Additive results for the Wg-Drazin inverse

Dijana Mosić and Dragan S. Djordjević

Abstract

In this paper we prove the formula for the expression $(A + B)^{d,W}$ in terms of $A, B, W, A^{d,W}, B^{d,W}$, assuming some conditions for A, B and W. Here $S^{d,W}$ denotes the generalized W-weighted Drazin inverse of a linear bounded operator S on a Banach space.

Key words and phrases: Wg-Drazin inverse, additive result, explicit formula.

1 Introduction

Let X and Y denote arbitrary Banach spaces. We use $B(X, Y)$ to denote the set of all linear bounded operators from X to Y. Set $B(X) = B(X, X)$. Let $A \in B(X, Y)$ and $W \in B(Y, X)$ be nonzero operators. If there exists some $S \in B(X, Y)$ satisfying

$$(AW)^{k+1}SW = (AW)^k, \quad SWAWS = S, \quad AWS = SWA,$$

for some nonnegative integer k, then S is called the W-weighted Drazin inverse of A and denoted by $S = A^{D,W}$ [12], [13], [15]. If there exists $A^{D,W}$, then we say that A is W-Drazin invertible and $A^{D,W}$ must be unique [12]. If $X = Y$, $A \in B(X)$ and $W = I$, then $S = A^D$, the ordinary Drazin inverse of A. Further related results can also be found in [3, 4, 7, 11, 14, 16, 17].

Let $B_W(X, Y)$ be the space $B(X, Y)$ equipped with the multiplication $A \ast B = AWB$ and the norm $\|A\|_W = \|A\|\|W\|$. Then $B_W(X, Y)$ becomes a Banach algebra [6]. $B_W(X, Y)$ has the unit if and only if W is invertible, in which case W^{-1} is that unit.

*The authors are supported by the Ministry of Science, Republic of Serbia, grant no. 144003.
Let \(A \) be a Banach algebra. Then \(a \in A \) is quasipolar if and only if there exists \(b \in A \) such that

\[
ab = ba, \quad bab = b, \quad a - aba \text{ is quasinilpotent.}
\]

The element \(b \), if exists, is unique [9] (Theorem 7.5.3), [10]. Such \(b \) is the generalized Drazin inverse, or Koliha-Drazin inverse of \(a \), and it is denoted by \(a^d \).

Let \(W \in B(Y, X) \) be a fixed nonzero operator. An operator \(A \in B(X, Y) \) is called \(Wg \)-Drazin invertible if \(A \) is quasipolar in the Banach algebra \(B_W(X, Y) \). The \(Wg \)-Drazin inverse \(A^{d,W} \) of \(A \) is defined as the \(g \)-Drazin inverse of \(A \) in the Banach algebra \(B_W(X, Y) \) [6].

Let us recall that if \(A \in B(X, Y) \) and \(W \in B(Y, X) \) then the following conditions are equivalent [6]:

1. \(A \) is \(Wg \)-Drazin invertible,
2. \(AW \) is quasipolar in \(B(Y) \) with \((AW)^d = A^{d,W}W\),
3. \(WA \) is quasipolar in \(B(X) \) with \((WA)^d = WA^{d,W}\).

Then, the \(Wg \)-Drazin inverse \(A^{d,W} \) of \(A \) satisfies

\[
A^{d,W} = ((AW)^d)^2 A = A((WA)^d)^2.
\]

Lemma 1.1 [6] Let \(A \in B(X, Y) \) and \(W \in B(Y, X) \setminus \{0\} \). Then \(A \) is \(Wg \)-Drazin invertible if and only if there exist topological direct sums \(X = X_1 \oplus X_2, Y = Y_1 \oplus Y_2 \) such that

\[
A = A_1 \oplus A_2, \quad W = W_1 \oplus W_2,
\]

where \(A_i \in B(X_i, Y_i) \), \(W_i \in B(Y_i, X_i) \), with \(A_1, W_1 \) invertible, and \(W_2A_2 \) and \(A_2W_2 \) quasinilpotent in \(B(X_2) \) and \(B(Y_2) \), respectively. The \(Wg \)-Drazin inverse of \(A \) is given by

\[
A^{d,W} = (W_1A_1W_1)^{-1} \oplus 0
\]

with \((W_1A_1W_1)^{-1} \in B(X_1, Y_1)\) and \(0 \in B(X_2, Y_2)\).

Recall that if \(A^D \) and \(B^D \) exist, it is possible that \((A+B)^D\) does not exist. Moreover, if \((A+B)^D\) exists, then we do not always know how to calculate \((A+B)^D\) in terms of \(A, B, A^D, B^D \). In this paper we investigate some
special cases of this phenomenon. In [5] Hartwig, Wang and Wei obtained a formula for the Drazin inverse of a sum of two matrices, when one of the products of these matrices vanishes. Djordjević and Wei generalized their results to bounded linear operators on Banach spaces [8]. In [1], Castro Gonzalez extended these additive Drazin inverse results to complex matrices using weaker conditions. Finally, Castro-Gonzalez and Koliha extended the results for the generalized Drazin inverse of Banach algebra elements [2]. In this paper we extend previous results to linear bounded operators on Banach spaces, and give a formula for computing the Wg-Drazin inverse of a sum of two operators.

We state one lemma concerning g–Drazin inverse of a partitioned matrix that will be needed later (see Djordjević and Wei [8]).

