THE BROWDER AND WEYL SPECTRA
OF AN OPERATOR AND ITS DIAGONAL

B. P. Duggal, S. V. Djordjević and M. Cho

Abstract

If \(T \in B(\mathcal{X}) \) is a Banach space operator and \(E \) is a closed \(T \)-invariant subspace of \(\mathcal{X} \), then the restriction map \(A = T|_E \) and the quotient map \(B = T|_{\mathcal{X}/E} \) are well defined operators in \(B(E) \) and \(B(\mathcal{X}/E) \), respectively. It is proved that: (i) If \(\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B) \), where \(\sigma_x \) is either the Weyl spectrum \(\sigma_w \) or the Weyl essential approximate point spectrum \(\sigma_{aw} \), then \(\sigma(T) = \sigma(A) \cup \sigma(B) \); (ii) if \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \), and \(A^* \) has SVEP (the single–valued extension property), then \(\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B) \); (iii) if \(\sigma(T) = \sigma(A) \cup \sigma(B) \), then a point \(\lambda \) is a pole (resp., finite rank pole) of the resolvent of \(T \) if and only if \(\lambda \) is a pole (resp., finite rank pole) of the resolvents of \(A \) and \(B \). Letting \(\sigma_b \) and \(\sigma_{ab} \) denote, respectively, the Browder spectrum and the Browder essential approximate point spectrum, an operator \(S \in B(\mathcal{X}) \) satisfies Browder’s theorem (resp., \(a \)-Browder’s theorem) if \(\sigma_w(S) = \sigma_b(S) \) (resp., \(\sigma_{aw}(S) = \sigma_{ab}(S) \)); \(S \) satisfies Weyl’s theorem if \(\sigma(S) \setminus \sigma_w(S) = \{ \lambda \in \text{iso}\sigma(S) : 0 < \dim(S - \lambda)^{-1}(0) < \infty \} \). Recall that \(S \) is isoloid if \(\lambda \in \text{iso}\sigma(S) \) implies \(0 < \dim(S - \lambda)^{-1}(0) \). We prove that: (iv) if \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) (resp., \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \)), then Browder’s theorem (resp., \(a \)-Browder’s theorem) transfers from \(A \) and \(B \) to \(T \); (v) if \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \), and \(A, B \) are isoloid, then Weyl’s theorem transfers from \(A \) and \(B \) to \(T \).

1 Introduction

Let \(B(\mathcal{X}) \) denote the algebra of operators (i.e., bounded linear transformations) on a Banach space \(\mathcal{X} \) into itself. The problem of the relationship between the spectrum, and some of its more distinguished parts, of an (upper triangular) operator \(T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in B(\mathcal{X}) \) and its diagonal \((A, B) \) has been considered by a number of authors, amongst them [3, 4, 5, 8, 9, 11, 13, 14]. A related but more demanding
problem which has been considered in the recent past is the following. Let \(T \in B(\mathcal{X}) \) and let \(E \) be a \(T \)-invariant closed subspace of \(\mathcal{X} \). Then the restriction \(A = T|_E \) and the quotient map \(B = T|_E/\mathcal{X} \) are well defined operators in \(B(E) \) and \(B(\mathcal{X}/E) \), respectively. Following Barnes [3], let us call the pair \((A, B)\) the diagonal of \(T \). What is the relationship between the spectrum \(\sigma \), the Fredholm spectrum \(\sigma_s \), the Browder spectrum \(\sigma_b \), the Weyl spectrum \(\sigma_w \) and the Weyl essential approximate point spectrum \(\sigma_{aw} \) of the operator \(T \) and its diagonal \((A, B)\)?

Evidently, if \(T \) is Fredholm, \(T \in \Phi(\mathcal{X}) \), then \(A \) is upper semi-Fredholm; identifying \(B^* \) with \(T^*|_{\mathcal{X}/E} \), it follows that \(B^* \) is upper semi-Fredholm, which implies that \(B \) is lower semi-Fredholm. It is not difficult to verify, [3, 6], that \(\sigma_x(T) \cup \{ \sigma_x(A) \cap \sigma_x(B) \} = \sigma_x(A) \cup \sigma_x(B) \) for \(\sigma_x = \sigma = \sigma_b \). (Thus, if any two of \(T \), \(A \) and \(B \) are invertible or Fredholm or Browder, then so is the third one.) The relationship between the Weyl spectrum, and the Weyl essential approximate point spectrum, of \(A \) and \(B \) is a bit more delicate. The equality \(\sigma_x(T) \cup \{ \sigma_x(A) \cap \sigma_x(B) \} = \sigma_x(A) \cup \sigma_x(B) \) fails for \(\sigma_x = \sigma_w \) and \(\sigma_x = \sigma_{aw} \); however, if the (Fredholm) indices satisfy the equality \(\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \), whenever the left hand side or the right hand side of the equality is finite, then \(\sigma_x(T) \subseteq \sigma_x(A) \cup \sigma_x(B) \) for \(\sigma_x = \sigma_w \) and \(\sigma_{aw} \).

