1A1 A∗1D
−1A2

0 0

] [
B1 0
0 0

]
=

[
A1B1 0

0 0

]

⇐⇒
[

A1A
∗
1D

−1A1B1 0
0 0

]
=

[
A1B1 0

0 0

]

⇐⇒ A1A
∗
1D

−1A1 = A1. (1)

Consequently, the statement (a) is equivalent to (1).
Notice that (1) is equivalent to

A∗1D
−1A1A

∗
1 = A∗1. (2)

We consider also the statement (b):

B†A†ABB†A† = B†A†

⇐⇒
[

B−1
1 0
0 0

] [
A∗1D

−1A1 0
A∗2D

−1A1 0

] [
A∗1D

−1 0
A∗2D

−1 0

]

=
[

B−1
1 0
0 0

] [
A∗1D

−1 0
A∗2D

−1 0

]

⇐⇒
[

B−1
1 A∗1D

−1A1A
∗
1D

−1 0
0 0

]
=

[
B−1

1 A∗1D
−1 0

0 0

]

⇐⇒ B−1
1 A∗1D

−1A1A
∗
1D

−1 = B−1
1 A∗1D

−1 ⇐⇒ (2).

Thus, (a) ⇐⇒ (1) ⇐⇒ (2) ⇐⇒ (b).
In the case of the statement (c) we have:

A†ABB† = BB†A†A ⇐⇒
[

A∗1D
−1A1 0

A∗2D
−1A1 0

]
=

[
A∗1D

−1A1 A∗1D
−1A2

0 0

]

⇐⇒ A∗1D
−1A2 = 0 ⇐⇒ A∗2D

−1A1 = 0. (3)
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Thus, if (c) holds, i.e. A∗2D
−1A1 = 0, then it is obvious that A2A

∗
2D

−1A1 =
0, so (1) also holds because of:

(A1A
∗
1 + A2A

∗
2)D

−1 = I =⇒ A1A
∗
1D

−1A1 + A2A
∗
2D

−1A1 = A1

⇐⇒ A1A
∗
1D

−1A1 = A1.

On the other hand, suppose that (1) holds. Then A2A
∗
2D

−1A1 = 0, and we
have the following

A2A
∗
2D

−1A1 = 0 ⇒R(D−1A1) ⊂ N (A2A
∗
2) = N (A∗2) ⇒ A∗2D

−1A1 = 0,

so (3) is satisfied. Consequently, (c) also holds. We have just proved (c) ⇐⇒
(3) ⇐⇒ (1) ⇐⇒ (a).

A straightforward computation shows that (d) is equivalent to
{

A∗1D
−1A1A

∗
1D

−1A1 = A∗1D
−1A1

A∗2D
−1A1A

∗
1D

−1A1 = A∗2D
−1A1

(4)

If the statement (1) holds, then obviously (4) is satisfied. On the other hand,
suppose that (4) holds. Then multiply the first equation of (4) by A1 from
the left side, and multiply the second equation of (4) by A2 from the left
side. The sum of these two new equations leads to the equation (1).

Notice that (e) is also equivalent to (4). Consequently, (d) ⇐⇒ (4) ⇐⇒
(2) ⇐⇒ (e).

In order to establish (f), we proceed as follows. Let Q = A†ABB†.
From Lemma 1.3 we know that Q has a closed range. We use the formula
Q† = Q∗(QQ∗)† = (Q∗Q)†Q∗. Hence,

(A†ABB†)† = (BB†A†AA†ABB†)†BB†A†A = (BB†A†ABB†)†BB†A†A

=
[

A∗1D
−1A1 0
0 0

]† [
A∗1D

−1A1 A∗1D
−1A2

0 0

]

=
[

(A∗1D
−1A1)† 0
0 0

] [
A∗1D

−1A1 A∗1D
−1A2

0 0

]

=
[

(A∗1D
−1A1)†A∗1D

−1A1 (A∗1D
−1A1)†A∗1D

−1A2

0 0

]
.

We get

B†(A†ABB†)†A† −B†A† = 0

⇐⇒
[

B−1
1 (A∗1D

−1A1)†A∗1D
−1 −B−1

1 A∗1D
−1 0

0 0

]
= 0
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⇐⇒ (A∗1D
−1A1)†A∗1 = A∗1. (5)

We need to prove (1) ⇐⇒ (5). Let P = A∗1D
−1A1. Obviously, P ∗ = P .