Lemma 1.2 If $A \in \mathcal{B}(X)$ and $B \in \mathcal{B}(Y)$ are g–Drazin invertible, $C \in \mathcal{B}(Y,X)$ and $D \in \mathcal{B}(X,Y)$, then

$$
M = \begin{bmatrix}
A & C \\
0 & B
\end{bmatrix} \quad \text{and} \quad N = \begin{bmatrix}
A & 0 \\
D & B
\end{bmatrix}
$$

are also g–Drazin invertible and

$$
M^d = \begin{bmatrix}
A^d & S \\
0 & B^d
\end{bmatrix}, \quad N^d = \begin{bmatrix}
A^d & 0 \\
R & B^d
\end{bmatrix},
$$

where

$$
S = (A^d)^2 \sum_{n=0}^{\infty} (A^d)^n CB^n (I - BB^d) + (I - AA^d) \sum_{n=0}^{\infty} A^n C (B^d)^n (B^d)^2 - A^d CB^d
$$

and

$$
R = (B^d)^2 \sum_{n=0}^{\infty} (B^d)^n DA^n (I - AA^d) + (I - BB^d) \sum_{n=0}^{\infty} B^n D (A^d)^n (A^d)^2 - B^d DA^d.
$$

We also need the following important results from [8].
Lemma 1.3 If \(P, Q \in \mathcal{B}(X) \) are quasinilpotent and \(PQ = 0 \) or \(PQ =QP \), then \(P+Q \) is also quasinilpotent. Hence, \((P+Q)^d = 0\).

Lemma 1.4 If \(P \in \mathcal{B}(X) \) is \(g\)-Drazin invertible, \(Q \in \mathcal{B}(X) \) is quasinilpotent and \(PQ = 0 \), then \(P+Q \) is \(g\)-Drazin invertible and

\[
(P + Q)^d = \sum_{i=0}^{\infty} Q^i(P^d)^{i+1}.
\]

We also state the following useful result.

Lemma 1.5 Let \(A \) be a complex Banach algebra with the unit \(1 \), and let \(p \) be an idempotent of \(A \). If \(x \in pA_p \), then \(\sigma_{pA_p}(x) = \sigma_A(x) \), where \(\sigma_A(x) \) denotes the spectrum of \(x \) in the algebra \(A \), and \(\sigma_{pA_p}(x) \) denotes the spectrum of \(x \) in the algebra \(pA_p \).

2 Wg–Drazin inverse of a sum of two operators

First we state one particular case of our main result.

Theorem 2.1 Let \(W \in \mathcal{B}(Y, X) \), and let \(B \in \mathcal{B}(X, Y) \) be \(Wg\)-Drazin invertible and \(N \in \mathcal{B}(X, Y) \) such that \(WN \in \mathcal{B}(X) \) is quasinilpotent. If \(NWB^d,W = 0 \) and \((I - WBWB^d,W)WNW = 0\), then

\[
\begin{align*}
(1) \quad (WN + WB)^d &= (WB)^d + ((WB)^d)^2 \left(\sum_{i=0}^{\infty} ((WB)^d)^i WNS(i) \right), \\
(2) \quad S(i) &= (I - WBWB^d,W)(WN + WB)^i \\
&= (I - WBWB^d,W) \left(\sum_{j=0}^{i} (WB)^{i-j}(WN)^j \right).
\end{align*}
\]

Moreover, for all \(i \geq l \geq 1 \), we have

\[
S(i) = (WB)^{i-l+1}S(l - 1) = S(l - 1)(WN)^{i-l+1}.
\]

Proof. Since \(B \) is \(Wg\)-Drazin invertible, by Lemma 1.1, we conclude that \(B \) and \(W \) have the matrix forms

\[
B = \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix}, \quad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix},
\]

where B_1, W_1 are invertible, and $W_2 B_2$ is quasinilpotent. From $NW B^{d,W} = 0$ it follows that N has the matrix form

$$N = \begin{bmatrix} 0 & N_1 \\ 0 & N_2 \end{bmatrix}.$$

Since $WN = \begin{bmatrix} 0 & W_1 N_1 \\ 0 & W_2 N_2 \end{bmatrix}$ is quasinilpotent, from Lemma 1.5 we conclude that $W_2 N_2$ is quasinilpotent. From $(I - WB B^{d,W}) WN = 0$ it follows that $W_2 N_2 W_2 B_2 = 0$. Thus, for any $i \geq 0$,

$$(W_2 N_2 + W_2 B_2)^i = \sum_{j=0}^{i} (W_2 B_2)^{i-j} (W_2 N_2)^j = \sum_{j=0}^{i} (W_2 B_2)^{j} (W_2 N_2)^{i-j}.$$

From Lemma 1.4, we see that $W_2 N_2 + W_2 B_2$ is quasinilpotent. Now, from Lemma 1.2, we get

$$(WN + WB)^d = \left(\begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix} \begin{bmatrix} 0 & N_1 \\ 0 & N_2 \end{bmatrix} + \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix} \begin{bmatrix} B_1 & 0 \\ 0 & B_2 \end{bmatrix} \right)^d$$

$$= \begin{bmatrix} W_1 B_1 & W_1 N_1 \\ 0 & W_2 N_2 + W_2 B_2 \end{bmatrix}^d = \begin{bmatrix} (W_1 B_1)^{-1} X \\ 0 & 0 \end{bmatrix}$$

where

$$X = (W_1 B_1)^{-2} \sum_{i=0}^{\infty} (W_1 B_1)^{-i} W_1 N_1 (W_2 N_2 + W_2 B_2)^i$$

$$= (W_1 B_1)^{-2} \sum_{i=0}^{\infty} (W_1 B_1)^{-i} W_1 N_1 \left(\sum_{j=0}^{i} (W_2 B_2)^{i-j} (W_2 N_2)^j \right).$$

