REVERSE ORDER LAW FOR THE MOORE-PENROSE INVERSE

Dragan S. Djordjević¹ and Nebojša Č. Dinčić¹

Abstract

In this paper we present new results related to the reverse order law for the Moore-Penrose inverse of operators on Hilbert spaces. Some finite dimensional results are extended to infinite dimensional settings.

2000 Mathematics Subject Classification: 47A05, 15A09. Keywords and phrases: Moore-Penrose inverse, reverse order law.

1 Introduction

If S is a semigroup with the unit 1, and if $a, b \in S$ are invertible, then the equality $(ab)^{-1} = b^{-1}a^{-1}$ is called the reverse order law for the ordinary inverse. It is well-known that the reverse order law does not hold for various classes of generalized inverses. Hence, a significant number of papers treat the sufficient or equivalent conditions such that the reverse order law holds in some sense. In this paper we specialize the investigations to the Moore-Penrose inverse of closed range linear bounded operators on Hilbert spaces.

Let X, Y, Z be Hilbert spaces, and let $\mathcal{L}(X, Y)$ denote the set of all linear bounded operators from X to Y. We abbreviate $\mathcal{L}(X) = \mathcal{L}(X, X)$. For $A \in \mathcal{L}(X, Y)$ we denote by $\mathcal{N}(A)$ and $\mathcal{R}(A)$, respectively, the null-space and the range of A. An operator $B \in \mathcal{L}(Y, X)$ is an inner inverse of A, if ABA = A holds. In this case A is inner invertible, or relatively regular. It is well-known that A is inner invertible if and only if $\mathcal{R}(A)$ is closed in Y. The Moore-Penrose inverse of $A \in \mathcal{L}(X, Y)$ is the operator $X \in \mathcal{L}(Y, X)$ which satisfies the Penrose equations

(1) AXA = A, (2) XAX = X, (3) $(AX)^* = AX$, (4) $(XA)^* = XA$.

The Moore-Penrose inverse of A exists if and only if $\mathcal{R}(A)$ is closed in Y. If the Moore-Penrose inverse of A exists, then it is unique, and it is denoted by A^{\dagger} .

If $\theta \subset \{1, 2, 3, 4\}$, and X satisfies the equations (i) for all $i \in \theta$, then X is an θ -inverse of A. The set of all θ -inverses of A is denoted by $A\{\theta\}$. If

¹The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 144003.

 $\mathcal{R}(A)$ is closed, then $A\{1, 2, 3, 4\} = \{A^{\dagger}\}$. The theory of generalized inverses on infinite dimensional Hilbert spaces can be found in [4, 8, 10].

It is a classical result of Greville [9], that $(AB)^{\dagger} = B^{\dagger}A^{\dagger}$ if and only if $\mathcal{R}(A^*AB) \subset \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$, in the case when A and B are complex (possibly rectangular) matrices. This result is extended for linear bounded operators on Hilbert spaces, by Bouldin [2], [3], and Izumino [12]. Among other things, Bouldin and Izumino used gaps between subspaces. In [13] the reverse order law for the Moore-Penrose inverse is proved in rings with involutions. Then, in [6], the reverse order law for the Moore-Penrose inverse is obtained as a consequence of some set equalities. The reader can find some interesting and related results in [1, 5, 8, 11, 14, 15, 16, 17, 18].

In particular, the paper [15] is related to our investigations. In [15] Tian obtained some very interesting results concerning the sets of generalized inverses of complex rectangular matrices. As a corollary, the reverse order law for the Moore-Penrose inverse follows. Notice that the finite dimensional methods are used in [15] (mostly the rank of a complex matrix).

In this paper we extend some results from [15] to infinite dimensional settings. Among other things, we obtain the reverse order law for the Moore-Penrose inverse as a corollary. We use the matrix form of a linear bounded operator, and this matrix form is induced by some natural decompositions of Hilbert spaces.

In the rest of the Introduction we formulate two auxiliary result. In Section 2 we present the results related to the reverse order rule for the Moore-Penrose inverse of Hilbert space operators with closed range. The present paper is the extension of results from [15] to infinite dimensional settings.

Lemma 1.1. Let $A \in \mathcal{L}(X, Y)$ have a closed range. Then A has the matrix decomposition with respect to the orthogonal decompositions of spaces $X = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$ and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*)$:

$$A = \left[\begin{array}{cc} A_1 & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{array} \right],$$

where A_1 is invertible. Moreover,

$$A^{\dagger} = \left[\begin{array}{cc} A_1^{-1} & 0 \\ 0 & 0 \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{array} \right] \to \left[\begin{array}{c} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{array} \right].$$

The proof is straightforward.

Lemma 1.2. Let $A \in \mathcal{L}(X, Y)$ have a closed range. Let X_1 and X_2 be closed and mutually orthogonal subspaces of X, such that $X = X_1 \oplus X_2$. Let Y_1 and Y_2 be closed and mutually orthogonal subspaces of Y, such that $Y = Y_1 \oplus Y_2$. Then the operator A has the following matrix representations with respect to the orthogonal sums of subspaces $X = X_1 \oplus X_2 = \mathcal{R}(A^*) \oplus \mathcal{N}(A)$, and $Y = \mathcal{R}(A) \oplus \mathcal{N}(A^*) = Y_1 \oplus Y_2$:

(a)

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where $D = A_1 A_1^* + A_2 A_2^*$ maps $\mathcal{R}(A)$ into itself and D > 0 (meaning $D \ge 0$ invertible). Also,

$$A^{\dagger} = \left[\begin{array}{cc} A_1^* D^{-1} & 0\\ A_2^* D^{-1} & 0 \end{array} \right]$$

(b)

$$A = \begin{bmatrix} A_1 & 0 \\ A_2 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A^*) \\ \mathcal{N}(A) \end{bmatrix} \to \begin{bmatrix} Y_1 \\ Y_2 \end{bmatrix},$$

where $D = A_1^*A_1 + A_2^*A_2$ maps $\mathcal{R}(A^*)$ into itself and D > 0 (meaning $D \ge 0$ invertible). Also,

$$A^{\dagger} = \left[\begin{array}{cc} D^{-1}A_1^* & D^{-1}A_2^* \\ 0 & 0 \end{array} \right].$$

Here A_i denotes different operators in any of these two cases.

Proof. Recall that one special case of this result is proved in [7]. We prove only the result of (a), since the proof of (b) is analogous.

