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THE BROWDER AND WEYL SPECTRA
OF AN OPERATOR AND ITS DIAGONAL

B. P. Duggal, S. V. Djordjević and M. Chō

Abstract

If T ∈ B(X ) is a Banach space operator and E is a closed T -invariant
subspace of X , then the restriction map A = T |E and the quotient map
B = T |X/E are well defined operators in B(E) and B(X/E), respectively. It
is proved that: (i) If σx(T ) = σx(A) ∪ σx(B), where σx is either the Weyl
spectrum σw or the Weyl essential approximate point spectrum σaw, then
σ(T ) = σ(A) ∪ σ(B); (ii) if σaw(T ) = σaw(A) ∪ σaw(B), and A∗ has SVEP
(the single–valued extension property), then σa(T ) = σa(A) ∪ σa(B); (iii) if
σ(T ) = σ(A) ∪ σ(B), then a point λ is a pole (resp., finite rank pole) of
the resolvent of T if and only if λ is a pole (resp., finite rank pole) of the
resolvents of A and B. Letting σb and σab denote, respectively, the Browder
spectrum and the Browder essential approximate point spectrum, an operator
S ∈ B(X ) satisfies Browder’s theorem (resp., a-Browder’s theorem) if σw(S) =
σb(S) (resp., σaw(S) = σab(S)); S satisfies Weyl’s theorem if σ(S) \ σw(S) =
{λ ∈ isoσ(S) : 0 < dim(S − λ)−1(0) < ∞}. Recall that S is isoloid if
λ ∈ isoσ(S) implies 0 < dim(S − λ)−1(0). We prove that: (iv) if σw(T ) =
σw(A) ∪ σw(B) (resp., σaw(T ) = σaw(A) ∪ σaw(B)), then Browder’s theorem
(resp., a-Browder’s theorem) transfers from A and B to T ; (v) if σw(T ) =
σw(A) ∪ σw(B), and A, B are isoloid, then Weyl’s theorem transfers from A
and B to T .

1 Introduction

Let B(X ) denote the algebra of operators (i.e., bounded linear transformations) on
a Banach space X into itself. The problem of the relationship between the spectrum,
and some of its more distinguished parts, of an (upper triangular) operator T =(

A C
0 B

)
∈ B(X ) and its diagonal (A,B) has been considered by a number of

authors, amongst them [3, 4, 5, 8, 9, 11, 13, 14]. A related but more demanding
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problem which has been considered in the recent past is the following. Let T ∈ B(X )
and let E be a T -invariant closed subspace of X . Then the restriction A = T |E
and the quotient map B = T |X/E are well defined operators in B(E) and B(X/E),
respectively. Following Barnes [3], let us call the pair (A,B) the diagonal of T .
What is the relationship between the spectrum σ, the Fredholm spectrum σe, the
Browder spectrum σb, the Weyl spectrum σw and the Weyl essential approximate
point spectrum σaw of the operator T and its diagonal (A,B)? Evidently, if T is
Fredholm, T ∈ Φ(X ), then A is upper semi–Fredholm; identifying B∗ with T ∗|E⊥
it follows that B∗ is upper semi–Fredholm, which implies that B is lower semi–
Fredholm. It is not difficult to verify, [3, 6], that σx(T ) ∪ {σx(A) ∩ σx(B)} =
σx(A)∪σx(B) for σx = σ or σe or σb. (Thus, if any two of T , A and B are invertible
or Fredholm or Browder, then so is the third one.) The relationship between the
Weyl spectrum, and the Weyl essential approximate point spectrum, of A, B and T
is a bit more delicate. The equality σx(T )∪{σx(A)∩σx(B)} = σx(A)∪σx(B) fails
for σx = σw and σx = σaw; however, if the (Fredholm) indices satisfy the equality
ind(T −λ) = ind(A−λ)+ ind(B−λ), whenever the left hand side or the right hand
side of the equality is finite, then σx(T ) ⊆ σx(A) ∪ σx(B) for σx = σw and σaw.

In this paper, we consider operators T ∈ B(X ) such that σx(T ) = σx(A)∪σx(B),
where (A,B) is the diagonal of T , for σx = σw or σaw, and prove that such operators
satisfy σ(T ) = σ(A) ∪ σ(B). In the case in which σaw(T ) = σaw(A) ∪ σaw(B) and
A∗ has SVEP (the single–valued extension property) on the complement σaw(T )C

of σaw(T ) in the approximate point spectrum σa(T ) of T , it is seen that σa(T ) =
σa(A) ∪ σa(B). For an operator S ∈ B(X ), we say that S is polaroid (resp., a-
polaroid) at a point λ in the complex plane C if (either λ is in the resolvent set
ρ(S) = C \ σ(S) or) λ ∈ isoσ(S) is a pole of the resolvent of S (resp., λ ∈ isoσa(S),
(S − λ)X is closed and the ascent asc(S − λ) < ∞). Let p(S), p0(S), pa(S), pa

0(S),
π0(S) and πa

0 (S) denote, respectively, the sets p(S) = {λ : S is polaroid at λ},
p0(S) = {λ ∈ p(S) : dim(S − λ)−1(0) < ∞}, pa(S) = {λ : S is a-polaroid at λ},
pa
0(S) = {λ ∈ pa(S) : dim(S − λ)−1(0) < ∞}, π0(S) = {λ ∈ isoσ(S) : 0 < dim(S −