(1)⇒ (5): We have the following:

P 2 = A∗1D
−1A1A

∗
1D

−1A1 = A∗1D
−1A1 = P ,

P = P ∗ = P 2 = P †,
(A∗1D

−1A1)†A∗1 = A∗1D
−1A1A

∗
1 = A∗1.

(5)⇒(1): In this case we have

(A∗1D
−1A1)†A∗1 = A∗1,
P †P = P ,

PP † = (PP †)∗ = (P ∗)†P ∗ = P †P
P † = P †PP † = PP † = P †P = P

A∗1 = (A∗1D
−1A1)†A∗1 = A∗1D

−1A1A
∗
1.

We have just proved (f) ⇐⇒ (1) ⇐⇒ (a).
To prove (g) ⇐⇒ (f), we use the fact which is already proved for (f), i.e.

for (A†ABB†)†. Thus, we have

(A†ABB†)† −BB†A†A = 0 ⇐⇒
{

(A∗1D
−1A1)†A∗1D

−1A1 = A∗1D
−1A1,

(A∗1D
−1A1)†A∗1D

−1A2 = A∗1D
−1A2.

It is easy to conclude that (g) ⇐⇒ (f).

Now we prove the following result.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X, Y ) be such that A,B,AB have closed ranges. Then the following state-
ments hold:

(a) AB(AB)† = ABB†A† ⇔ A∗AB = BB†A∗AB ⇔R(A∗AB) ⊆ R(B) ⇔
B†A† ∈ (AB){1, 2, 3};

(b) (AB)†AB = B†A†AB ⇔ ABB∗ = ABB∗A†A ⇔ R(BB∗A∗) ⊆
R(A∗) ⇔ B†A† ∈ (AB){1, 2, 4};

(c) The following statements are equivalent:

(1) (AB)† = B†A†;

(2) AB(AB)† = ABB†A† and (AB)†AB = B†A†AB;
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(3) A∗AB = BB†A∗AB and ABB∗ = ABB∗A†A;

(4) R(A∗AB) ⊆ R(B) and R(BB∗A∗) ⊆ R(A∗).

Proof. The operators A and B have the same matrix representations as in
the previous theorem. The following products will be useful:

AB =
[

A1B1 0
0 0

]
, (AB)† =

[
(A1B1)† 0

0 0

]
, B†A† =

[
B−1

1 A∗1D
−1 0

0 0

]
.

First, we find the equivalent expressions for our statements in terms of A1,
A2 and B1.

(a) 1. AB(AB)† = ABB†A† ⇔ A1B1(A1B1)† = A1A
∗
1D

−1. Here
A1B1(A1B1)† is Hermitian, so [A1A

∗
1, D

−1] = 0.

2. A∗AB = BB†A∗AB ⇔ A∗2A1 = 0.

3. Notice thatR(A∗AB) ⊂ R(B) if and only if BB†A∗AB = A∗AB,
so 2. ⇐⇒ 3.

4. If we check properly the Penrose equations, then we see that:
B†A† ∈ (AB){1, 2, 3} ⇔ A1A

∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] =
0.

Now, we prove the following: 1. ⇐⇒ 2., 4. =⇒ 2. and 1. =⇒ 4.

We prove 1. ⇐⇒ 2. Notice that

A1B1(A1B1)† = A1A
∗
1D

−1 ⇐⇒ (A1B1)† = (A1B1)†A1A
∗
1D

−1.

The last statement is obtained by multiplying the first expression by
(A1B1)† from the left side, or multiplying the second expression by
A1B1 from the left side, and using A1A

∗
1 = A1B1B

−1
1 A∗1. Now, there

is a chain of the equivalences:

(A1B1)† = (A1B1)†A1A
∗
1D

−1

⇐⇒ (A1B1)†(A1A
∗
1 + A2A

∗
2) = (A1B1)†A1A

∗
1

⇐⇒ (A1B1)†A2A
∗
2 = 0 ⇐⇒ R(A2A

∗
2) ⊂ N ((A1B1)†)

⇐⇒ R(A2) ⊂ N ((A1B1)∗) ⇐⇒ B∗
1A∗1A2 = 0 ⇐⇒ A∗1A2 = 0,

Therefore, we have just proved that 1. ⇔ 2.