Write $S(i) = (I - WB B^{d,W}) \left(\sum_{j=0}^{i} (WB)^{i-j} (WN)^j \right)$, for all $i \geq 0$. Now, for all $i \geq 1$, we have

$$S(i) = \begin{bmatrix} 0 & 0 \\ 0 & (W_2 B_2)^i \end{bmatrix} + \sum_{j=1}^{i} \begin{bmatrix} 0 & 0 \\ 0 & (W_2 B_2)^{i-j} \end{bmatrix} \begin{bmatrix} 0 & W_1 N_1 (W_2 N_2)^{j-1} \\ 0 & (W_2 N_2)^j \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 0 \\ 0 & \sum_{j=0}^{i} (W_2 B_2)^{i-j} (W_2 N_2)^j \end{bmatrix}.$$
Hence,

\[(WB)^d + (WB)^d)^2 \left(\sum_{i=0}^{\infty} ((WB)^d)^i WNS(i) \right) =
\]
\[= \left[(W_1 B_1)^{-1} \sum_{i=0}^{\infty} (W_1 B_1)^{-(i+2)} W_1 N_1 \left(\sum_{j=0}^{i} (W_2 B_2)^{i-j} (W_2 N_2)^j \right) \right]
\]
\[= \left[(W_1 B_1)^{-1} X \right] = (WN + WB)^d.
\]

The second statement of the theorem are easily verified. □

As corollaries we obtain the following results.

Corollary 2.1 Let \(B, N \in \mathcal{B}(X, Y)\) satisfy conditions of Theorem 2.1. Then we have

\[(WN + WB)^d(WN + WB) = (WB)^d WB + \left(\sum_{i=0}^{\infty} ((WB)^d)^i WNS(i) \right), \]

where \(S(i)\) is defined in (2).

Corollary 2.2 Let \(B, N \in \mathcal{B}(X, Y)\) satisfy conditions of Theorem 2.1.

(i) If \((WN)^2 = 0\), then

\[(WN + WB)^d = (WB)^d + ((WB)^d)^2 \left(\sum_{i=0}^{\infty} ((WB)^d)^i WNS(WB)^i \right) + ((WB)^d)^3 \left(\sum_{i=1}^{\infty} ((WB)^d)^i WNS(WB)^i \right) WNS(WB).
\]

(ii) If \(WNWR = 0\), for all \(R \in \mathcal{B}(X, Y)\), then

\[(WN + WB)^d WR = (WB)^d WR + ((WB)^d)^2 \left(\sum_{i=1}^{\infty} ((WB)^d)^i WNS(WB)^i \right) WR.
\]

(iii) If \((WB)^2 = WB\), then

\[(WN + WB)^d = (I - WN)^{-1} WB.
\]
Proof. Each of these cases follows directly from Theorem 2.1 and the following simplification.

Write \(S(i) = (I - WBWB^{d,W}) \left(\sum_{j=0}^{i} (WB)^{i-j}(WN)^j \right) \), for all \(i \geq 0 \).

(i) Since \((WN)^2 = 0 \), \(WNS(i) = WN(WB)^i + WN(WB)^{i-1}WN \) for all \(i \geq 1 \).

(ii) Since \(WNWR = 0 \), \(WNS(i)WR = WN(WB)^iWR \).

(iii) Since \((WB)^2 = WB \), \((WB)^d = WB \) and then the hypothesis \(NWB^{d,W} = 0 \) implies \(NWB = N(WB)^d = NWB^{d,W} = 0 \). Then from Lemma 1.4 it follows

\[
(WN + WB)^d = \sum_{i=0}^{\infty} (WN)^i ((WB)^d)^{i+1}
= \sum_{i=0}^{\infty} (WN)^i (WB)^{i+1}
= \left(\sum_{i=0}^{\infty} (WN)^i \right) WB
= (I - WN)^{-1}WB.
\]

\[\square\]

Now, we state and prove the main result.

Theorem 2.2 Let \(W \in \mathcal{B}(Y, X) \), and let \(A, B \in \mathcal{B}(X, Y) \) be Wg-Drazin invertible. If \(A^{d,W}WB = 0 \), \(AWB^{d,W} = 0 \) and \((I - WBWB^{d,W})WAWB(I - WAWA^{d,W}) = 0 \), then \(A + B \) is Wg-Drazin invertible and

\[
(A + B)^{d,W} = (A + B) \left[(WB)^d \left(I + \sum_{i=0}^{\infty} \left((WB)^d \right)^{i+1} WAZ(i) \right) (I - WAWA^{d,W}) \right]^2
+ (A + B)(I - WBWB^{d,W}) \left(I + \sum_{i=0}^{\infty} Z(i)WB \left((WA)^d \right)^{i+1} \right) (WA)^2
- (A + B) \left((WB)^d \right)^2 \sum_{i=0}^{\infty} \left((WB)^d \right)^i WAZ(i)WB \left((WA)^d \right)^2
\]