λ)−1(0) < ∞} and πa
0 (S) = {λ ∈ isoσa(S) : 0 < dim(S − λ)−1(0) < ∞}. If σ(T ) =

σ(A)∪σ(B), then λ ∈ p(T ) ⇐⇒ λ ∈ p(A)
⋃

p(B) (= {p(A)∩ρ(B)}∪{p(A)∩p(B)}∪
{ρ(A) ∩ p(B)}) and λ ∈ p0(T ) ⇐⇒ λ ∈ p0(A)

⋃
p0(B); if σw(T ) = σw(A) ∪ σw(B),

A and B are isoloid, σ(A) \ σw(A) = π0(A) and σ(B) \ σw(B) = π0(B), then
σ(T ) \ σw(T ) = π0(T ); if σaw(T ) = σaw(A) ∪ σaw(B), σa(A) \ σaw(A) = πa

0 (A), A
and B are a-isoloid, σa(B) \ σaw(B) = πa

0 (B) and A∗ has SVEP on πa
0 (T ), then

σa(T ) \ σaw(T ) = πa
0 (T ).

2 Results

We start by explaining the terminology already introduced, and by introducing
further notation and terminology.

An operator S ∈ B(X ) is upper semi-Fredholm (resp., lower semi-Fredholm) at
a complex number λ ∈ C if the range (S − λ)X is closed and α(S − λ) = dim(S −
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λ)−1(0) < ∞ (resp., β(S − λ) = dim(X/(S − λ)X ) < ∞). Let λ ∈ Φ+(S) (resp.,
λ ∈ Φ−(S)) denote that S is upper semi-Fredholm (resp., lower semi-Fredholm) at
λ. The operator S is Fredholm at λ, denoted λ ∈ Φ(S), if λ ∈ Φ+(S)∩Φ−(S). Let
ind(S − λ) = α(S − λ)− β(S − λ) denote the Fredholm index of S − λ. The ascent
asc(S − λ) (resp., the descent dsc(S − λ)) of S − λ is the least non-negative integer
n such that (S − λ)−n(0) = (S − λ)−(n+1)(0) (resp., the least non-negative integer
n such that (S − λ)nX = (S − λ)n+1X ); if no such integer exists, then asc(S − λ)
(resp., dsc(S − λ)) is infinite. Let Φ−±(S) = {λ : λ ∈ Φ±(S), ind(S − λ) ≤ 0},
Φ+
±(S) = {λ : λ ∈ Φ±(S), ind(S−λ) ≥ 0} and Φ0(S) = {λ : λ ∈ Φ(S), ind(S−λ) =

0}. S is Browder (resp., Weyl) at λ if λ ∈ Φ(S) and asc(S − λ) = dsc(S − λ) < ∞
(resp., if λ ∈ Φ0(S)). Recall that a necessary and sufficient condition for λ ∈ C
to belong to p(S) is that asc(S − λ) = dsc(S − λ) < ∞; also, asc(S − λ) < ∞
implies ind(S − λ) ≤ 0 and dsc(S − λ) < ∞ implies ind(S − λ) ≥ 0. The Browder
spectrum, the Weyl spectrum, the Browder essential approximate point spectrum
σab(S) and the Weyl essential approximate point spectrum of S are, respectively,
the sets σb(S) = {λ ∈ C : S − λ is not Browder}, σw(S) = {λ ∈ C : S − λ is not
Weyl}, σab(S) = {λ ∈ σa(S) : λ /∈ Φ+(S) or asc(S − λ) = ∞} and σaw(S) = {λ ∈
C : λ /∈ Φ+(S) or ind(S − λ) 6≤ 0}. An operator S ∈ B(X ) has the single-valued
extension property at λ0 ∈ C, SVEP at λ0, if for every open disc Dλ0 centered at λ0

the only analytic function f : Dλ0 → X which satisfies

(S − λ)f(λ) = 0 for all λ ∈ Dλ0

is the function f ≡ 0. Trivially, every operator S has SVEP on its resolvent set
ρ(S) = C \ σ(S); also S has SVEP at points λ ∈ isoσ(S). (Here isoσ(S) denotes
the set of isolated points of σ(S).) Let Ξ(S) denote the set of λ ∈ C where S does
not have SVEP: we say that S has SVEP if Ξ(S) = ∅. The quasinilpotent part
H0(S − λ) and the analytic core K(S − λ) of (S − λ) are defined by

H0(S − λ) = {x ∈ X : lim
n−→∞

||(S − λ)nx|| 1n = 0}

and

K(S − λ) = {x ∈ X : there exists a sequence {xn} ⊂ X and δ > 0
for which x = x0, (S − λ)xn+1 = xn and ‖xn‖ ≤ δn‖x‖ for all n = 1, 2, ...}.

We note that H0(S − λ) and K(S − λ) are (generally) non-closed hyperinvariant
subspaces of (S − λ) such that (S − λ)−p(0) ⊆ H0(S − λ) for all p = 0, 1, 2, ...
and (S − λ)K(S − λ) = K(S − λ) [1]. Recall that if λ ∈ isoσ(S), then X =
H0(S − λ)⊕K(S − λ) [1, Theorem 3.74].