Now we prove 1. =⇒ 4. If we multiply A1B1(A1B1)† = A1A
∗
1D

−1 by
A1B1 from the right side, we get A1A

∗
1D

−1A1 = A1. Thus, 4. holds.
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Finally, we prove 4. =⇒ 2. If A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0,
then A1A

∗
1A1 = DA1 = A1A

∗
1A1 + A2A

∗
2A1, implying that A2A

∗
2A1 =

0. Hence, R(A1) ⊂ N (A2A
∗
2) = N (A∗2), so A∗2A1 = 0. Thus, 2. holds.

Notice that the equivalence 3. ⇐⇒ 4. is proved in [8], also.

(b) 1. (AB)†AB = B†A†AB ⇔ (A1B1)†A1B1 = B−1
1 A∗1D

−1A1B1. More-
over, (A1B1)†A1B1 is Hermitian, so [B1B

∗
1 , A∗1D

−1A1] = 0.

2. ABB∗ = ABB∗A†A ⇔ A1B1B
∗
1A∗1D

−1A1 = A1B1B
∗
1 and

A1B1B
∗
1A∗1D

−1A2 = 0.

3. Notice that R(BB∗A∗) ⊂ R(A∗) if and only if A†ABB∗A∗ =
BB∗A∗, which is equivalent to ABB∗A†A = ABB∗. Hence,
2. ⇐⇒ 3.

4. The Penrose equations imply that: B†A† ∈ (AB){1, 2, 4} ⇔
A1A

∗
1D

−1A1 = A1 and [B1B
∗
1 , A∗1D

−1A1] = 0.

We prove 1. ⇒ 4. ⇒ 2. ⇒ 1.
Suppose that 1. holds. If we multiply (A1B1)†A1B1 = B−1

1 A∗1D
−1A1B1

by A1B1 from the left side, we obtain A1 = A1A
∗
1D

−1A1. Furthermore,
[B1B

∗
1 , A∗1D

−1A1] = 0 holds. Therefore, 1. ⇒ 4.
Suppose that 4. holds. Obviously, A1B1B

∗
1A∗1D

−1A1 = A1A
∗
1D

−1A1B1B
∗
1

= A1B1B
∗
1 . Thus, the first equality of 2. holds. The second equality of 2.

also holds, since A∗1D
−1A2 = 0 ⇔ A1A

∗
1D

−1A1 = A1, which is shown in
the proof of the Theorem 2.1. Here we use again [B1B

∗
1 , A∗1D

−1A1] = 0.
Consequently, 4. ⇒ 2.

In order to prove that 2. =⇒ 1., we multiply A1B1B
∗
1A∗1D

−1A1 =
A1B1B

∗
1 by (A1B1)† from the left side. It follows that B∗

1A∗1D
−1A1 =

(A1B1)†A1B1B
∗
1 , so (A1B1)†A1B1 = B∗

1A∗1D
−1A1(B∗

1)−1 which is equiva-
lent to (A1B1)†A1B1 = B−1

1 A∗1D
−1A1B1. Hence, 2. ⇒ 1.

Notice that 3. ⇐⇒ 4. is also proved in [8].
Finally, the part (c) follows from the parts (a) and (b).

We also prove the following result.

Theorem 2.3. Let X, Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X, Y ) be such that A,B, AB have closed ranges. Then we have:

(a) AB(AB)†A = ABB† ⇔ A∗ABB† = BB†A∗A ⇔R(A∗AB) ⊆ R(B) ⇔
B†A† ∈ (AB){1, 2, 3};

(b) B(AB)†AB = A†AB ⇔ A†ABB∗ = BB∗A†A ⇔ R(BB∗A∗) ⊆
R(A∗) ⇔ B†A† ∈ (AB){1, 2, 4};
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(c) The following three statements are equivalent:

(1) (AB)† = B†A†;

(2) AB(AB)†A = ABB† and B(AB)†AB = A†AB;

(3) A∗ABB† = BB†A∗A and A†ABB∗ = BB∗A†A.