[7]
\[-(A + B)(WB)^d \left(\sum_{i=0}^{\infty} WAZ(i)WB \left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \]
\[-(A + B) \left((WB)^d \right)^2 \times \]
\[\times \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \left((WB)^d \right)^i WAZ(i + k + 1)WB \left((WA)^d \right)^k \right) \left((WA)^d \right)^3 \]
\[-(A + B) \times \]
\[\times \left[(WB)^d \left(I + \sum_{i=0}^{\infty} \left((WB)^d \right)^{i+1} WAZ(i) \right) (I - WAWA^{d,W}) \right]^2 \]
\[\times WB(WA)^d, \]
(3)

where

(4) \(Z(i) = (I - WBWB^{d,W}) \left(\sum_{j=0}^{i} (WB)^{i-j} (WA)^j \right) (I - WAWA^{d,W}).\)

Moreover, for all \(i \geq l \geq 1\), we have
\[Z(i) = (WB)^{i-l+1}Z(l-1) = Z(l-1)(WA)^{i-l+1}.\]

Proof. Since \(A\) is \(W\)-\(g\)-Drazin invertible, by Lemma 1.1, we conclude that \(A\) and \(W\) have the matrix forms
\[A = \begin{bmatrix} A_1 & 0 \\ 0 & A_2 \end{bmatrix}, \quad W = \begin{bmatrix} W_1 & 0 \\ 0 & W_2 \end{bmatrix}, \]
where \(A_1, W_1\) are invertible and \(W_2A_2\) is quasinilpotent. From \(A^{d,W}WB = 0\) it follows that \(B\) can be written as
\[B = \begin{bmatrix} 0 & 0 \\ B_1 & B_2 \end{bmatrix}. \]

We use Lemma 1.2 to compute \((WB)^d\) which in turn equals \(WB^{d,W}\). From the assumptions \(AWB^{d,W} = 0\) and \((I - WBWB^{d,W})WAWB(I - WAWA^{d,W}) = 0\), we get that \(A_2W_2B_2^{d,W_2} = 0\) and \((I - W_2B_2W_2B_2^{d,W_2})W_2A_2W_2 = 0\). We see that the conditions of Theorem 2.1 are satisfied with: \(B_2, W_2, A_2\), respectively, instead of \(B, W, N\).
From Lemma 1.2 we have that
\[(A + B)^{d,W} = (A + B)((W(A + B))^d)^2 = (A + B)((WA + WB)^d)^2 \]
\[= (A + B) \left(\begin{bmatrix} W_1 A_1 & 0 \\ W_2 B_1 & W_2 A_2 + W_2 B_2 \end{bmatrix} \right)^d \]
\[= (A + B) \left[\begin{bmatrix} (W_1 A_1)^{-1} & 0 \\ X & (W_2 A_2 + W_2 B_2)^d \end{bmatrix} \right]^2 \]
\[= \begin{bmatrix} A_1 & 0 \\ B_1 & A_2 + B_2 \end{bmatrix} \times \]
\[\times \begin{bmatrix} (W_1 A_1)^{-2} & 0 \\ X(W_1 A_1)^{-1} + (W_2 A_2 + W_2 B_2)^d X & ((W_2 A_2 + W_2 B_2)^d)^2 \end{bmatrix} = \begin{bmatrix} A_1(W_1 A_1)^{-2} & 0 \\ X' & (A_2 + B_2)((W_2 A_2 + W_2 B_2)^d)^2 \end{bmatrix}, \]
where
\[X = (I - (W_2 A_2 + W_2 B_2)(W_2 A_2 + W_2 B_2)^d) \times \]
\[\times \left(\sum_{i=0}^{\infty} (W_2 A_2 + W_2 B_2)^i W_2 B_1(W_1 A_1)^{-1} \right)(W_1 A_1)^{-2} \]
\[- (W_2 A_2 + W_2 B_2)^d W_2 B_1(W_1 A_1)^{-1} \]
and
\[X' = B_1(W_1 A_1)^{-2} + (A_2 + B_2)[X(W_1 A_1)^{-1} + (W_2 A_2 + W_2 B_2)^d X]. \]

Using Theorem 2.1 we get
\[(W_2 A_2 + W_2 B_2)^d = (W_2 B_2)^d + ((W_2 B_2)^d)^2 \left(\sum_{i=0}^{\infty} ((W_2 B_2)^d)^i W_2 A_2 S(i) \right), \]
where \(S(i) = (I - W_2 B_2 W_2 B_2^{d,W_2}) \left(\sum_{j=0}^{i} (W_2 B_2)^j (W_2 A_2)^{i-j} \right) \) for all \(i \geq 0. \)