Unless otherwise evident from the context, we assume in the following that
T ∈ B(X ), E is a closed T -invariant subspace of X , A = T |E and B = T |X/E .
We write isoσ(A)

⋃
isoσ(B) for {isoσ(A) ∩ ρ(B)} ∪ {isoσ(A) ∩ isoσ(B)} ∪ {ρ(A) ∩

isoσ(B)}, where ρ(·) = C \ σ(·) is the resolvent set; the expressions p0(A)
⋃

p0(B)
and π0(A)

⋃
π0(B) shall have a similar meaning. Henceforth, we shall write A−λ for

A−λI|E , B−λ for B−λI|X/E , σw(·)C for σ(·)\σw(·) and σaw(·)C for σa(·)\σaw(·).
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It is well known that the equality σx(T ) = σx(A)∪σx(B), where σx = σ or σb or
σw or σaw, does not hold in general. If σx = σ or σb, then σx(T )∪{σx(A)∩σx(B)} =
σx(A) ∪ σx(B) [6]. This equality, however, fails if σx = σw or σaw, as follows from
the following examples. If we let A,B ∈ B(`2) be defined by

A(x1, x2, x3, ...) = (0, 0, 0,
1
2
x2, 0,

1
3
x3, ...),

B(x1, x2, x3, ...) = (0, x2, 0, x4, ...)

and T = A ⊕ B, then σw(A) = {0}, σw(B) = {0, 1}, σw(T ) = {0} and σw(T ) ∪
{σw(A) ∩ σw(B)} = {0} ⊂ σw(A) ∪ σw(B). Again, if we let A ∈ B(`2) de-
note the forward unilateral shift, B = A∗ and define the unitary operator T by

T =
(

A 1−AB
0 B

)
, then σaw(A) is the boundary ∂D of the closed unit disc

D, σaw(B) = D, σaw(T ) = ∂D and σaw(T ) ∪ {σaw(A) ∩ σaw(B)} = ∂D ⊂
σaw(A) ∪ σaw(B). If ind(T − λ) = ind(A − λ) + ind(B − λ) whenever either of
the left hand side or the right hand side of the equality is defined (a hypothesis
trivially satisfied by operators T with an upper triangular representation), then
σx(T ) ⊆ σx(A)∪σx(B) for σx = σw or σaw. This follows from a straightforward ar-
gument when σx = σw [6]; for the case in which σx = σaw one argues as follows. Let
λ /∈ σaw(A)∪σaw(B). Then λ ∈ Φ−+(A)∩Φ−+(B), α(T−λ) ≤ α(A−λ)+α(B−λ) < ∞
and λ ∈ Φ+(T ). We have two possibilities: either α(T − λ) < β(T − λ) or
α(T − λ) ≥ β(T − λ). If α(T − λ) < β(T − λ), then λ ∈ Φ−+(T ) ⇐⇒ λ /∈ σaw(T ).
If, on the other hand, α(T − λ) ≥ β(T − λ), then λ ∈ Φ(T ). Since λ ∈ Φ(T )
implies λ ∈ Φ+(A) ∩ Φ−(B), λ ∈ Φ(B), and hence also that λ ∈ Φ(A). But then
ind(T − λ) = ind(A − λ) + ind(B − λ) ≤ 0; hence ind(T − λ) = 0, which implies
that λ /∈ σaw(T ).

The equality σx(T ) = σx(A) ∪ σx(B), σx = σw or σaw, fails to hold in general.
However:

Lemma 2.1. If ind(T −λ) = ind(A−λ)+ ind(B−λ), then either of the hypotheses
A and A∗, or A and B, or A∗ and B∗, or B and B∗ have SVEP on σw(T )C =
σ(T ) \ σw(T ) implies that σw(T ) = σw(A) ∪ σw(B).

Proof. We have to prove that σw(T ) ⊃ σw(A) ∪ σw(B). If λ ∈ σw(T )C , then
λ ∈ Φ+(A) ∩ Φ−(B) and ind(A − λ) + ind(B − λ) = 0. If either of the SVEP
hypotheses holds, then ind(A−λ) = ind(B−λ) = 0 (see the argument of the proof
of [10, Proposition 4.5]). This implies that λ /∈ σw(A) ∪ σw(B).

Again:

Lemma 2.2. If ind(T − λ) = ind(A − λ) + ind(B − λ), A and A∗ have SVEP on
σaw(T )C = σa(T ) \ σaw(T ), and B − λ has closed range for all λ ∈ σaw(T )C, then
σaw(T ) = σaw(A) ∪ σaw(B).
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Proof. We have to prove that σaw(T ) ⊃ σaw(A) ∪ σaw(B). If λ ∈ σaw(T )C , then
λ ∈ Φ+(A) and ind(A − λ) + ind(B − λ) ≤ 0. Since A and A∗ have SVEP at λ,
ind(A − λ) = 0, and so λ ∈ Φ0(A). We (now borrow an argument from [4], proof
of Proposition 8, (2) =⇒ (3), to) prove that α(B − λ) < ∞; this, because B − λ
has closed range, would then imply that λ ∈ Φ−+(B) (and hence that σaw(T ) ⊃
σaw(A) ∪ σaw(B)). Start by observing that α(B − λ) = dim(Y/E), where Y =
(T − λ)−1[E] = {x ∈ X : (T − λ)x ∈ E}. Since β(A− λ) < ∞, there exists a finite
dimensional subspace F of E such that E = (T − λ)E ⊕ F . Take a y ∈ Y (thus
(T −λ)y ∈ E). Then there exist e ∈ E and f ∈ F such that (T −λ)y = (T −λ)e+f .
But then (T−λ)(y−e) = f , i.e., y ∈ (T−λ)−1[F ]+E. Since F and α(T−λ) are finite
dimensional, (T−λ)−1[F ] is finite dimensional. Consequently, Y ⊆ (T−λ)−1[F ]+E,
which implies that E has finite codimension in Y .