The operator A has the following representation:

$$A = \begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} : \begin{bmatrix} X_1 \\ X_2 \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

i.e.

$$A_{1} = A_{|X_{1}} : X_{1} \to \mathcal{R}(A), \ A_{2} = A_{|X_{2}} : X_{2} \to \mathcal{R}(A),$$

$$A_{3} = A_{|X_{1}} : X_{1} \to \mathcal{N}(A^{*}), \ A_{4} = A_{|X_{2}} : X_{2} \to \mathcal{N}(A^{*}).$$

Furhtermore,

$$A^* = \left[\begin{array}{cc} A_1^* & A_3^* \\ A_2^* & A_4^* \end{array} \right] : \left[\begin{array}{c} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{array} \right] \to \left[\begin{array}{c} X_1 \\ X_2 \end{array} \right].$$

From $A^*(\mathcal{N}(A^*)) = \{0\}$ we obtain $A_3^* = 0$ and $A_4^* = 0$, so $A_3 = 0$ and $A_4 = 0$. Hence, $A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix}$. Notice that $AA^* = \begin{bmatrix} D & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \rightarrow \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$

where $D = A_1A_1^* + A_2A_2^* : \mathcal{R}(A) \to \mathcal{R}(A)$. From $\mathcal{N}(AA^*) = \mathcal{N}(A^*)$ it follows that D is one-one. From $\mathcal{R}(AA^*) = \mathcal{R}(A)$ it follows that D is onto. Hence, D is invertible. Finally, we obtain the form for the Moore-Penrose inverse of A using the formula $A^{\dagger} = A^*(AA^*)^{\dagger}$.

The following result is well-known, and it can be found in [4], p.127.

Lemma 1.3. Let $A \in \mathcal{L}(Y, Z)$ and $B \in \mathcal{L}(X, Y)$ have closed ranges. Then AB has a closed range if and only if $A^{\dagger}ABB^{\dagger}$ has a closed range.

Finally, the reader should notice the difference between the following notations. If $A, B \in \mathcal{L}(X)$, then [A, B] = AB - BA denotes the commutator of A and B. On the other hand, if $U \in \mathcal{L}(X, Z)$ and $V \in \mathcal{L}(Y, Z)$, then $[U \ V] : \begin{bmatrix} X \\ Y \end{bmatrix} \to Z$ denote the matrix form of the corresponding operator.

2 Reverse order law

In this section we prove the results concerning the reverse order law for the Moore-Penrose inverse.

Theorem 2.1. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$ and $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements are equivalent:

- (a) $ABB^{\dagger}A^{\dagger}AB = AB;$
- (b) $B^{\dagger}A^{\dagger}ABB^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger};$
- (c) $A^{\dagger}ABB^{\dagger} = BB^{\dagger}A^{\dagger}A;$
- (d) $A^{\dagger}ABB^{\dagger}$ is an idempotent;
- (e) $BB^{\dagger}A^{\dagger}A$ is an idempotent;
- (f) $B^{\dagger}(A^{\dagger}ABB^{\dagger})^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger};$

(g) $(A^{\dagger}ABB^{\dagger})^{\dagger} = BB^{\dagger}A^{\dagger}A;$

Notice that $A^{\dagger}ABB^{\dagger}$ has a closed range, according to Lemma 1.3. Moreover, A^*ABB^* also has a closed range: $\mathcal{R}(B^*A^*A) = B^*(\mathcal{R}(A^*A)) =$ $B^*(\mathcal{R}(A^*)) = \mathcal{R}((AB)^*)$ is closed, so $\mathcal{R}(A^*ABB^*) = A^*A(\mathcal{R}(BB^*)) =$ $A^*A(\mathcal{R}(B)) = \mathcal{R}(A^*AB) = \mathcal{R}((B^*A^*A)^*)$ is closed.

Proof. Using Lemma 1.1 we conclude that the operator B has the following matrix form:

$$B = \begin{bmatrix} B_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B^*) \\ \mathcal{N}(B) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix},$$

where B_1 is invertible. Then

$$B^{\dagger} = \begin{bmatrix} B_1^{-1} & 0\\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B)\\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B^*)\\ \mathcal{N}(B) \end{bmatrix}.$$

From Lemma 1.2 it follows that the operator A has the following matrix form:

$$A = \begin{bmatrix} A_1 & A_2 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

where $D = A_1 A_1^* + A_2 A_2^*$ is invertible and positive in $\mathcal{L}(\mathcal{R}(A))$. Then

$$A^{\dagger} = \left[\begin{array}{cc} A_1^* D^{-1} & 0 \\ A_2^* D^{-1} & 0 \end{array} \right].$$

Notice the following:

$$BB^{\dagger} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix},$$
$$AA^{\dagger} = \begin{bmatrix} I & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(A) \\ \mathcal{N}(A^*) \end{bmatrix},$$

and

$$A^{\dagger}A = \begin{bmatrix} A_1^*D^{-1}A_1 & A_1^*D^{-1}A_2 \\ A_2^*D^{-1}A_1 & A_2^*D^{-1}A_2 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(B) \\ \mathcal{N}(B^*) \end{bmatrix}$$

From Lemma 1.3 it follows that $A^{\dagger}ABB^{\dagger}$ has a closed range. We obtain

$$A^{\dagger}ABB^{\dagger} = \begin{bmatrix} A_1^*D^{-1}A_1 & 0\\ A_2^*D^{-1}A_1 & 0 \end{bmatrix},$$

$$BB^{\dagger}A^{\dagger}A = \left[\begin{array}{cc} A_{1}^{*}D^{-1}A_{1} & A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{array} \right].$$

Consider the following chain of equivalences, which is related to the statement of (a):

$$ABB^{\dagger}A^{\dagger}AB = AB \Leftrightarrow \begin{bmatrix} A_{1} & A_{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix} \begin{bmatrix} B_{1} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{1}B_{1} & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} A_{1}A_{1}^{*}D^{-1}A_{1}B_{1} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A_{1}B_{1} & 0 \\ 0 & 0 \end{bmatrix} \Leftrightarrow A_{1}A_{1}^{*}D^{-1}A_{1} = A_{1}.$$
 (1)

Consequently, the statement (a) is equivalent to (1).

Notice that (1) is equivalent to

$$A_1^* D^{-1} A_1 A_1^* = A_1^*. (2)$$

We consider also the statement (b):

$$\begin{array}{l} B^{\dagger}A^{\dagger}ABB^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \\ \Longleftrightarrow & \begin{bmatrix} B_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & 0 \\ A_{2}^{*}D^{-1}A_{1} & 0 \end{bmatrix} \begin{bmatrix} A_{1}^{*}D^{-1} & 0 \\ A_{2}^{*}D^{-1} & 0 \end{bmatrix} \\ = \begin{bmatrix} B_{1}^{-1} & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{1}^{*}D^{-1} & 0 \\ A_{2}^{*}D^{-1} & 0 \end{bmatrix} \\ \Leftrightarrow & \begin{bmatrix} B_{1}^{-1}A_{1}^{*}D^{-1}A_{1}A_{1}^{*}D^{-1} & 0 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} B_{1}^{-1}A_{1}^{*}D^{-1} & 0 \\ 0 & 0 \end{bmatrix} \\ \Leftrightarrow & B_{1}^{-1}A_{1}^{*}D^{-1}A_{1}A_{1}^{*}D^{-1} = B_{1}^{-1}A_{1}^{*}D^{-1} \iff (2). \end{array}$$

Thus, (a) \iff (1) \iff (2) \iff (b).