Now, we have
\[I - (W_2 A_2 + W_2 B_2)(W_2 A_2 + W_2 B_2)^d \]
\[= I - W_2 B_2(W_2 B_2)^d - (W_2 B_2)^d \left(\sum_{i=0}^{\infty} ((W_2 B_2)^d)^i W_2 A_2 S(i) \right). \]
Since
\[(W_2 A_2 + W_2 B_2)^d X = - \left((W_2 A_2 + W_2 B_2)^d \right)^2 W_2 B_1 (W_1 A_1)^{-1},\]
we get
\[
X' = B_1 (W_1 A_1)^{-2} + (A_2 + B_2) \left[\left(I - W_2 B_2 (W_2 B_2)^d \right) \right.
\]
\[
- (W_2 B_2)^d \sum_{i=0}^{\infty} \left((W_2 B_2)^d \right)^i W_2 A_2 S(i) \times
\]
\[
\times \left(\sum_{i=0}^{\infty} (W_2 A_2 + W_2 B_2)^i W_2 B_1 (W_1 A_1)^{-i} \right) (W_1 A_1)^{-3}
\]
\[
- (W_2 A_2 + W_2 B_2)^d W_2 B_1 (W_1 A_1)^{-2}
\]
\[
- \left((W_2 A_2 + W_2 B_2)^d \right)^2 W_2 B_1 (W_1 A_1)^{-1} \right]
\]
\[
= B_1 \left((W_1 A_1)^{-1} \right)^2 + X_1 + X_2 + X_3 + X_4,
\]
where \(X_1, X_2, X_3 \) and \(X_4 \) are the following terms:
\[
X_1 = (A_2 + B_2) (I - W_2 B_2 (W_2 B_2)^d) \times
\]
\[
\times \left(\sum_{i=0}^{\infty} (W_2 A_2 + W_2 B_2)^i W_2 B_1 (W_1 A_1)^{-i} \right) (W_1 A_1)^{-3}
\]
\[
= (A_2 + B_2) (I - W_2 B_2 (W_2 B_2)^d) \times
\]
\[
\times \left(\sum_{i=0}^{\infty} S(i) W_2 B_1 (W_1 A_1)^{-i} \right) (W_1 A_1)^{-3}
\]
and the last equality follows by using (2) in Theorem 2.1. Moreover,
\[
X_2 = -(A_2 + B_2) (W_2 B_2)^d \left(\sum_{i=0}^{\infty} \left((W_2 B_2)^d \right)^i W_2 A_2 S(i) \right) \times
\]
\[
\times \left(\sum_{i=0}^{\infty} (W_2 A_2 + W_2 B_2)^i W_2 B_1 (W_1 A_1)^{-i} \right) (W_1 A_1)^{-3}
\]
\[
= -(A_2 + B_2) (W_2 B_2)^d \left(\sum_{k=0}^{\infty} W_2 A_2 S(k) W_2 B_1 (W_1 A_1)^{-(k+3)} \right)
\]
\[-(A_2 + B_2)(W_2B_2)^d \times \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} ((W_2B_2)^d)^{i+1} W_2A_2S(i + k + 1)W_2B_1(W_1A_1)^{-(k+3)} \right) \]

and the last equality follows by using (2) to obtain that $S(i)(W_2A_2 + W_2B_2)^k = (I - W_2B_2W_2^d(W_2A_2 + W_2B_2)^{i+k} = S(i + k)$ and after we change i by $i - 1$ in the last sum. Also

\[
X_3 = -(A_2 + B_2)(W_2A_2 + W_2B_2)^dW_2B_1(W_1A_1)^{-2} = -(A_2 + B_2)(W_2B_2)^dW_2B_1(W_1A_1)^{-2} - (A_2 + B_2) \left((W_2B_2)^d \right)^2 \times \\
\times \left(\sum_{i=0}^{\infty} ((W_2B_2)^d)^i W_2A_2S(i)W_2B_1 \right)(W_1A_1)^{-2}.
\]

Finally,

\[
X_4 = -(A_2 + B_2) \left((W_2A_2 + W_2B_2)^d \right)^2 W_2B_1(W_1A_1)^{-1}.
\]

Write $Z(i) = (I - BWB^dW) \left(\sum_{j=0}^{i} (WB)^{i-j}(WA)^j \right)(I - WAWA^dW)$. By direct computations, for all $i \geq 1$ we have,

\[
Z(i) = \left[\begin{array}{c}
I \\
-(W_2B_2)^dW_2B_1 & I - W_2B_2(W_2B_2)^d
\end{array} \right] \times \\
\times \left\{ \sum_{j=0}^{i-1} \left[\begin{array}{c}
(W_2B_2)^{i-j-1}W_2B_1 & 0 \\
0 & (W_2B_2)^{i-j}
\end{array} \right] \left[\begin{array}{c}
0 \\
0
\end{array} \right] \left[\begin{array}{c}
0 \\
(W_2A_2)^j
\end{array} \right] \right\} \\
+ \left[\begin{array}{c}
0 \\
0
\end{array} \right] \\
+ \left[\begin{array}{c}
0 \\
0
\end{array} \right] \\
= \left[\begin{array}{c}
0 \\
0
\end{array} \right]
\]

11
\[WAZ(i)WB \left((WA)^d \right)^q = \begin{bmatrix} 0 & 0 \\ W_2 A_2 S(i) W_2 B_1 (W_1 A_1)^{-q} & 0 \end{bmatrix}, \quad \text{for all } q \geq 1. \]