The interested reader is invited to consult [10] for (further) conditions implying the
equality σx(T ) = σx(A)∪σx(B), σx = σw or σaw, in the case in which the operator
T has an upper triangular representation with diagonal (A,B).

Below we consider operators T such that σx(T ) = σx(A)∪σx(B) for σx = σw or
σaw. Such operators have some interesting properties, amongst them that σ(T ) =
σ(A) ∪ σ(B).

Theorem 2.3. (i) If σx(T ) = σx(A)∪ σx(B), where σx = σw or σaw, then σ(T ) =
σ(A) ∪ σ(B).

(ii) If σaw(T ) = σaw(A)∪σaw(B) and A∗ has SVEP on σaw(T )C, then σa(T ) =
σa(A) ∪ σa(B).

Proof. (i) We have to prove that σ(A) ∪ σ(B) ⊆ σ(T ). Let λ /∈ σ(T ). Then
λ ∈ Φ0(T ), α(A − λ) ≤ α(T − λ) = 0, β(B − λ) ≤ β(T − λ) = 0 and λ ∈
Φ−+(A) ∩Φ+

−(B). Since λ /∈ σw(T ), the hypothesis σw(T ) = σw(A) ∪ σw(B) implies
that λ ∈ Φ0(A) ∩Φ0(B). Hence α(A− λ) = α(B − λ) = β(A− λ) = β(B − λ) = 0,
which implies that λ /∈ σ(A) ∪ σ(B) (=⇒ σ(A) ∪ σ(B) ⊆ σ(T )). Now let σaw(T ) =
σaw(A) ∪ σaw(B). Then λ /∈ σaw(T ) implies that λ ∈ Φ−+(A) ∩ Φ−+(B). Already,
λ ∈ Φ+

−(B); hence λ ∈ Φ0(B), which implies that B − λ is invertible. This forces
A − λ to be invertible, leading us to the conclusion that λ /∈ σ(A) ∪ σ(B). Once
again, σ(A) ∪ σ(B) ⊆ σ(T ).

(ii) If λ /∈ σa(A) ∪ σa(B), then α(A − λ) = α(B − λ) = 0 and (since σaw(T ) =
σaw(A) ∪ σaw(B)) λ ∈ Φ−+(A) ∩ Φ−+(B). Since α(T − λ) ≤ α(A − λ) + α(B − λ)
[4], we conclude that α(T − λ) = 0. Recalling the isomorphisms E⊥ ∼= (X/E)∗ and
E∗ ∼= X ∗/E⊥, and identifying A∗ with T ∗|X∗/E⊥ and B∗ with T ∗|E⊥ , it follows that
λ ∈ Φ+

−(A∗)∩Φ+
−(B∗). Hence β(T ∗−λI∗) ≤ β(A∗−λI∗|X∗/E⊥)+β(B∗−λI∗|E⊥) <

∞ [4, Proposition 7]. This implies that T ∗−λI∗, and so also T−λ, has closed range.
Already α(T −λ) = 0; hence λ /∈ σa(T ), which implies that σa(T ) ⊆ σa(A)∪σa(B).
For the reverse inclusion, let λ /∈ σa(T ). Then T − λ is left invertible and λ ∈
Φ−+(A) ∩ Φ−+(B), which implies that A − λ is left invertible. Thus A∗ − λ(I|E)∗ is
surjective. Since a surjective operator has SVEP at 0 if and only if it is injective
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[1, Corollary 2.24], the hypothesis A∗ has SVEP at λ implies that A∗ − λ(I|E)∗,
and so also A − λ, is invertible. We prove next that B − λ is left invertible. Let
(T − λ)−1[E] = {x ∈ X : (T − λ)x ∈ E}. We prove that (T − λ)−1[E] = E.
Choose an x ∈ X such that (T − λ)x ∈ E. Then there exist y, z ∈ E such that
(T−λ)x = y = (A−λ)z = ((T−λ)|E)z = (T−λ)z, i.e., (T−λ)(x−z) = 0. Since T−λ
is left invertible, x = z; consequently, (T−λ)−1[E] = E. In view of this, we now have
that (B−λ)−1(0) = {x+E : (T −λ)x ∈ E} = ((T −λ)−1(0)+E)/E = (Y ⊕E)/E,
where Y is any subspace of (T −λ)−1(0) such that (T −λ)−1(0) = (A−λ)−1(0)⊕Y .
Since (A − λ)−1(0) = {0}, α(B − λ) = dimY ≤ dim(T − λ)−1(0) = 0. Since
B − λ has closed range, we conclude that B − λ is left invertible. Consequently,
λ /∈ σa(A) ∪ σa(B), which implies that σa(A) ∪ σa(B) ⊆ σa(T ).

Remark 2.4. (i) The hypothesis σw(T ) = σw(A) ∪ σw(B) in Theorem 2.3(i) may
be replaced by the (weaker) hypothesis that σw(A) or σw(B) (even, σw(A)∩σw(B))
⊆ σw(T ). Observe that if σw(A) ⊆ σw(T ), then λ /∈ σw(T ) =⇒ λ /∈ σw(A). Thus,
since λ /∈ σ(T ) implies λ ∈ Φ+(A)∩Φ−(B) with α(A−λ) = β(B−λ) = 0, it follows
that α(A− λ) = β(A− λ) = 0. Consequently, T − λ and A− λ are invertible; this
forces B − λ to be invertible.