In the case of the statement (c) we have:

$$A^{\dagger}ABB^{\dagger} = BB^{\dagger}A^{\dagger}A \iff \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & 0\\ A_{2}^{*}D^{-1}A_{1} & 0 \end{bmatrix} = \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & A_{1}^{*}D^{-1}A_{2}\\ 0 & 0 \end{bmatrix}$$
$$\iff A_{1}^{*}D^{-1}A_{2} = 0 \iff A_{2}^{*}D^{-1}A_{1} = 0.$$
(3)

Thus, if (c) holds, i.e. $A_2^*D^{-1}A_1 = 0$, then it is obvious that $A_2A_2^*D^{-1}A_1 = 0$, so (1) also holds because of:

$$(A_1A_1^* + A_2A_2^*)D^{-1} = I \implies A_1A_1^*D^{-1}A_1 + A_2A_2^*D^{-1}A_1 = A_1$$
$$\iff A_1A_1^*D^{-1}A_1 = A_1.$$

On the other hand, suppose that (1) holds. Then $A_2A_2^*D^{-1}A_1 = 0$, and we have the following

$$A_2 A_2^* D^{-1} A_1 = 0 \Rightarrow \mathcal{R}(D^{-1} A_1) \subset \mathcal{N}(A_2 A_2^*) = \mathcal{N}(A_2^*) \Rightarrow A_2^* D^{-1} A_1 = 0,$$

so (3) is satisfied. Consequently, (c) also holds. We have just proved (c) \iff (3) \iff (1) \iff (a).

A straightforward computation shows that (d) is equivalent to

$$\begin{cases} A_1^* D^{-1} A_1 A_1^* D^{-1} A_1 = A_1^* D^{-1} A_1 \\ A_2^* D^{-1} A_1 A_1^* D^{-1} A_1 = A_2^* D^{-1} A_1 \end{cases}$$
(4)

If the statement (1) holds, then obviously (4) is satisfied. On the other hand, suppose that (4) holds. Then multiply the first equation of (4) by A_1 from the left side, and multiply the second equation of (4) by A_2 from the left side. The sum of these two new equations leads to the equation (1).

Notice that (e) is also equivalent to (4). Consequently, (d) \iff (4) \iff (2) \iff (e).

In order to establish (f), we proceed as follows. Let $Q = A^{\dagger}ABB^{\dagger}$. From Lemma 1.3 we know that Q has a closed range. We use the formula $Q^{\dagger} = Q^*(QQ^*)^{\dagger} = (Q^*Q)^{\dagger}Q^*$. Hence,

$$\begin{aligned} (A^{\dagger}ABB^{\dagger})^{\dagger} &= (BB^{\dagger}A^{\dagger}AA^{\dagger}ABB^{\dagger})^{\dagger}BB^{\dagger}A^{\dagger}A = (BB^{\dagger}A^{\dagger}ABB^{\dagger})^{\dagger}BB^{\dagger}A^{\dagger}A \\ &= \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & 0\\ 0 & 0 \end{bmatrix}^{\dagger} \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} (A_{1}^{*}D^{-1}A_{1})^{\dagger} & 0\\ 0 & 0 \end{bmatrix} \begin{bmatrix} A_{1}^{*}D^{-1}A_{1} & A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} (A_{1}^{*}D^{-1}A_{1})^{\dagger}A_{1}^{*}D^{-1}A_{1} & (A_{1}^{*}D^{-1}A_{1})^{\dagger}A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} (A_{1}^{*}D^{-1}A_{1})^{\dagger}A_{1}^{*}D^{-1}A_{1} & (A_{1}^{*}D^{-1}A_{1})^{\dagger}A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix}. \end{aligned}$$

We get

$$B^{\dagger} (A^{\dagger} A B B^{\dagger})^{\dagger} A^{\dagger} - B^{\dagger} A^{\dagger} = 0 \Leftrightarrow \begin{bmatrix} B_1^{-1} (A_1^* D^{-1} A_1)^{\dagger} A_1^* D^{-1} - B_1^{-1} A_1^* D^{-1} & 0 \\ 0 & 0 \end{bmatrix} = 0$$

$$\iff (A_1^* D^{-1} A_1)^{\dagger} A_1^* = A_1^*.$$
 (5)

We need to prove (1) \iff (5). Let $P = A_1^* D^{-1} A_1$. Obviously, $P^* = P$. (1) \Rightarrow (5): We have the following:

$$P^{2} = A_{1}^{*}D^{-1}A_{1}A_{1}^{*}D^{-1}A_{1} = A_{1}^{*}D^{-1}A_{1} = P,$$

$$P = P^{*} = P^{2} = P^{\dagger},$$

$$(A_{1}^{*}D^{-1}A_{1})^{\dagger}A_{1}^{*} = A_{1}^{*}D^{-1}A_{1}A_{1}^{*} = A_{1}^{*}.$$

 $(5) \Rightarrow (1)$: In this case we have

$$\begin{aligned} (A_1^*D^{-1}A_1)^{\dagger}A_1^* &= A_1^*, \\ P^{\dagger}P &= P, \\ PP^{\dagger} &= (PP^{\dagger})^* = (P^*)^{\dagger}P^* = P^{\dagger}P \\ P^{\dagger} &= P^{\dagger}PP^{\dagger} = PP^{\dagger} = P^{\dagger}P = P \\ A_1^* &= (A_1^*D^{-1}A_1)^{\dagger}A_1^* = A_1^*D^{-1}A_1A_1^*. \end{aligned}$$

We have just proved $(f) \iff (1) \iff (a)$.

To prove (g) \iff (f), we use the fact which is already proved for (f), i.e. for $(A^{\dagger}ABB^{\dagger})^{\dagger}$. Thus, we have

$$(A^{\dagger}ABB^{\dagger})^{\dagger} - BB^{\dagger}A^{\dagger}A = 0 \iff \begin{cases} (A_1^*D^{-1}A_1)^{\dagger}A_1^*D^{-1}A_1 = A_1^*D^{-1}A_1, \\ (A_1^*D^{-1}A_1)^{\dagger}A_1^*D^{-1}A_2 = A_1^*D^{-1}A_2. \end{cases}$$

It is easy to conclude that $(g) \iff (f)$.