Proof. The operators A and B have the same matrix representations as in
the previous theorem. First, we find equivalent expressions, in the terms of
A1, A2 and B1, for our assumptions.

(a) 1. AB(AB)†A = ABB† ⇔ A1B1(A1B1)†A1 = A1 and
A1B1(A1B1)†A2 = 0. The first equality on the right side of the
equivalence always holds, so: AB(AB)†A = ABB† ⇔
A1B1(A1B1)†A2 = 0.

2. A∗ABB† = BB†A∗A ⇔ A∗1A2 = 0.

3. R(A∗AB) ⊂ R(B) ⇔ BB†A∗AB = A∗AB ⇔ A∗2A1 = 0 (see the
proof of Theorem 2.2, the part (a) 2. and 3.).

4. B†A† ∈ (AB){1, 2, 3} ⇔ A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0
(see Theorem 2.2 (a) 4.).

To prove that 1.⇔2., we see that A1B1(A1B1)†A2 = 0 ⇔ R(A2) ⊂
N ((A1B1)(A1B1)†) = N ((A1B1)†) = N ((A1B1)∗) = N (B∗

1A∗1) =
N (A∗1) ⇔ A∗1A2 = 0.

Now, we prove that 2.⇔4. If [A1A
∗
1, D

−1] = 0, then A1A
∗
1D

−1A1 =
A1 ⇔ A1A

∗
1A1 = DA1 ⇔ A2A

∗
2A1 = 0 ⇔ A∗1A2A

∗
2 = 0 ⇔ R(A2A

∗
2) ⊂

N (A∗1) ⇔ R(A2) ⊂ N (A∗1) ⇔ A∗1A2 = 0. On the other hand, if
A∗1A2 = 0, then A1A

∗
1D = A1A

∗
1A1A

∗
1 is Hermitian, so A1A

∗
1 commutes

with D. This implies [A1A
∗
1, D

−1] = 0 and A1A
∗
1D

−1A1 = A1.

From Theorem 2.2 we know that 3.⇔4.

(b) 1. B(AB)†AB = A†AB ⇔ B1(A1B1)†A1 = A∗1D
−1A1 and

A∗2D
−1A1 = 0.

2. A†ABB∗ = BB∗A†A ⇔ [B1B
∗
1 , A∗1D

−1A1] = 0 and A∗1D
−1A2 =

0.

3. R(BB∗A∗) ⊆ R(A∗) ⇐⇒ A1B1B
∗
1A∗1D

−1A2 = 0 and
A1B1B

∗
1A∗1D

−1A1 = A1B1B
∗
1 (Theorem 2.2 (b) parts 2. and

3.).

4. B†A† ∈ (AB){1, 2, 4} ⇔A1A
∗
1D

−1A1 = A1 and [B1B
∗
1 , A∗1D

−1A1]
= 0 (Theorem 2.2 (b) part 4.).
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1. =⇒ 4. We multiply the expression B1(A1B1)†A1 = A∗1D
−1A1 by

A1 from the left side, and by B1 from the right side, and thus obtain
A1A

∗
1D

−1A1 = A1. Also, we obtain that (A1B1)†A1B1 = B−1
1 A∗1D

−1A1B1

is Hermitian. Hence, A∗1D
−1A1B1B

∗
1 is Hermitian, and we get

[B1B
∗
1 , A∗1D

−1A1] = 0.
4. =⇒ 1. If 4. holds, then it is easy to see that B−1

1 A∗1D
−1A1B1(A1B1)†

is the Moore-Penrose inverse of A1B1 (check the Penrose equations). This
implies B1(A1B1)†A1 = A∗1D

−1A1. Now, we obtain that A1 = A1A
∗
1D

−1A1.
From (A1A

∗
1 + A2A

∗
2)D

−1A1 = A1 it follows that A2A
∗
2D

−1A1 = 0, so
R(D−1A1) ⊂ N (A2A

∗
2) = N (A∗2), and A∗2D

−1A1 = 0.
2. =⇒ 3. If 2. holds, then A1B1B

∗
1A∗1D

−1A2 = 0 is trivially satisfied.
Moreover, A1B1B

∗
1A∗1D

−1A1 = A1B1B
∗
1 is equivalent to A1A

∗
1D

−1A1 = A1,
which follows from A∗1D

−1A2 = 0.
3. =⇒ 2. From the proof of Theorem 2.2, part (b) 4., it follows that

[B1B
∗
1 , A∗1D

−1A1] = 0. Now, in the usual manner, we get that A2A
∗
2D

−1A1 =
0, so A∗1D

−1A2 = 0.
2. ⇐⇒ 4. Obvious.
The part (c) follows from the parts (a) and (b).