(ii) The hypothesis σaw(T ) = σaw(A)∪σaw(B) in Theorem 2.3 may be replaced
by the hypothesis that σaw(B) ⊆ σaw(T ). Thus, if λ /∈ σ(T ), then σaw(B) ⊆ σaw(T )
implies that λ ∈ Φ−(B), β(B − λ) = 0 and λ ∈ Φ−+(B). But then α(B − λ) =
β(B − λ) = 0 and B − λ is invertible; since T − λ is invertible, it follows that
A − λ is invertible. Again, let λ /∈ σa(T ) and σaw(B) ⊆ σaw(T ). Then the SVEP
hypothesis on A∗ implies that A − λ is invertible, and this in turn implies that
α(B − λ) = 0. Since λ /∈ σaw(B), B − λ has closed range; hence B − λ is left
invertible.

For an operator S ∈ B(X ), let accσ(S) denote the points of accumulation of
σ(S). S satisfies Browder’s theorem (or, condition), Bt for short, if accσ(S) ⊆
σw(S); S satisfies a-Browder’s theorem (or, condition), a−Bt for short, if accσa(S) ⊆
σaw(S). The following implications are well known [1, 7, 10, 14]:

S satisfies Bt ⇐⇒ S∗ satisfies Bt ⇐⇒ σb(S) = σw(S) ⇐⇒ σ(S) \ σw(S) =
p0(S) ⇐⇒ S has SVEP on σw(S)C ;

S satisfies a−Bt ⇐⇒ σab(S) = σaw(S) ⇐⇒ σa(S) \ σaw(S) = pa
0(S) ⇐⇒ S has

SVEP on σaw(S)C ;
a−Bt =⇒ Bt, but the converse is generally false.

Bt, much less a−Bt, does not transfer from A and B to T : consider the operator
T = A ⊕ B, where A ∈ B(`2) is the forward unilateral shift and B = A∗ (when it
is seen that A and B satisfy Bt but T does not). The following theorem gives a
sufficient condition for the transfer of Bt (resp., a−Bt) from A and B to T .

Theorem 2.5. (i) If σw(T ) = σw(A)∪ σw(B), then A and B satisfy Bt implies T
satisfies Bt.

(ii) If σaw(T ) = σaw(A)∪σaw(B), then A and B satisfy a−Bt implies T satisfies
a−Bt.
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Proof. (i) We prove that σw(T ) = σb(T ): since σw(T ) ⊆ σb(T ) for every operator T ,
it would suffice to prove the reverse inclusion. Let λ /∈ σw(T ). Then the hypothesis
σw(T ) = σw(A) ∪ σw(B) implies that λ ∈ Φ0(A) ∩ Φ0(B). Since A and B satisfy
Bt, it follows that λ ∈ p0(A)

⋃
p0(B). Consequently, asc(T − λ) ≤ asc(A − λ) +

asc(B − λ) < ∞ and dsc(T − λ) ≤ dsc(A − λ) + dsc(B − λ) < ∞ [15, Exercise 7,
Page 293]. Evidently, α(T − λ) ≤ α(A− λ) + α(B − λ) < ∞. Hence λ /∈ σb(T ).

(ii) We prove that σaw(T ) = σab(T ): since σaw(T ) ⊆ σab(T ) for every operator
T , it would suffice to prove the reverse inclusion. Let λ /∈ σaw(T ). Then (the
hypothesis σaw(T ) = σaw(A) ∪ σaw(B) implies that) λ ∈ Φ−+(A) ∩ Φ−+(B). The
hypothesis A and B satisfy a−Bt implies that A has SVEP on σaw(A)C and B has
SVEP on σaw(B)C . Recall, [1, Theorem 3.16], that if an operator S has SVEP at a
point µ ∈ Φ+(S), then asc(S−µ) < ∞. Thus asc(T−λ) ≤ asc(A−λ)+asc(B−λ) <
∞. Evidently, λ ∈ Φ+(T ); hence λ /∈ σab(T ).

Remark 2.6. The hypothesis σw(T ) = σw(A) ∪ σw(B) is not sufficient for T

satisfies Bt to imply A and B satisfy Bt. To see this, let T =
(

A C
0 B

)
, where

A = U ∈ B(`2) is the forward unilateral shift, C = (1− UU∗ 0) and B = U∗ ⊕ U .
Then σ(T ) = σw(T ) = σw(A) ∪ σw(B) is the closed unit disc D, p0(T ) = ∅,
σ(B) = D, σw(B) = ∂D, both T and A satisfy Bt but B does not satisfy Bt.

Recall that an operator S ∈ B(X ) is polaroid at a point λ, λ ∈ p(S) (resp., a-
polaroid at λ, λ ∈ pa(S)) if (either λ ∈ ρ(S) or) λ ∈ isoσ(S) is a pole of the
resolvent of S (resp., λ ∈ isoσa(S), (S−λ)X is closed and asc(S−λ) < ∞) [11, 12];
we say that S is polaroid (resp., a-polaroid) if {λ : λ ∈ isoσ(S)} = p(S) (resp.,
{λ : λ ∈ isoσa(S)} = pa(S)). The following theorem relates the polaroid points of
T , A and B satisfying σ(T ) = σ(A) ∪ σ(B).