Now, we compute the terms of the expressions (3) for \((A + B)^d W\) using the block decomposition:

\[\Sigma_1 = (A + B) \left[(WB)^d \left(I + \sum_{i=0}^{\infty} \left((WB)^d \right)^{i+1} WAZ(i) \right) (I - WAWA^{d,W}) \right]^2 \]

\[= (A + B) \left\{ \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right\}^2 \]

\[+ \sum_{i=0}^{\infty} \left[\left((WB)^2 \right)^{i+3} W_2 B_1 \left((WB)^2 \right)^{i+2} \right] \left[\begin{bmatrix} 0 & 0 \\ 0 & W_2 A_2 S(i) \end{bmatrix} \right]^2 \]

\[= (A + B) \left[\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \right] \left[\begin{bmatrix} 0 & 0 \\ 0 & W_2 A_2 S(i) \end{bmatrix} \right]^2 \]

\[= \left[\begin{bmatrix} A_1 & 0 \\ B_1 & A_2 + B_2 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & (W_2 A_2 + W_2 B_2)^2 \end{bmatrix} \right] = \left[\begin{bmatrix} 0 & 0 \\ 0 & (A_2 + B_2) (W_2 A_2 + W_2 B_2)^2 \end{bmatrix} \right], \]

\[\Sigma_2 = (A + B)(I - WBWB^{d,W}) \left(I + \sum_{k=0}^{\infty} Z(k)WB \left((WA)^d \right)^{k+1} \right) \left((WA)^d \right)^2 \]

\[= \left[\begin{bmatrix} A_1 & 0 \\ B_1 & A_2 + B_2 \end{bmatrix} \begin{bmatrix} I \\ -(W_2 B_2)^d W_2 B_1 \end{bmatrix} \right] \times \left[\begin{bmatrix} 0 & 0 \\ W_2 B_2 (W_2 B_2)^d \end{bmatrix} \right] \times \]

\[\sum_{k=0}^{\infty} \left[\begin{bmatrix} S(k) W_2 B_2 (W_1 A_1)^{-k+3} \\ 0 \end{bmatrix} \right] \times \]

\[= \left[\begin{bmatrix} A_1 (W_1 A_1)^{-2} & 0 \\ X'' & 0 \end{bmatrix} \right], \]
\[X'' = B_1(W_1A_1)^{-2} \]
\[\quad - (A_2 + B_2) \left[(W_2B_2)^d W_2B_1(W_1A_1)^{-2} \right. \]
\[\quad + \left. (I - W_2B_2(W_2B_2)^d) \left(\sum_{k=0}^{\infty} S(k)W_2B_1(W_1A_1)^{-(k+3)} \right) \right], \]

\[\Sigma_3 = - (A + B) \left[(WB)^d \right]^2 \left(\sum_{i=0}^{\infty} (WB)^d \right)^i WAZ(i)WB \left((WA)^d \right)^3 \]
\[= - (A + B) \left[\sum_{i=0}^{\infty} (WB)^d \right]^{i+2} \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \]
\[= - \left[(A_2 + B_2) \sum_{i=0}^{\infty} (WB)^d \right]^{i+2} \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \]

\[\Sigma_4 = - (A + B)(WB)^d \left(\sum_{i=0}^{\infty} WAZ(i)WB \left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \]
\[= - (A + B) \left[\sum_{i=0}^{\infty} W_2A_2S(i)W_2B_1(W_1A_1)^{-(i+3)} \right] \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right] \]
\[= - \left[(A_2 + B_2)(WB)^d \sum_{i=0}^{\infty} W_2A_2S(i)W_2B_1(W_1A_1)^{-(i+3)} \right] \left[\begin{array}{ccc} 0 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right], \]

\[\Sigma_5 = - (A + B) \left((WB)^d \right)^2 \times \]
\[\times \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} (WB)^d \right)^i WAZ(i + k + 1)WB \left((WA)^d \right)^k \left((WA)^d \right)^3 \]
\[= - \left[\begin{array}{ccc} A_1 & 0 & 0 \\ B_1 & A_2 + B_2 & X'' \\ 0 & X'' & 0 \end{array} \right], \]
\[= - \left[\begin{array}{ccc} (A_2 + B_2)X'' & 0 & 0 \\ 0 & X'' & 0 \end{array} \right], \]
where
\[X''' = \sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \left((W_2 B_2)^d \right)^{i+2} W_2 A_2 S(i + k + 1) W_2 B_1 (W_1 A_1)^{-(k+3)}, \]

\[
\begin{align*}
\Sigma_6 &= -(A + B) \times \\
&\times \left[(WB)^d \left(I + \sum_{i=0}^{\infty} \left((WB)^d \right)^{i+1} WAZ(i) \right) (I - W A W A^{d,W}) \right]^2 \times \\
&\times WB(WA)^d \\
&= -(A + B) \left[\begin{array}{cc} 0 & 0 \\
0 & \left((W_2 A_2 + W_2 B_2)^d \right)^2 \end{array} \right] \left[\begin{array}{cc} 0 & 0 \\
W_2 B_1 (W_1 A_1)^{-1} & 0 \end{array} \right] \\
&= - \left[\begin{array}{cc} 0 & 0 \\
(A_2 + B_2) \left((W_2 A_2 + W_2 B_2)^d \right)^2 W_2 B_1 (W_1 A_1)^{-1} & 0 \end{array} \right].
\end{align*}
\]

Thus,
\[
\begin{align*}
\Sigma_1 + \Sigma_2 + \Sigma_3 + \Sigma_4 + \Sigma_5 + \Sigma_6 &= \left[\begin{array}{cc} A_1 (W_1 A_1)^{-2} & 0 \\
X' & (A_2 + B_2) \left((W_2 A_2 + W_2 B_2)^d \right)^2 \end{array} \right],
\end{align*}
\]

completing the proof of (3). The second statement of the theorem can easily be verified. \(\square\)

We obtain some corollaries as follows.