Now we prove the following result.

Theorem 2.2. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then the following statements hold:

- (a) $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A^*AB = BB^{\dagger}A^*AB \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1,2,3\};$
- (b) $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow ABB^* = ABB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\};$
- (c) The following statements are equivalent:
 - (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger};$ (2) $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger}$ and $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB;$

(3) $A^*AB = BB^{\dagger}A^*AB$ and $ABB^* = ABB^*A^{\dagger}A;$ (4) $\mathcal{R}(A^*AB) \subseteq \mathcal{R}(B)$ and $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*).$

Proof. The operators A and B have the same matrix representations as in the previous theorem. The following products will be useful:

$$AB = \begin{bmatrix} A_1B_1 & 0\\ 0 & 0 \end{bmatrix}, (AB)^{\dagger} = \begin{bmatrix} (A_1B_1)^{\dagger} & 0\\ 0 & 0 \end{bmatrix}, B^{\dagger}A^{\dagger} = \begin{bmatrix} B_1^{-1}A_1^*D^{-1} & 0\\ 0 & 0 \end{bmatrix}.$$

First, we find the equivalent expressions for our statements in terms of A_1 , A_2 and B_1 .

- (a) 1. $AB(AB)^{\dagger} = ABB^{\dagger}A^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$. Here $A_1B_1(A_1B_1)^{\dagger}$ is Hermitian, so $[A_1A_1^*, D^{-1}] = 0$.
 - 2. $A^*AB = BB^{\dagger}A^*AB \Leftrightarrow A_2^*A_1 = 0.$
 - 3. Notice that $\mathcal{R}(A^*AB) \subset \mathcal{R}(B)$ if and only if $BB^{\dagger}A^*AB = A^*AB$, so 2. \iff 3.
 - 4. If we check properly the Penrose equations, then we see that: $B^{\dagger}A^{\dagger} \in (AB)\{1,2,3\} \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [A_1A_1^*, D^{-1}] = 0.$

Now, we prove the following: $1. \iff 2., 4. \implies 2.$ and $1. \implies 4.$ We prove $1. \iff 2$. Notice that

$$A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1} \iff (A_1B_1)^{\dagger} = (A_1B_1)^{\dagger}A_1A_1^*D^{-1}.$$

The last statement is obtained by multiplying the first expression by $(A_1B_1)^{\dagger}$ from the left side, or multiplying the second expression by A_1B_1 from the left side, and using $A_1A_1^* = A_1B_1B_1^{-1}A_1^*$. Now, there is a chain of the equivalences:

$$(A_{1}B_{1})^{\dagger} = (A_{1}B_{1})^{\dagger}A_{1}A_{1}^{*}D^{-1}$$

$$\iff (A_{1}B_{1})^{\dagger}(A_{1}A_{1}^{*} + A_{2}A_{2}^{*}) = (A_{1}B_{1})^{\dagger}A_{1}A_{1}^{*}$$

$$\iff (A_{1}B_{1})^{\dagger}A_{2}A_{2}^{*} = 0 \iff \mathcal{R}(A_{2}A_{2}^{*}) \subset \mathcal{N}((A_{1}B_{1})^{\dagger})$$

$$\iff \mathcal{R}(A_{2}) \subset \mathcal{N}((A_{1}B_{1})^{*}) \iff B_{1}^{*}A_{1}^{*}A_{2} = 0 \iff A_{1}^{*}A_{2} = 0,$$

Therefore, we have just proved that $1. \Leftrightarrow 2$.

Now we prove 1. \implies 4. If we multiply $A_1B_1(A_1B_1)^{\dagger} = A_1A_1^*D^{-1}$ by A_1B_1 from the right side, we get $A_1A_1^*D^{-1}A_1 = A_1$. Thus, 4. holds.

Finally, we prove 4. \Longrightarrow 2. If $A_1A_1^*D^{-1}A_1 = A_1$ and $[A_1A_1^*, D^{-1}] = 0$, then $A_1A_1^*A_1 = DA_1 = A_1A_1^*A_1 + A_2A_2^*A_1$, implying that $A_2A_2^*A_1 = 0$. Hence, $\mathcal{R}(A_1) \subset \mathcal{N}(A_2A_2^*) = \mathcal{N}(A_2^*)$, so $A_2^*A_1 = 0$. Thus, 2. holds.

Notice that the equivalence $3. \iff 4$. is proved in [8], also.

- (b) 1. $(AB)^{\dagger}AB = B^{\dagger}A^{\dagger}AB \Leftrightarrow (A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$. Moreover, $(A_1B_1)^{\dagger}A_1B_1$ is Hermitian, so $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$.
 - 2. $ABB^* = ABB^*A^{\dagger}A \Leftrightarrow A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ and $A_1B_1B_1^*A_1^*D^{-1}A_2 = 0.$
 - 3. Notice that $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*)$ if and only if $A^{\dagger}ABB^*A^* = BB^*A^*$, which is equivalent to $ABB^*A^{\dagger}A = ABB^*$. Hence, 2. $\iff 3$.
 - 4. The Penrose equations imply that: $B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\} \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [B_1B_1^*, A_1^*D^{-1}A_1] = 0.$

We prove $1. \Rightarrow 4. \Rightarrow 2. \Rightarrow 1$.

Suppose that 1. holds. If we multiply $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ by A_1B_1 from the left side, we obtain $A_1 = A_1A_1^*D^{-1}A_1$. Furthermore, $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$ holds. Therefore, $1. \Rightarrow 4$.

Suppose that 4. holds. Obviously, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1A_1^*D^{-1}A_1B_1B_1^*$ = $A_1B_1B_1^*$. Thus, the first equality of 2. holds. The second equality of 2. also holds, since $A_1^*D^{-1}A_2 = 0 \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1$, which is shown in the proof of the Theorem 2.1. Here we use again $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Consequently, $4. \Rightarrow 2$.

In order to prove that 2. \implies 1., we multiply $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ by $(A_1B_1)^{\dagger}$ from the left side. It follows that $B_1^*A_1^*D^{-1}A_1 = (A_1B_1)^{\dagger}A_1B_1B_1^*$, so $(A_1B_1)^{\dagger}A_1B_1 = B_1^*A_1^*D^{-1}A_1(B_1^*)^{-1}$ which is equivalent to $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$. Hence, 2. \Rightarrow 1.

Notice that $3. \iff 4$. is also proved in [8].

Finally, the part (c) follows from the parts (a) and (b).

We also prove the following result.