Theorem 2.7. If σ(T ) = σ(A) ∪ σ(B), then T is polaroid at a point λ if and only
if A and B are polaroid at λ.

Proof. Let λ ∈ isoσ(T ). Then λ ∈ isoσ(A)
⋃

isoσ(B). If A and B are polaroid at
λ, then the inequalities asc(T − λ) ≤ asc(A − λ) + asc(B − λ) and dsc(T − λ) ≤
dsc(A−λ)+dsc(B−λ) imply that T is polaroid at λ. Conversely, assume that T is
polaroid at λ. Then dsc(B−λ) ≤ dsc(T−λ) < ∞ and asc(A−λ) ≤ asc(T−λ) < ∞.
Since B has SVEP at λ, asc(B − λ) < ∞ [1, Theorem 3.81]. This implies that
λ ∈ p(B). The hypothesis that λ is a pole of the resolvent of T implies that
H0(T − λ) = (T − λ)−p(0) for some integer p ≥ 1. Since

H0(A− λ) = H0((T − λ)|E) ⊆ (T − λ)−p(0) ∩ E = ((T − λ)−p(0)|E)
= (A− λ)−p(0) ⊆ H0(A− λ),

it follows that H0(A− λ) = (A− λ)−p(0). Since λ ∈ isoσ(A),

E = H0(A− λ)⊕K(A− λ) = (A− λ)−p(0)⊕K(A− λ),

from which it follows that

E = (A− λ)−p(0)⊕ (A− λ)p(E),
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i.e., λ ∈ p(A).

Remark 2.8. Apparently, if σ(T ) = σ(A) ∪ σ(B), then A and B polaroid implies
T polaroid. The implication T is polaroid implies A and B are polaroid is however
false (even if one assumes that σw(T ) = σw(A) ∪ σw(B)). Let T = A ⊕ B ∈
B(`2 ⊕ `2), where A is the forward unilateral shift and B is a quasinilpotent. Then
σ(T ) = σw(T ) = σ(A) = σw(A) is the closed unit disc, and T and A are (vacuously)
polaroid. However, σ(B) = σw(B) = {0} and B is not polaroid at 0. In the presence
of σ(T ) = σ(A) ∪ σ(B), a sufficient condition for T polaroid to imply A and B
polaroid is that the sets accσ(T ) ∩ isoσ(A) and accσ(T ) ∩ isoσ(B) are empty: this
condition is however not necessary, as follows from a consideration of the operator
T = A⊕B ∈ B(`2⊕`2), where A is the forward unilateral shift and B is a nilpotent.

The operator S is said to be finitely polaroid at a point λ if λ ∈ p0(S). The
following corollary generalizes [2, Theorems 1 and 2].

Corollary 2.9. If σ(T ) = σ(A)∪ σ(B), then T is finitely polaroid at (a point) λ if
and only if A and B are finitely polaroid at λ.

Proof. Since α(T − λ) ≤ α(A − λ) + α(B − λ) whenever α(A − λ) and α(B − λ)
are finite [4, Proposition 7], Theorem 2.7 implies that T is finitely polaroid at λ
whenever A and B are finitely polaroid at λ. Conversely, if T is finitely polaroid at λ,
then λ ∈ isoσ(T ) implies λ ∈ Φ(T ). Hence, if λ ∈ p0(T ), then λ ∈ Φ+(A) ∩ Φ−(B)
and λ is a pole of the resolvents of A and B (or, λ is in the resolvent set of A
and/or B). Thus λ ∈ Φ0(A) ∩ Φ0(B), which implies that λ is a finite rank pole of
the resolvents of A and B.

The sufficiency part of Corollary 2.9 extends to finitely a-polaroid operators.

Proposition 2.10. If σa(T ) = σa(A) ∪ σa(B) and A, B are finitely a-polaroid at
a point λ, then T is finitely a-polaroid at λ.

Proof. The hypothesis σa(T ) = σa(A) ∪ σa(B) implies that if λ ∈ isoσa(T ) , then
λ ∈ isoσa(A)

⋃
isoσa(B). Thus, if A, B are finitely polaroid at λ and λ ∈ isoσa(T ),

then λ ∈ Φ+(A)∩Φ+(B), asc(A−λ) < ∞ and asc(B−λ) < ∞. But then λ ∈ Φ+(T )
and asc(T − λ) < ∞, i.e., λ ∈ pa

0(T ).

S ∈ B(X ) satisfies Weyl’s theorem (or, condition), Wt for short, if σ(S) \ σw(S) =
π0(S); S satisfies a-Weyl’s theorem (or, condition), a − Wt for short, if σa(S) \
σaw(S) = πa

0 (S). A necessary and sufficient condition for S to satisfy Wt (resp.,
a −Wt) is that S satisfies Bt (resp., a − Bt) and S is polaroid on π0(S) (resp., S
is a-polaroid on πa

0 (S)) [10, Theorem 4.3]. It is well known that a −Wt =⇒ Wt;
the reverse implication is generally false.