We also prove the following result.

Theorem 2.4. Let X, Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X, Y ) be such that A,B,AB have closed ranges. The following statements
hold.

(a) (ABB†)† = BB†A† ⇔ B†(ABB†)† = B†A† ⇔R(A∗AB) ⊆ R(B).

(b) (A†AB)† = B†A†A ⇔ (A†AB)†A† = B†A† ⇔R(BB∗A∗) ⊆ R(A∗).

(c) The following three statements are equivalent:

(1) (AB)† = B†A†;

(2) (ABB†)† = BB†A† and (A†AB)† = B†A†A;

(3) B†(ABB†)† = B†A† and (A†AB)†A† = B†A†.

Notice that ABB† and A†AB have closed ranges. This is explained in
the further proof.

Proof. The operators A and B have the same matrix representations as in
the previous theorem.

(a) Notice that R(ABB†) = R(AB) is closed, so there exists (ABB†)†.
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1. (ABB†)† = BB†A† ⇔ A†1 = A∗1D
−1 (the existence of A†1 follows

from the assumptions).

2. B†(ABB†)† = B†A† ⇔ A†1 = A∗1D
−1, so 1.⇔2.

3. R(A∗AB) ⊆ R(B) ⇔ A1A
∗
1D

−1A1 = A1 and [A1A
∗
1, D

−1] = 0
(see Theorem 2.2, (a) parts 3. and 4.).

1. =⇒ 3. If A†1 = A∗1D
−1, then A†1D = A∗1 and A1A

†
1 = A1A

∗
1D

−1 is
Hermitian, so [A1A

∗
1, D

−1] = 0. Moreover, A1A
†
1A2A

∗
2 = 0. We con-

clude R(A2A
∗
2) ⊂ N (A1A

†
1) = N (A∗1), so A∗1A2A

∗
2 = 0 and A∗2A1 =

0. Now, (A1A
∗
1 + A2A

∗
2)A1 = A1A

∗
1A1, so A1 = D−1A1A

∗
1A1 =

A1A
∗
1D

−1A1.

3. =⇒ 1. If 3. holds, then it is easy to see that A∗1D
−1 is the Moore-

Penrose inverse of A1 (check the Penrose equations).

(b) We see that R((A†AB)∗) = R(B∗A†A) = R(B∗A∗) = R((AB)∗) is
closed, so (A†AB)† exists. Notice that

B†A†A =
[

B−1
1 A∗1D

−1A1 B−1
1 A∗1D

−1A2

0 0

]

and A†AB =
[

A∗1D
−1A1B1 0

A∗2D
−1A1B1 0

]
. Using the formula T † = (T ∗T )†T ∗,

we obtain

(A†AB)† =[
(B∗

1A∗1D
−1A1B1)†B∗

1A∗1D
−1A1 (B∗

1A∗1D
−1A1B1)†B∗

1A∗1D
−1A2

0 0

]
.

1. (A†AB)† = B†A†A⇔ (B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1A1 = B−1
1 A∗1D

−1A1

and (B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1A2 = B−1
1 A∗1D

−1A2.

2. (A†AB)†A† = B†A† ⇔ B1(B∗
1A∗1D

−1A1B1)†B∗
1A∗1 = A∗1.