Theorem 2.3. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then we have:

- (a) $AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1,2,3\};$
- (b) $B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \Leftrightarrow B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\};$

(c) The following three statements are equivalent:

- (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger};$
- (2) $AB(AB)^{\dagger}A = ABB^{\dagger}$ and $B(AB)^{\dagger}AB = A^{\dagger}AB$;
- (3) $A^*ABB^{\dagger} = BB^{\dagger}A^*A$ and $A^{\dagger}ABB^* = BB^*A^{\dagger}A$.

Proof. The operators A and B have the same matrix representations as in the previous theorem. First, we find equivalent expressions, in the terms of A_1 , A_2 and B_1 , for our assumptions.

- (a) 1. $AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow A_1B_1(A_1B_1)^{\dagger}A_1 = A_1$ and $A_1B_1(A_1B_1)^{\dagger}A_2 = 0$. The first equality on the right side of the equivalence always holds, so: $AB(AB)^{\dagger}A = ABB^{\dagger} \Leftrightarrow$ $A_1B_1(A_1B_1)^{\dagger}A_2 = 0$.
 - 2. $A^*ABB^{\dagger} = BB^{\dagger}A^*A \Leftrightarrow A_1^*A_2 = 0.$
 - 3. $\mathcal{R}(A^*AB) \subset \mathcal{R}(B) \Leftrightarrow BB^{\dagger}A^*AB = A^*AB \Leftrightarrow A_2^*A_1 = 0$ (see the proof of Theorem 2.2, the part (a) 2. and 3.).
 - 4. $B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 3\} \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [A_1A_1^*, D^{-1}] = 0$ (see Theorem 2.2 (a) 4.).

To prove that 1. \Leftrightarrow 2., we see that $A_1B_1(A_1B_1)^{\dagger}A_2 = 0 \Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)(A_1B_1)^{\dagger}) = \mathcal{N}((A_1B_1)^{\dagger}) = \mathcal{N}((A_1B_1)^{\dagger}) = \mathcal{N}(B_1^*A_1^*) = \mathcal{N}(A_1^*) \Leftrightarrow A_1^*A_2 = 0.$

Now, we prove that 2.\$\operatornambda 4\$. If $[A_1A_1^*, D^{-1}] = 0$, then $A_1A_1^*D^{-1}A_1 = A_1 \Leftrightarrow A_1A_1^*A_1 = DA_1 \Leftrightarrow A_2A_2^*A_1 = 0 \Leftrightarrow A_1^*A_2A_2^* = 0 \Leftrightarrow \mathcal{R}(A_2A_2^*) \subset \mathcal{N}(A_1^*) \Leftrightarrow \mathcal{R}(A_2) \subset \mathcal{N}(A_1^*) \Leftrightarrow A_1^*A_2 = 0$. On the other hand, if $A_1^*A_2 = 0$, then $A_1A_1^*D = A_1A_1^*A_1A_1^*$ is Hermitian, so $A_1A_1^*$ commutes with D. This implies $[A_1A_1^*, D^{-1}] = 0$ and $A_1A_1^*D^{-1}A_1 = A_1$.

From Theorem 2.2 we know that $3. \Leftrightarrow 4$.

- (b) 1. $B(AB)^{\dagger}AB = A^{\dagger}AB \Leftrightarrow B_1(A_1B_1)^{\dagger}A_1 = A_1^*D^{-1}A_1$ and $A_2^*D^{-1}A_1 = 0.$
 - 2. $A^{\dagger}ABB^* = BB^*A^{\dagger}A \Leftrightarrow [B_1B_1^*, A_1^*D^{-1}A_1] = 0$ and $A_1^*D^{-1}A_2 = 0$.
 - 3. $\mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*) \iff A_1B_1B_1^*A_1^*D^{-1}A_2 = 0$ and $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ (Theorem 2.2 (b) parts 2. and 3.).
 - 4. $B^{\dagger}A^{\dagger} \in (AB)\{1, 2, 4\} \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [B_1B_1^*, A_1^*D^{-1}A_1] = 0$ (Theorem 2.2 (b) part 4.).

1. \Longrightarrow 4. We multiply the expression $B_1(A_1B_1)^{\dagger}A_1 = A_1^*D^{-1}A_1$ by A_1 from the left side, and by B_1 from the right side, and thus obtain $A_1A_1^*D^{-1}A_1 = A_1$. Also, we obtain that $(A_1B_1)^{\dagger}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$ is Hermitian. Hence, $A_1^*D^{-1}A_1B_1B_1^*$ is Hermitian, and we get $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$.

4. \Longrightarrow 1. If 4. holds, then it is easy to see that $B_1^{-1}A_1^*D^{-1}A_1B_1(A_1B_1)^{\dagger}$ is the Moore-Penrose inverse of A_1B_1 (check the Penrose equations). This implies $B_1(A_1B_1)^{\dagger}A_1 = A_1^*D^{-1}A_1$. Now, we obtain that $A_1 = A_1A_1^*D^{-1}A_1$. From $(A_1A_1^* + A_2A_2^*)D^{-1}A_1 = A_1$ it follows that $A_2A_2^*D^{-1}A_1 = 0$, so $\mathcal{R}(D^{-1}A_1) \subset \mathcal{N}(A_2A_2^*) = \mathcal{N}(A_2^*)$, and $A_2^*D^{-1}A_1 = 0$.

2. \implies 3. If 2. holds, then $A_1B_1B_1^*A_1^*D^{-1}A_2 = 0$ is trivially satisfied. Moreover, $A_1B_1B_1^*A_1^*D^{-1}A_1 = A_1B_1B_1^*$ is equivalent to $A_1A_1^*D^{-1}A_1 = A_1$, which follows from $A_1^*D^{-1}A_2 = 0$.

3. \implies 2. From the proof of Theorem 2.2, part (b) 4., it follows that $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$. Now, in the usual manner, we get that $A_2A_2^*D^{-1}A_1 = 0$, so $A_1^*D^{-1}A_2 = 0$.

 $2. \iff 4.$ Obvious.

The part (c) follows from the parts (a) and (b).

We also prove the following result.

Theorem 2.4. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. The following statements hold.

- (a) $(ABB^{\dagger})^{\dagger} = BB^{\dagger}A^{\dagger} \Leftrightarrow B^{\dagger}(ABB^{\dagger})^{\dagger} = B^{\dagger}A^{\dagger} \Leftrightarrow \mathcal{R}(A^*AB) \subseteq \mathcal{R}(B).$
- (b) $(A^{\dagger}AB)^{\dagger} = B^{\dagger}A^{\dagger}A \Leftrightarrow (A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Leftrightarrow \mathcal{R}(BB^*A^*) \subseteq \mathcal{R}(A^*).$
- (c) The following three statements are equivalent:
 - (1) $(AB)^{\dagger} = B^{\dagger}A^{\dagger};$
 - (2) $(ABB^{\dagger})^{\dagger} = BB^{\dagger}A^{\dagger}$ and $(A^{\dagger}AB)^{\dagger} = B^{\dagger}A^{\dagger}A;$
 - (3) $B^{\dagger}(ABB^{\dagger})^{\dagger} = B^{\dagger}A^{\dagger}$ and $(A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger}$.