The hypothesis A and B satisfy Wt (or, a−Wt) is neither necessary nor sufficient
for T to satisfy Wt (resp., a −Wt). Thus, if A and B ∈ B(`2) are the operators
A(x1, x2, x3, ...) = (0, 0, 0, 1

2x2, 0, 1
3x3, ...) and B(x1, x2, x3, ...) = (0, x2, 0, x4, ...),

then σ(A) = σw(A) = π0(A) = {0}, σ(B) = σa(B) = σw(B) = σaw(B) = {0, 1},
πa

0 (B) = pa
0(B) = ∅, A does not satisfy Wt but both B and T = A ⊕ B satisfy
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a−Wt. Again, if B is the operator above, and A and C ∈ B(`2) are the operators
A(x1, x2, x3, ...) = (0, x1,

1
2x2, 0, 1

3x3, ...) and C(x1, x2, x3, ...) = (x1, 0, x2, 0, x3, ...),

then A and B satisfy a − Wt, but T =
(

A C
0 B

)
does not satisfy Wt (since

σ(T ) = σw(T ) = {0, 1} and π0(T ) = {0}). Observe that neither of the equalities
σw(T ) = σw(A) ∪ σw(B) and σaw(T ) = σaw(A) ∪ σaw(B) holds for the operators
of the examples above. The following theorem proves that the hypothesis A and B
satisfy Wt is sufficient for T to satisfy Wt if σw(T ) = σw(A)∪ σw(B) and A, B are
isoloid. Recall that the operator S is isoloid (resp., a-isoloid) if the isolated points
of σ(S) (resp., σa(S)) are eigenvalues of S.

Theorem 2.11. Suppose that σw(T ) = σw(A) ∪ σw(B). If A, B are isoloid and
satisfy Wt, then T satisfies Wt.

Proof. Evidently, A and B satisfy Bt. Hence, see Theorem 2.5(i), T satisfies Bt,
i.e., σ(T ) \ σw(T ) = p0(T ). Since p0(T ) ⊆ π0(T ), to complete the proof it would
suffice to prove the reverse inclusion. Let λ ∈ π0(T ). Recall from Theorem 2.3(i)
that the hypothesis σw(T ) = σw(A) ∪ σw(B) implies σ(T ) = σ(A) ∪ σ(B). Hence
λ ∈ isoσ(A)

⋃
isoσ(B). Clearly, α(A− λ) = dim{(T − λ)−1(0) ∩ E} < ∞. Since A

is isoloid, we may assume that λ ∈ π0(A); hence, since A satisfies Wt, λ ∈ p0(A).
Evidently, β(A − λ) < ∞. Arguing as in the proof of Lemma 2.2 it is seen that
α(B − λ) < ∞. Since B is isoloid and satisfies Bt, λ ∈ p0(B) (or, λ ∈ ρ(B)).
Applying Theorem 2.7 it follows that λ ∈ p0(T ). Hence π0(T ) ⊆ p0(T ).

The operator T of Remark 2.6 satisfies σ(T ) = σw(T ) = σw(A) ∪ σw(B) = D,
σ(A) = σw(A) = D and π0(T ) = π0(A) = ∅. Hence both T and A satisfy Wt.
However, since B does not satisfy Bt, it does not satisfy Wt: the condition σw(T ) =
σw(A) ∪ σw(B) is not sufficient for T satisfies Wt to imply A and B satisfy Wt.

Remark 2.12. The hypothesis that A and B satisfy Wt in Theorem 2.11 may be
replaced by the hypotheses that A and B satisfy Bt, A is polaroid on π0(A) and B is
polaroid on π0(B). A tightening of the hypotheses of Theorem 2.11 is possible in the
case in which either X = H is a Hilbert space or the subspace E is complemented

in X . In such a case, T has an upper triangular representation T =
(

A C
0 B1

)
,

where B1 is similar to B. Let T0 = A ⊕ B1. Then σ(T ) ⊆ σ(T0) = σ(A) ∪ σ(B1)
and σw(T ) ⊆ σw(T0) ⊆ σw(A)∪ σw(B1). This, since σx(B1) = σx(B) for σx = σ or
σw, implies that if σw(T ) = σw(A)∪σw(B), then σx(T0) = σx(T ) for σx = σ or σw.

Proposition 2.13. (cf. [9, Theorem 3.7]) Let T0 and T be defined as above. If
σw(T ) = σw(A)∪σw(B), T0 satisfies Wt and A is polaroid on π0(T ), then T satisfies
Wt.

Proof. Apparently, λ ∈ p0(T0) if and only if λ ∈ p0(A)
⋃

p0(B) (⇐⇒
λ ∈ p0(A)

⋃
p0(B1)) if and only if λ ∈ p0(T ); hence p0(T0) = p0(T ). Since T0

satisfies Wt,

σ(T ) \ σw(T ) = σ(T0) \ σw(T0) = p0(T0) = π0(T0) = p0(T ) ⊆ π0(T ).
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Let λ ∈ π0(T ). Then λ ∈ isoσ(A)
⋃

isoσ(B1). Since A is polaroid on π0(T ),
λ ∈ p0(A) = π0(A). Arguing as in the proof of Theorem 2.11, it is seen that
0 ≤ α(B1 − λ) < ∞, and hence that λ ∈ π0(A) ∩ π0(B1). Since T0 satisfies Wt,
λ ∈ π0(T0). Thus π0(T ) = π0(T0), and T satisfies Wt.

An easy argument shows that if any two of T0, A and B satisfy Wt, then so does
the third one. Again, if A is isoloid and satisfies Wt, then λ ∈ π0(T ) implies
λ ∈ p0(A) = π0(A) (implies A is polaroid on π0(T ).) Hence Proposition 2.13
implies Theorem 2.4 of [13].