3. R(BB∗A∗) ⊂ R(A∗)⇔A1A
∗
1D

−1A1 = A1 and [B1B
∗
1 , A∗1D

−1A1] =
0.
1. =⇒ 2. We multiply the first equality of 1. by A∗1 from the
right side, and we multiply the second equality of 1. by A∗2 from
the right side. By summing the obtained equalities we obtain 2.
2. =⇒ 1. This is obvious.
2. =⇒ 3. If we multiply B1(B∗

1A∗1D
−1A1B1)†B∗

1A∗1 = A∗1 by
B∗

1A∗1D
−1A1 from left, and by D−1A1B1 from right side, we
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get A∗1D
−1A1 = A∗1D

−1A1A
∗
1D

−1A1. Now, A∗1D
−1A1 is the or-

thogonal projection onto a subspace of R(A∗1), so it follows that
A1A

∗
1D

−1A1 = A1.
Since (B∗

1A∗1D
−1A1B1)†B∗

1A∗1D
−1A1B1 = B−1

1 A∗1D
−1A1B1 is Her-

mitian, we obtain [B1B
∗
1 , A∗1D

−1A1] = 0.

3. =⇒ 2. Using the formula T † = (T ∗T )†T ∗, we have:

(B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1/2 = (D−1/2A1B1)†,

which means that

B1(B∗
1A∗1D

−1/2D−1/2A1B1)†B∗
1A∗1 = B1(D−1/2A1B1)†D1/2.

We wish to show that 3. implies B1(D−1/2A1B1)†D1/2 = A∗1.
This means that we will show (D−1/2A1B1)† = B−1

1 A∗1D
−1/2, by

proving that the last expression satisfies all four Penrose equa-
tions provided that the conditions from 3. are valid. Hence,

D−1/2A1B1B
−1
1 A∗1D

−1/2D−1/2A1B1 = D−1/2A1A
∗
1D

−1A1B1

= D−1/2A1B1,

B−1
1 A∗1D

−1/2D−1/2A1B1B
−1
1 A∗1D

−1/2 = B−1
1 A∗1D

−1A1A
∗
1D

−1/2

= B−1
1 A∗1D

−1/2,

D−1/2A1B1B
−1
1 A∗1D

−1/2 = D−1/2A1A
∗
1D

−1/2 is Hermitian,

B−1
1 A∗1D

−1/2D−1/2A1B1 = B−1
1 A∗1D

−1A1B1 is Hermitian,

since [B1B
∗
1 , A∗1D

−1A1] = 0.

(c) Follows from (a) and (b).

Theorem 2.5. Let X, Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X, Y ) be such that A,B, AB have closed ranges. Then we have:

(a) B† = (AB)†A ⇔R(B) = R(A∗AB).

(b) A† = B(AB)† ⇔R(A∗) = R(BB∗A∗).

Proof. (a) We keep the matrix forms of A and B as in previous theorems.
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1. It is easy to obtain that B† = (AB)†A if and only if I = (A1B1)†A1B1

and (A1B1)†A2 = 0. Hence, 1. is equivalent to the following two
conditions: A1 is one-one with closed range, and (A1B1)†A2 = 0.

2. R(B) = R(A∗AB) if and only ifR(A∗1A1B1) = R(B) and A∗2A1B1 =
0. Hence, 2. is equivalent to the following two conditions: A1 is
one-one with closed range and A∗1A2 = 0.

To prove the equivalence 1. ⇐⇒ 2., we have the following:

(A1B1)†A2 = 0 ⇐⇒ R(A2) ⊂ N ((A1B1)†) = N ((A1B1)∗)
⇐⇒ B∗

1A∗1A2 = 0 ⇐⇒ A∗1A2 = 0.

(b) From the part (a) it follows that (B∗)† = A∗(B∗A∗)† if and only if
R(B) = R(A∗AB). Now, we change A∗ by B′ and B∗ by A′, to
obtain that (b) holds.

We need the following auxiliary result.

Lemma 2.1. Let X, Y be Hilbert spaces, let C ∈ L(X,Y ) have a closed
range, and let D ∈ L(Y ) be Hermitian and invertible. Then R(DC) = R(C)
if and only if [D, CC†] = 0.

Proof. =⇒ : We consider the orthogonal decompositions X = R(C∗) ⊕
N (C) and Y = R(C) ⊕ N (C∗). Then the operators C and D have the
corresponding matrix forms as follows:

C =
[

C1 0
0 0

]
:
[ R(C∗)
N (C)

]
→

[ R(C)
N (C∗)

]
,

where C1 is invertible, and

D =
[

D1 D2

D3 D4

]
:
[ R(C)
N (C∗)

]
→

[ R(C)
N (C∗)

]
,

where D3 = D∗
2. It follows that

DC =
[

D1C1 0
D3C1 0

]
:
[ R(C∗)
N (C)

]
→

[ R(C)
N (C∗

]
.