Notice that ABB^{\dagger} and $A^{\dagger}AB$ have closed ranges. This is explained in the further proof.

Proof. The operators A and B have the same matrix representations as in the previous theorem.

(a) Notice that $\mathcal{R}(ABB^{\dagger}) = \mathcal{R}(AB)$ is closed, so there exists $(ABB^{\dagger})^{\dagger}$.

- 1. $(ABB^{\dagger})^{\dagger} = BB^{\dagger}A^{\dagger} \Leftrightarrow A_1^{\dagger} = A_1^*D^{-1}$ (the existence of A_1^{\dagger} follows from the assumptions).
- 2. $B^{\dagger}(ABB^{\dagger})^{\dagger} = B^{\dagger}A^{\dagger} \Leftrightarrow A_{1}^{\dagger} = A_{1}^{*}D^{-1}$, so 1. \Leftrightarrow 2.
- 3. $\mathcal{R}(A^*AB) \subseteq \mathcal{R}(B) \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [A_1A_1^*, D^{-1}] = 0$ (see Theorem 2.2, (a) parts 3. and 4.).

1. \Longrightarrow 3. If $A_1^{\dagger} = A_1^* D^{-1}$, then $A_1^{\dagger} D = A_1^*$ and $A_1 A_1^{\dagger} = A_1 A_1^* D^{-1}$ is Hermitian, so $[A_1 A_1^*, D^{-1}] = 0$. Moreover, $A_1 A_1^{\dagger} A_2 A_2^* = 0$. We conclude $\mathcal{R}(A_2 A_2^*) \subset \mathcal{N}(A_1 A_1^{\dagger}) = \mathcal{N}(A_1^*)$, so $A_1^* A_2 A_2^* = 0$ and $A_2^* A_1 = 0$. Now, $(A_1 A_1^* + A_2 A_2^*) A_1 = A_1 A_1^* A_1$, so $A_1 = D^{-1} A_1 A_1^* A_1 = A_1 A_1^* D^{-1} A_1$.

3. \implies 1. If 3. holds, then it is easy to see that $A_1^*D^{-1}$ is the Moore-Penrose inverse of A_1 (check the Penrose equations).

(b) We see that $\mathcal{R}((A^{\dagger}AB)^*) = \mathcal{R}(B^*A^{\dagger}A) = \mathcal{R}(B^*A^*) = \mathcal{R}((AB)^*)$ is closed, so $(A^{\dagger}AB)^{\dagger}$ exists. Notice that

$$B^{\dagger}A^{\dagger}A = \begin{bmatrix} B_1^{-1}A_1^*D^{-1}A_1 & B_1^{-1}A_1^*D^{-1}A_2\\ 0 & 0 \end{bmatrix}$$

and $A^{\dagger}AB = \begin{bmatrix} A_{1}^{*}D^{-1}A_{1}B_{1} & 0\\ A_{2}^{*}D^{-1}A_{1}B_{1} & 0 \end{bmatrix}$. Using the formula $T^{\dagger} = (T^{*}T)^{\dagger}T^{*}$, we obtain

$$\begin{split} (A^{\dagger}AB)^{\dagger} &= \\ \begin{bmatrix} (B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^*D^{-1}A_1 & (B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^*D^{-1}A_2 \\ 0 & 0 \end{bmatrix}. \end{split}$$

- 1. $(A^{\dagger}AB)^{\dagger} = B^{\dagger}A^{\dagger}A \Leftrightarrow (B_{1}^{*}A_{1}^{*}D^{-1}A_{1}B_{1})^{\dagger}B_{1}^{*}A_{1}^{*}D^{-1}A_{1} = B_{1}^{-1}A_{1}^{*}D^{-1}A_{1}$ and $(B_{1}^{*}A_{1}^{*}D^{-1}A_{1}B_{1})^{\dagger}B_{1}^{*}A_{1}^{*}D^{-1}A_{2} = B_{1}^{-1}A_{1}^{*}D^{-1}A_{2}.$
- 2. $(A^{\dagger}AB)^{\dagger}A^{\dagger} = B^{\dagger}A^{\dagger} \Leftrightarrow B_1(B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^* = A_1^*.$
- 3. $\mathcal{R}(BB^*A^*) \subset \mathcal{R}(A^*) \Leftrightarrow A_1A_1^*D^{-1}A_1 = A_1 \text{ and } [B_1B_1^*, A_1^*D^{-1}A_1] = 0.$

1. \implies 2. We multiply the first equality of 1. by A_1^* from the right side, and we multiply the second equality of 1. by A_2^* from the right side. By summing the obtained equalities we obtain 2. 2. \implies 1. This is obvious.

2. \implies 3. If we multiply $B_1(B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^* = A_1^*$ by $B_1^*A_1^*D^{-1}A_1$ from left, and by $D^{-1}A_1B_1$ from right side, we

get $A_1^* D^{-1} A_1 = A_1^* D^{-1} A_1 A_1^* D^{-1} A_1$. Now, $A_1^* D^{-1} A_1$ is the orthogonal projection onto a subspace of $\mathcal{R}(A_1^*)$, so it follows that $A_1 A_1^* D^{-1} A_1 = A_1$. Since $(B_1^* A_1^* D^{-1} A_1 B_1)^{\dagger} B_1^* A_1^* D^{-1} A_1 B_1 = B_1^{-1} A_1^* D^{-1} A_1 B_1$ is Hermitian, we obtain $[B_1 B_1^*, A_1^* D^{-1} A_1] = 0$. $3. \Longrightarrow 2$. Using the formula $T^{\dagger} = (T^*T)^{\dagger} T^*$, we have:

$$(B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^*D^{-1/2} = (D^{-1/2}A_1B_1)^{\dagger},$$

which means that

$$B_1(B_1^*A_1^*D^{-1/2}D^{-1/2}A_1B_1)^{\dagger}B_1^*A_1^* = B_1(D^{-1/2}A_1B_1)^{\dagger}D^{1/2}.$$

We wish to show that 3. implies $B_1(D^{-1/2}A_1B_1)^{\dagger}D^{1/2} = A_1^*$. This means that we will show $(D^{-1/2}A_1B_1)^{\dagger} = B_1^{-1}A_1^*D^{-1/2}$, by proving that the last expression satisfies all four Penrose equations provided that the conditions from 3. are valid. Hence,

$$D^{-1/2}A_1B_1B_1^{-1}A_1^*D^{-1/2}D^{-1/2}A_1B_1 = D^{-1/2}A_1A_1^*D^{-1}A_1B_1$$

= $D^{-1/2}A_1B_1$,

$$B_1^{-1}A_1^*D^{-1/2}D^{-1/2}A_1B_1B_1^{-1}A_1^*D^{-1/2} = B_1^{-1}A_1^*D^{-1}A_1A_1^*D^{-1/2}$$

= $B_1^{-1}A_1^*D^{-1/2}$,

$$D^{-1/2}A_1B_1B_1^{-1}A_1^*D^{-1/2} = D^{-1/2}A_1A_1^*D^{-1/2}$$
 is Hermitian,

$$B_1^{-1}A_1^*D^{-1/2}D^{-1/2}A_1B_1 = B_1^{-1}A_1^*D^{-1}A_1B_1$$
 is Hermitian
since $[B_1B_1^*, A_1^*D^{-1}A_1] = 0$

(c) Follows from (a) and (b).