Corollary 2.3 Let \(W \in \mathcal{B}(Y, X) \), and let \(A, B \in \mathcal{B}(X, Y) \) be \(W \)-\(W \)-Drazin invertible. If \(A^{d,W} WB = 0 \) and \(AWB(I - W A W A^{d,W}) = 0 \), then

\[
\begin{align*}
(A + B)^{d,W} &= (A + B) \left[\left(\sum_{i=0}^{\infty} \left((WB)^d \right)^{i+1} (WA)^i \right) (I - W A W A^{d,W}) \right]^2 \\
&+ (A + B)(I - WBW B^{d,W}) \left(\sum_{i=0}^{\infty} (WB)^i \left((WA)^d \right)^{i+2} \right) \\
&+ \sum_{i=1}^{\infty} \sum_{j=1}^{i} (WB)^{i-j} (WA)^j WB \left((WA)^d \right)^{i+3}
\end{align*}
\]
\[-(A + B) \left((WB)^d \right)^2 \left(\sum_{i=0}^{\infty} (WB)^i (WA)^{i+1} WB \right) \left((WA)^d \right)^2 \]
\[-(A + B)(WB)^d \left(\sum_{i=0}^{\infty} (WA)^{i+1} WB \left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \]
\[-(A + B) \left((WB)^d \right)^2 \times \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} (WB)^d \right)^i (WA)^{i+k+2} WB \left((WA)^d \right)^k \left((WA)^d \right)^3 \]
\[-(A + B) \left[\left(\sum_{i=0}^{\infty} (WB)^d \right)^{i+1} (WA)^i \right] (I - WA WA^{d,W}) \right]^2 WB(WA)^d.\]

Proof. From \(A^{d,W}WB = 0 \) and \(AWB(I - WA^{d,W}) = 0 \) it follows that
\[
A(WB)^2 = AWB(I - WA^{d,W})WB + AWBWAW^{d,W} WB
\]
\[
= AWBWAW^{d,W} WB
\]
\[
= 0
\]
and thus
\[
AWB^{d,W} = A(WB)^d = AWB \left((WB)^d \right)^2 = A(WB)^2 \left((WB)^d \right)^3 = 0.
\]

Then we apply Theorem 2.2, together with the simplification \(WAZ(i) = (WA)^{i+1}(I - WA^{d,W}) \) for all \(i \geq 0 \), to get the statement of this corollary. \(\square \)

Corollary 2.4 Let \(W \in \mathcal{B}(Y, X) \), and let \(A, B \in \mathcal{B}(X, Y) \) be Wg–Drazin invertible. Suppose that \(A^{d,W}WB = 0 \) and \(AWB(I - WA^{d,W}) = 0 \).

(i) If \((WB)^2 = WB \), then
\[
(A + B)^{d,W}
\]
\[
= (A + B) \left[\left(WB \sum_{i=0}^{\infty} (WA)^i \right) (I - WA^{d,W}) \right]^2
\]
\[
+ (A + B)(I - WB) \left((WA)^d \right)^2 + \sum_{i=1}^{\infty} (WA)^i WB \left((WA)^d \right)^{i+3}
\]

15
\[-(A + B)WB \left(\sum_{i=0}^{\infty} (WA)^{i+1}WB \right) \left((WA)^d \right)^2 \]
\[-(A + B)WB \left(\sum_{i=0}^{\infty} (WA)^{i+1}WB \left(\left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \right) \]
\[-(A + B)WB \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} (WA)^{i+k+2}WB \left(\left((WA)^d \right)^k \right) \left((WA)^d \right)^3 \right) \]
\[-(A + B) \left[\left(WB \sum_{i=0}^{\infty} (WA)^i \right) (I - WAWA^{d,W}) \right]^2 WB(WA)^d. \]

(ii) If \(WB \) is quasinilpotent, then
\[
(A + B)^{d,W} = (A + B) \left[\left((WA)^d \right)^2 \right. \\
+ \left. \left(\sum_{i=0}^{\infty} (WB)^{i-j} (WA)^jWB \left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \right].
\]

(iii) If \((WB)^2 = 0 \), then
\[
(A + B)^{d,W} = (A + B) \left[\left((WA)^d \right)^2 \right. \\
+ \left. WB \left(\sum_{i=0}^{\infty} (WA)^iWB \left((WA)^d \right)^i \right) \left((WA)^d \right)^4 \right. \\
+ \left. \left(\sum_{i=0}^{\infty} (WA)^iWB \left((WA)^d \right)^i \right) \left((WA)^d \right)^3 \right].
\]

Proof. Each of these cases follows directly from Corollary 2.3 and the following simplifications:

(i) Since \((WB)^2 = WB \), we have \(WB^{d,W} = (WB)^d = WB \) and \((I - WBWB^{d,W})WB = 0 \).

(ii) Since \(WB \) is quasinilpotent, we get \((WB)^d = 0 \).