Hence, R(DC) = R(C) implies D3 = 0 and D2 = 0, so D =
[

D1 0
0 D4

]
.

Since D is Hermitian and invertible, we obtain that D1 and D4 are also
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Hermitian and invertible. Since C† =
[

C−1
1 0
0 0

]
, we obtain that DCC† =

CC†D holds.
⇐= : If D is invertible and DCC† = CC†D, then

R(DC) = R(DCC†) = R(CC†D) = R(CC†) = R(C).

Finally, we prove the following results.

Theorem 2.6. Let X, Y, Z be Hilbert spaces, and let A ∈ L(Y, Z), B ∈
L(X, Y ) be such that A,B, AB have closed ranges. Then we have:

(a) (AB)† = (A†AB)†A† ⇔ R(AA∗AB) = R(AB);

(b) (AB)† = B†(ABB†)† ⇔ R(B∗B(AB)∗) = R((AB)∗).

Notice that A†AB and ABB† have closed ranges.

Proof. (a) Notice that

R((A†AB)∗) = R(B∗A†A) = B∗R(A†A) = B∗R(A∗) = R((AB)∗)

is closed, so R(A†AB) is closed. First, let we see how our conditions
looks like in the terms of their components.

1. Let us denote T = A†AB. We find T † as follows

T † = (T ∗T )†T ∗

=
[

(B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1A1 (B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1A2

0 0

]
.

Now, it is easy to see that (AB)† = (A†AB)†A† is equivalent with

(A1B1)† = (B∗
1A∗1D

−1A1B1)†B∗
1A∗1D

−1 = (D−1/2A1B1)†D−1/2.

2. It is obvious that AA∗AB =
[

DA1B1 0
0 0

]
, so 2. holds if and

only if R(DA1B1) = R(A1B1).
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1. ⇒ 2. From the third Penrose equation for (A1B1)† = (D−1/2A1B1)†D−1/2,
we see that A1B1(D−1/2A1B1)†D−1/2 is Hermitian. So, we have the
following equivalences:

A1B1(D−1/2A1B1)†D−1/2 is Hermitian
⇐⇒ D−1/2A1B1(D−1/2A1B1)†D−1 is Hermitian
⇐⇒ [D, D−1/2A1B1(D−1/2A1B1)†] = 0
⇐⇒ D1/2A1B1(D−1/2A1B1)† = D−1/2A1B1(D−1/2A1B1)†D
⇐⇒ DA1B1(D−1/2A1B1)† = A1B1(D−1/2A1B1)†D.

Now,

R(DA1B1) = R(DA1B1(A1B1)†) = R(A1B1(A1B1)†D) = R(A1B1).

2. ⇒ 1. If R(DA1B1) = R(A1B1), then we apply Lemma 2.1 to
obtain [D, A1B1(A1B1)†] = 0. Now, from the previous implication
it follows that A1B1(D−1/2A1B1)†D−1/2 is Hermitian. Notice that
D−1/2A1B1)†D−1/2A1B1 is the orthogonal projection onto

R((A1B1)∗D−1/2) ⊂ R((A1B1)∗),

so A1B1(D−1/2A1B1)†D−1/2A1B1 = A1B1. Finally, it is not difficult
to verify that (A1B1)† = (D−1/2A1B1)†D−1/2 holds.

(b) According to (a), we have the following equivalences:

(AB)† = (A†AB)†A† ⇔R(AA∗AB) = R(AB)
(B∗A∗)† = (A∗)†(B∗A†A)† ⇐⇒ R(AA∗AB) = R(A)
(now take A′ = B∗ and B′ = A∗)
(A′B′)† = B′†(ABB′†)† ⇐⇒ R(BB′∗B′∗A′∗) = R(B′∗A′∗).

Finally, it is interesting to see how much of this extends to C∗-algebras.
This will be a subject of further investigations.
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[6] D. S. Djordjević, Further results on the reverse order law for generalized
inverses, SIAM J. Matrix Anal. Appl. 29 (4) (2007), 1242–1246.
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