Theorem 2.5. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then we have:

- (a) $B^{\dagger} = (AB)^{\dagger}A \Leftrightarrow \mathcal{R}(B) = \mathcal{R}(A^*AB).$
- (b) $A^{\dagger} = B(AB)^{\dagger} \Leftrightarrow \mathcal{R}(A^*) = \mathcal{R}(BB^*A^*).$

Proof. (a) We keep the matrix forms of A and B as in previous theorems.

- 1. It is easy to obtain that $B^{\dagger} = (AB)^{\dagger}A$ if and only if $I = (A_1B_1)^{\dagger}A_1B_1$ and $(A_1B_1)^{\dagger}A_2 = 0$. Hence, 1. is equivalent to the following two conditions: A_1 is one-one with closed range, and $(A_1B_1)^{\dagger}A_2 = 0$.
- 2. $\mathcal{R}(B) = \mathcal{R}(A^*AB)$ if and only if $\mathcal{R}(A_1^*A_1B_1) = \mathcal{R}(B)$ and $A_2^*A_1B_1 = 0$. Hence, 2. is equivalent to the following two conditions: A_1 is one-one with closed range and $A_1^*A_2 = 0$.

To prove the equivalence $1. \iff 2$, we have the following:

$$(A_1B_1)^{\dagger}A_2 = 0 \iff \mathcal{R}(A_2) \subset \mathcal{N}((A_1B_1)^{\dagger}) = \mathcal{N}((A_1B_1)^*)$$
$$\iff B_1^*A_1^*A_2 = 0 \iff A_1^*A_2 = 0.$$

(b) From the part (a) it follows that $(B^*)^{\dagger} = A^*(B^*A^*)^{\dagger}$ if and only if $\mathcal{R}(B) = \mathcal{R}(A^*AB)$. Now, we change A^* by B' and B^* by A', to obtain that (b) holds.

We need the following auxiliary result.

Lemma 2.1. Let X, Y be Hilbert spaces, let $C \in \mathcal{L}(X, Y)$ have a closed range, and let $D \in \mathcal{L}(Y)$ be Hermitian and invertible. Then $\mathcal{R}(DC) = \mathcal{R}(C)$ if and only if $[D, CC^{\dagger}] = 0$.

Proof. \implies : We consider the orthogonal decompositions $X = \mathcal{R}(C^*) \oplus \mathcal{N}(C)$ and $Y = \mathcal{R}(C) \oplus \mathcal{N}(C^*)$. Then the operators C and D have the corresponding matrix forms as follows:

$$C = \begin{bmatrix} C_1 & 0 \\ 0 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(C^*) \\ \mathcal{N}(C) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix},$$

where C_1 is invertible, and

$$D = \begin{bmatrix} D_1 & D_2 \\ D_3 & D_4 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix},$$

where $D_3 = D_2^*$. It follows that

$$DC = \begin{bmatrix} D_1 C_1 & 0 \\ D_3 C_1 & 0 \end{bmatrix} : \begin{bmatrix} \mathcal{R}(C^*) \\ \mathcal{N}(C) \end{bmatrix} \to \begin{bmatrix} \mathcal{R}(C) \\ \mathcal{N}(C^*) \end{bmatrix}$$

Hence, $\mathcal{R}(DC) = \mathcal{R}(C)$ implies $D_3 = 0$ and $D_2 = 0$, so $D = \begin{bmatrix} D_1 & 0 \\ 0 & D_4 \end{bmatrix}$. Since D is Hermitian and invertible, we obtain that D_1 and D_4 are also Hermitian and invertible. Since $C^{\dagger} = \begin{bmatrix} C_1^{-1} & 0 \\ 0 & 0 \end{bmatrix}$, we obtain that $DCC^{\dagger} = CC^{\dagger}D$ holds.

$$\Leftarrow$$
: If D is invertible and $DCC^{\dagger} = CC^{\dagger}D$, then

$$\mathcal{R}(DC) = \mathcal{R}(DCC^{\dagger}) = \mathcal{R}(CC^{\dagger}D) = \mathcal{R}(CC^{\dagger}) = \mathcal{R}(C).$$

Finally, we prove the following results.

Theorem 2.6. Let X, Y, Z be Hilbert spaces, and let $A \in \mathcal{L}(Y, Z)$, $B \in \mathcal{L}(X, Y)$ be such that A, B, AB have closed ranges. Then we have:

(a) $(AB)^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger} \Leftrightarrow \mathcal{R}(AA^*AB) = \mathcal{R}(AB);$

(b)
$$(AB)^{\dagger} = B^{\dagger}(ABB^{\dagger})^{\dagger} \Leftrightarrow \mathcal{R}(B^*B(AB)^*) = \mathcal{R}((AB)^*)$$

Notice that $A^{\dagger}AB$ and ABB^{\dagger} have closed ranges.

Proof. (a) Notice that

$$\mathcal{R}((A^{\dagger}AB)^{*}) = \mathcal{R}(B^{*}A^{\dagger}A) = B^{*}\mathcal{R}(A^{\dagger}A) = B^{*}\mathcal{R}(A^{*}) = \mathcal{R}((AB)^{*})$$

is closed, so $\mathcal{R}(A^{\dagger}AB)$ is closed. First, let we see how our conditions looks like in the terms of their components.