If A∗ and B∗ have SVEP, then A and B satisfy a − Bt [10, Corollary 3.5],
σa(A) = σ(A) and σa(B) = σ(B) [1, Corollary 2.45], and (this follows from a
straightforward argument) σaw(A) = σw(A) and σaw(B) = σw(B). If, furthermore,
ind(T − λ) = ind(A − λ) + ind(B − λ), then it is seen that σw(T ) =(σaw(T ))=
σw(A)∪σw(B) (= σaw(A)∪σaw(B)). The following theorem generalizes [9, Theorem
3.11].

Theorem 2.14. If ind(T − λ) = ind(A− λ) + ind(B − λ), A∗ and B∗ have SVEP,
A is polaroid on π0(T ) and B is polaroid on π0(B), then T satisfies a−Wt.

Proof. Theorem 2.3 implies that σa(T ) = σa(A) ∪ σa(B) = σ(A) ∪ σ(B) = σ(T ).
Evidently, T satisfies a−Bt; indeed

σa(T ) \ σaw(T ) = σ(T ) \ σw(T ) = p0(T ) = pa
0(T ) ⊆ πa

0 (T ) = π0(T ).

Observe that if λ ∈ π0(T ), then λ ∈ p0(A) = pa
0(A) (or, λ ∈ ρ(A)) and λ ∈ p0(B) =

pa
0(B) (or, λ ∈ ρ(B)). Hence λ ∈ π0(T ) =⇒ λ ∈ pa

0(T ), which completes the
proof.

Remark 2.15. The example of the operator T =
(

A C
0 B

)
∈ B(`2 ⊕ `2), where

A(x1, x2, x3, ...) = (0, x1, 0, 1
2x2, 0, 1

3x3, ...), B(x1, x2, x3, ...) = (0, x2, 0, x4, 0, ...) and
C(x1, x2, x3, ...) = (0, 0, x2, 0, x3, ...), shows that the hypothesis A is polaroid on
π0(T ) in Theorem 2.14 can not be replaced by the hypothesis that A is polaroid on
π0(A). Observe that all the hypotheses of the theorem are satisfied, except for the
fact that π0(T ) = {0} and 0 /∈ p(A): T does not satisfy a−Wt, even Wt.

Remark 2.16. Let E be complemented in X , so that T0 and T have the repre-
sentations of Remark 2.12. Since B has SVEP at a point if and only if B1 has
SVEP at the point, and since ind(T − λ) = ind(A − λ) + ind(B1 − λ), either of
the conditions A and A∗, or A and B, or A∗ and B∗, or B and B∗ have SVEP on
σw(T )C implies that σw(T0) = σw(T ) = σw(A) ∪ σw(B1) (see Lemma 2.1). Again,
either of the conditions A and A∗, or A and B, have SVEP on σaw(T )C implies that
σaw(T ) = σaw(A)∪σaw(B1) [9, Theorem 4.12(ii)]. (Observe that if A∗ and B∗ have
SVEP on σaw(T )C , then σaw(T ) = σw(T ) = σw(A)∪σw(B1) = σaw(A)∪σaw(B1).)
Evidently, σaw(T ) ⊆ σaw(T0); if σaw(T ) = σaw(A) ∪ σaw(B1), then the following
implications show that σaw(T0) ⊆ σaw(T ) (so that σaw(T ) = σaw(T0)):

λ /∈ σaw(T ) =⇒ λ ∈ Φ−+(A) ∩ Φ−+(B1) =⇒ λ ∈ Φ−+(T0) =⇒ λ 6∈ σaw(T0).
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It is known, [9, Theorems 5.1 and 5.7], that: (i) If σw(T ) = σw(A)∪σw(B1), then the
equivalence T satisfies Wt ⇐⇒ T0 satisfies Wt holds if and only if π0(T ) = π0(T0);
(ii) If σaw(T ) = σaw(A)∪ σaw(B1) and A∗ has SVEP on σaw(T )C , then the equiva-
lence T satisfies a−Wt ⇐⇒ T0 satisfies a−Wt holds if and only if πa

0 (T ) = πa
0 (T0).

We prove next an analogue of Theorem 2.11 for operators T satisfying a−Wt.

Theorem 2.17. If σaw(T ) = σaw(A)∪ σaw(B), A∗ has SVEP on πa
0 (T ), A and B

are a-isoloid, and both A and B satisfy a−Wt, then T satisfies a−Wt.

Proof. The hypotheses imply that σa(A) \ σaw(A) = pa
0(A) = πa

0 (A), σa(B) \
σaw(B) = pa

0(B) = πa
0 (B), and σa(T ) \ σaw(T ) = pa

0(T ) ⊆ πa
0 (T ) (see Theo-

rem 2.5). Since σaw(T )C ⊆ πa
0 (T ), A∗ has SVEP on σaw(T )C ; hence σa(T ) =

σa(A) ∪ σa(B) (by Theorem 2.3). Thus to complete the proof, we have to prove
that πa

0 (T ) ⊆ pa
0(T ). Let λ ∈ πa

0 (T ). Then λ ∈ isoσa(T ) = isoσa(A)
⋃

isoσa(B) and
α(T −λ) < ∞. Evidently, α(A−λ) < ∞; hence (since A is a-isoloid) λ ∈ πa

0 (A) (or,
λ ∈ ρ(A)). Since A∗ has SVEP at λ, λ ∈ p0(A), so that β(A − λ) < ∞. Arguing
as before, it is seen that λ ∈ pa

0(B) (or, λ ∈ ρ(B)). Applying Proposition 2.10 we
conclude that λ ∈ pa

0(T ).
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