(iii) Since \((WB)^2 = 0 \), it follows that
\[
(WB)^d = WB \left((WB)^d \right)^2 = (WB)^2 \left((WB)^d \right)^3 = 0. \]
Corollary 2.5 Let $W \in \mathcal{B}(Y, X)$, and let $A, B \in \mathcal{B}(X, Y)$ be Wg–Drazin invertible. If $AWB^{d,W} = 0$ and $(I - WBW B^{d,W})WAWB = 0$, then

$$(A + B)^{d,W}$$

$$= (A + B) \left[\left(\sum_{i=0}^{\infty} (WB)^{d}_{i+1} (WA)^{i} \right) + \sum_{i=1}^{\infty} \sum_{j=1}^{i} (WB)^{d}_{i+j} WA(WB)^{j}(WA)^{i-j} \right] (I - WAWA^{d,W})^{2}$$

$$+ (A + B)(I - WBW B^{d,W}) \left(\sum_{i=0}^{\infty} (WB)^{d}_{i} (WA)^{i+2} \right)$$

$$- (A + B) \left((WB)^{d}_{i} \right) (I - WBW B^{d,W})^{2}$$

$$- (A + B)(WB)^{d} \left(\sum_{i=0}^{\infty} WA(WB)^{i} \right) (WA)^{i+3}$$

$$- (A + B) \left((WB)^{d}_{i} \right) \left(\sum_{i=0}^{\infty} \sum_{k=0}^{i} WA(WB)^{i+k} (WA)^{k+3} \right)$$

$$- (A + B) \left[\left(\sum_{i=0}^{\infty} (WB)^{d}_{i+1} (WA)^{i} \right) + \sum_{i=1}^{\infty} \sum_{j=1}^{i} (WB)^{d}_{i+j} WA(WB)^{j}(WA)^{i-j} \right] (I - WAWA^{d,W})^{2}$$

$$\times WB(WA)^{d}. $$

Proof. From $AWB^{d,W} = 0$ and $(I - WBW B^{d,W})WAWB = 0$ it follows that

$$(AW)^{2}B = A(I - WBW B^{d,W})WAWB + AWBW B^{d,W}WAWB$$

$$= AWB^{d,W}WBWAWB$$

$$= 0$$

and thus

$$A^{d,W}WB = (AW)^{d}B = (AW)^{d}_{i} AWB = (AW)^{d}_{2} (AW)^{2}B = 0.$$
Corollary 2.6 Let $W \in \mathcal{B}(Y, X)$, and let $A, B \in \mathcal{B}(X, Y)$ be Wg–Drazin invertible. Suppose that $AWB_{d,W} = 0$ and $(I - BWB_{d,W})WAWB = 0$.

(i) If $(WA)^2 = WA$, then

$$(A + B)^{d,W} = (A + B) \left[(WB)^d + \sum_{i=1}^{\infty} \left((WB)^d \right)^{i+2} W A (WB)^i \right] (I - WA)^2$$

$$+ (A + B)(I - BWB_{d,W}) \left(\sum_{i=0}^{\infty} (WB)^i \right) WA$$

$$- (A + B) \left((WB)^d \right)^2 \left(\sum_{i=0}^{\infty} \left((WB)^d \right)^{i} WA (WB)^{i+1} \right) WA$$

$$- (A + B)(WB)^d \left(\sum_{i=0}^{\infty} WA (WB)^{i+1} \right) WA$$

$$- (A + B) \left((WB)^d \right)^2 \left(\sum_{i=0}^{\infty} \sum_{k=0}^{\infty} \left((WB)^d \right)^{i} WA (WB)^{i+k+2} \right) WA$$

$$- (A + B) \left[\left((WB)^d + \sum_{i=1}^{\infty} \left((WB)^d \right)^{i+2} WA (WB)^i \right) (I - WA)^2 \right]$$

$$\times WB(WA)^d.$$

(ii) If WA is quasinilpotent, then

$$(A + B)^{d,W} = (A + B) \left[(WB)^d + \sum_{i=0}^{\infty} \sum_{j=0}^{i} \left((WB)^d \right)^{i+j} WA (WB)^j (WA)^{i-j} \right]^2.$$

Proof. We apply Corollary 2.5 and the following simplifications:

(i) Since $(WA)^2 = WA$, we have $WA_{d,W} = (WA)^d = WA$ and $(WA)^j (I - WAWA_{d,W}) = 0$ for all $j \geq 1$.

(ii) Since WA is quasinilpotent, we get $(WA)^d = 0$. □

Corollary 2.7 Let $A, B \in \mathcal{B}(X, Y)$ be Wg–Drazin invertible. If $AWB = 0$, then

$$(A + B)^{d,W}$$
\[= (A + B) \left[(WB)^d \left(\sum_{i=0}^{\infty} (WB)^i (WA)^i \right) (I - WAWA^{d,W}) \right]^2 \]
\[+ (A + B)(I - WBWB^{d,W}) \left(\sum_{i=0}^{\infty} (WB)^i (WA)^i \right) (WA)^2 \]
\[- (A + B) \left[(WB)^d \left(\sum_{i=0}^{\infty} (WB)^i (WA)^i \right) (I - WAWA^{d,W}) \right]^2 \]
\[\times WB(WA)^d. \]

Proof. Since \(AWB = 0 \), then it follows that
\[A^{d,W}WB = (A^{d,W}WA^{d,W}WB)^2 AWB = 0, \]
\((I - WBWB^{d,W})WAWB = 0, \) \(AWB(I - WAWA^{d,W}) = 0 \) and then \(A^{d,W}WB = 0. \) Thus, we apply Corollary 2.3, or Corollary 2.5, to get the above result. \(\square \)

Acknowledgement. We are grateful to the referees for their helpful comments concerning the paper.

References

Faculty of Sciences and Mathematics
Department of Mathematics and Informatics
University of Niš
Višegradska 33, P.O. Box 224
18000 Niš
Serbia

E-mail: sknme@ptt.yu dragan@pmf.ni.ac.yu