1. Let us denote $T = A^{\dagger}AB$. We find T^{\dagger} as follows

$$T^{\dagger} = (T^{*}T)^{\dagger}T^{*}$$

=
$$\begin{bmatrix} (B_{1}^{*}A_{1}^{*}D^{-1}A_{1}B_{1})^{\dagger}B_{1}^{*}A_{1}^{*}D^{-1}A_{1} & (B_{1}^{*}A_{1}^{*}D^{-1}A_{1}B_{1})^{\dagger}B_{1}^{*}A_{1}^{*}D^{-1}A_{2} \\ 0 & 0 \end{bmatrix}$$

Now, it is easy to see that $(AB)^{\dagger} = (A^{\dagger}AB)^{\dagger}A^{\dagger}$ is equivalent with

$$(A_1B_1)^{\dagger} = (B_1^*A_1^*D^{-1}A_1B_1)^{\dagger}B_1^*A_1^*D^{-1} = (D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}.$$

2. It is obvious that $AA^*AB = \begin{bmatrix} DA_1B_1 & 0\\ 0 & 0 \end{bmatrix}$, so 2. holds if and only if $\mathcal{R}(DA_1B_1) = \mathcal{R}(A_1B_1)$.

1. \Rightarrow 2. From the third Penrose equation for $(A_1B_1)^{\dagger} = (D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}$, we see that $A_1B_1(D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}$ is Hermitian. So, we have the following equivalences:

$$\begin{array}{ll} A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger}D^{-1/2} \text{ is Hermitian} \\ \Leftrightarrow & D^{-1/2}A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger}D^{-1} \text{ is Hermitian} \\ \Leftrightarrow & [D, D^{-1/2}A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger}] = 0 \\ \Leftrightarrow & D^{1/2}A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger} = D^{-1/2}A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger}D \\ \Leftrightarrow & DA_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger} = A_{1}B_{1}(D^{-1/2}A_{1}B_{1})^{\dagger}D. \end{array}$$

Now,

$$\mathcal{R}(DA_1B_1) = \mathcal{R}(DA_1B_1(A_1B_1)^{\dagger}) = \mathcal{R}(A_1B_1(A_1B_1)^{\dagger}D) = \mathcal{R}(A_1B_1).$$

2. \Rightarrow 1. If $\mathcal{R}(DA_1B_1) = \mathcal{R}(A_1B_1)$, then we apply Lemma 2.1 to obtain $[D, A_1B_1(A_1B_1)^{\dagger}] = 0$. Now, from the previous implication it follows that $A_1B_1(D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}$ is Hermitian. Notice that $D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}A_1B_1$ is the orthogonal projection onto

$$\mathcal{R}((A_1B_1)^*D^{-1/2}) \subset \mathcal{R}((A_1B_1)^*),$$

so $A_1B_1(D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}A_1B_1 = A_1B_1$. Finally, it is not difficult to verify that $(A_1B_1)^{\dagger} = (D^{-1/2}A_1B_1)^{\dagger}D^{-1/2}$ holds.

(b) According to (a), we have the following equivalences:

$$\begin{aligned} (AB)^{\dagger} &= (A^{\dagger}AB)^{\dagger}A^{\dagger} \Leftrightarrow \mathcal{R}(AA^{*}AB) = \mathcal{R}(AB) \\ (B^{*}A^{*})^{\dagger} &= (A^{*})^{\dagger}(B^{*}A^{\dagger}A)^{\dagger} \iff \mathcal{R}(AA^{*}AB) = \mathcal{R}(A) \\ (\text{now take } A' = B^{*} \text{ and } B' = A^{*}) \\ (A'B')^{\dagger} &= B'^{\dagger}(ABB'^{\dagger})^{\dagger} \iff \mathcal{R}(BB'^{*}B'^{*}A'^{*}) = \mathcal{R}(B'^{*}A'^{*}). \end{aligned}$$

Finally, it is interesting to see how much of this extends to C^* -algebras. This will be a subject of further investigations.

Acknowledgment. We are grateful to the referee for helpful comments concerning the paper.

References

- [1] A. Ben-Israel and T. N. E. Greville, *Generalized Inverses: Theory and Applications*, 2nd Edition, Springer, New York, 2003.
- [2] R. H. Bouldin, The pseudo-inverse of a product, SIAM J. Appl. Math.25 (1973), 489–495.
- [3] R. H. Bouldin, Generalized inverses and factorizations, Recent applications of generalized inverses, Pitman Ser. Res. Notes in Math. No. 66 (1982), 233-248.
- [4] S. R. Caradus, Generalized inverses and operator theory, Queen's paper in pure and applied mathematics, Queen's University, Kingston, Ontario, 1978.
- [5] D. S. Djordjević, Unified approach to the reverse order rule for generalized inverses, Acta Sci. Math. (Szeged) 167 (2001), 761-776.
- [6] D. S. Djordjević, Further results on the reverse order law for generalized inverses, SIAM J. Matrix Anal. Appl. 29 (4) (2007), 1242–1246.
- [7] D. S. Djordjević and J. J. Koliha, Characterizations of Hermitian, normal and EP operators, Filomat 21:1 (2007), 39–54.
- [8] D. S. Djordjević and V. Rakočević, Lectures on generalized inverses, Faculty of Sciences and Mathematics, University of Niš, 2008.
- T. N. E. Greville, Note on the generalized inverse of a matrix product, SIAM Rev. 8 (1966), 518–521.
- [10] R. E. Harte, Invertibility and Singularity for Bounded Linear Operators, New York, Marcel Dekker, 1988.
- [11] R. E. Hartwig, The reverse order law revisited, Linear Algebra Appl. 76 (1986), 241–246.
- [12] S. Izumino, The product of operators with closed range and an extension of the reverse order law, Tohoku Math. J. 34 (1982), 43–52.
- [13] J. J. Koliha, D. S. Djordjević and D. Cvetković Ilić, Moore-Penrose inverse in rings with involution, Linear Algebra Appl. 426 (2007), 371– 381.

- [14] Y. Tian, Reverse order laws for the generalized inverses of multiple matrix products. Generalized inverses, Linear Algebra Appl. 211 (1994), 85–100.
- [15] Y. Tian, Using rank formulas to characterize equalities for Moore-Penrose inverses of matrix products, Appl. Math. Comput. 147 (2004), 581–600.
- [16] M. Wei and W. Guo, Reverse order laws for least squares g-inverses and minimum norm g-inverses of products of two matrices, Linear Algebra Appl. 342 (2002), 117–132.
- [17] H. J. Werner, *G-inverses of matrix products*, Data Analysis and Statistical Inference, Ed. S. Schach and G. Trenkler, Verlag Josef Eul, 1992, pp. 531–546.
- [18] H. J. Werner, When is B⁻A⁻ is a generalized inverse of AB?, Linear Algebra Appl. 210 (1994), 255–263.

Dragan S. Djordjević

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

E-mail: ganedj@eunet.rs dragan@pmf.ni.ac.yu

Nebojša Č. Dinčić

Faculty of Sciences and Mathematics, University of Niš, P.O. Box 224, 18000 Niš, Serbia

E-mail: ndincic@hotmail.com