In this paper, we consider operators \(T \in B(\mathcal{X}) \) such that \(\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B) \), where \((A, B)\) is the diagonal of \(T \), for \(\sigma_x = \sigma_w \) or \(\sigma_{aw} \), and prove that such operators satisfy \(\sigma(T) = \sigma(A) \cup \sigma(B) \). In the case in which \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \) and \(A^* \) has SVEP \((\text{the single-valued extension property})\) on the complement \(\sigma_{aw}(T)^c \) of \(\sigma_{aw}(T) \) in the approximate point spectrum \(\sigma_{aw}(T) \), it is seen that \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \). For an operator \(S \in B(\mathcal{X}) \), we say that \(S \) is polaroid (resp., \(a \)-polaroid) at a point \(\lambda \) in the complex plane \(\mathbb{C} \) if either \(\lambda \) is in the resolvent set \(\rho(S) = \mathbb{C} \setminus \sigma(S) \) or \(\lambda \in \text{is} \sigma(S) \) is a pole of the resolvent of \(S \) (resp., \(\lambda \in \text{is} \sigma(S) \)), \((S - \lambda) \mathcal{X} \) is closed and the ascent \(\text{asc}(S - \lambda) < \infty \). Let \(p(S), p_0(S), p^a(S), p_0^a(S), \pi_0(S) \) and \(\pi^a_0(S) \) denote, respectively, the sets \(p(S) = \{ \lambda : S \) is polaroid at \(\lambda \}, p_0(S) = \{ \lambda \in p(S) : \dim(S - \lambda)^{-1}(0) < \infty \}, p^a(S) = \{ \lambda : S \) is \(a \)-polaroid at \(\lambda \}, p_0^a(S) = \{ \lambda \in p^a(S) : \dim(S - \lambda)^{-1}(0) < \infty \}, \pi_0(S) = \{ \lambda \in \text{is} \sigma(S) : 0 < \dim(S - \lambda)^{-1}(0) < \infty \} \) and \(\pi^a_0(S) = \{ \lambda \in \text{is} \sigma(S) : 0 < \dim(S - \lambda)^{-1}(0) < \infty \} \). If \(\sigma(T) = \sigma(A) \cup \sigma(B) \), then \(\lambda \in p(T) \Leftrightarrow \lambda \in p(A) \cup p(B) = \{ p(A) \cap p(B) \cup (p(A) \cap p(B)) \} \) and \(\lambda \in p_0(T) \Leftrightarrow \lambda \in p_0(A) \cup p_0(B) ; \) if \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \), \(A \) and \(B \) are isoloid, \(\sigma(A) \setminus \sigma_w(A) = \pi_0(A) \) and \(\sigma(B) \setminus \sigma_w(B) = \pi_0(B) \), then \(\sigma(T) \setminus \sigma_{aw}(T) = \pi_0(T) ; \) if \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \), \(\sigma_a(A) \setminus \sigma_{aw}(A) = \pi^a_0(A) \), \(A \) and \(B \) are \(a \)-isoloid, \(\sigma(B) \setminus \sigma_{aw}(B) = \pi^a_0(B) \) and \(A^* \) has SVEP on \(\pi^a_0(T) \), then \(\sigma_a(T) \setminus \sigma_{aw}(T) = \pi^a_0(T) \).

2 Results

We start by explaining the terminology already introduced, and by introducing further notation and terminology.

An operator \(S \in B(\mathcal{X}) \) is upper semi-Fredholm (resp., lower semi-Fredholm) at a complex number \(\lambda \in \mathbb{C} \) if the range \((S - \lambda) \mathcal{X} \) is closed and \(\alpha(S - \lambda) = \dim(S - \lambda) \).
\(\lambda^{-1}(0) < \infty \) (resp., \(\beta(S - \lambda) = \dim(\mathcal{X}/(S - \lambda)\mathcal{X}) < \infty \)). Let \(\lambda \in \Phi_+ (S) \) (resp., \(\lambda \in \Phi_-(S) \)) denote that \(S \) is upper semi-Fredholm (resp., lower semi-Fredholm) at \(\lambda \). The operator \(S \) is Fredholm at \(\lambda \), denoted \(\lambda \in \Phi(S) \), if \(\lambda \in \Phi_+(S) \cap \Phi_-(S) \). Let \(\text{ind}(S - \lambda) = \alpha(S - \lambda) - \beta(S - \lambda) \) denote the Fredholm index of \(S - \lambda \). The ascent \(\text{asc}(S - \lambda) \) (resp., the descent \(\text{dsc}(S - \lambda) \)) of \(S - \lambda \) is the least non-negative integer \(n \) such that \((S - \lambda)^{-n}(0) = (S - \lambda)^{-n+1}(0) \) (resp., the least non-negative integer \(n \) such that \((S - \lambda)^n \mathcal{X} = (S - \lambda)^{n+1} \mathcal{X} \)); if no such integer exists, then \(\text{asc}(S - \lambda) \) (resp., \(\text{dsc}(S - \lambda) \)) is infinite. Let \(\Phi_\pm(S) = \{ \lambda : \lambda \in \Phi_+(S), \text{ind}(S - \lambda) \leq 0 \} \), \(\Phi_\pm(S) = \{ \lambda : \lambda \in \Phi_+(S), \text{ind}(S - \lambda) \geq 0 \} \) and \(\Phi^0(S) = \{ \lambda : \lambda \in \Phi(S), \text{ind}(S - \lambda) = 0 \} \). \(S \) is Browder (resp., Weyl) at \(\lambda \) if \(\lambda \in \Phi(S) \) and \(\text{asc}(S - \lambda) = \text{dsc}(S - \lambda) < \infty \) (resp., if \(\lambda \in \Phi^0(S) \)). Recall that a necessary and sufficient condition for \(\lambda \in \mathbb{C} \) to belong to \(p(S) \) is that \(\text{asc}(S - \lambda) = \text{dsc}(S - \lambda) < \infty \); also, \(\text{asc}(S - \lambda) < \infty \) implies \(\text{ind}(S - \lambda) \leq 0 \) and \(\text{dsc}(S - \lambda) < \infty \) implies \(\text{ind}(S - \lambda) \geq 0 \). The Browder spectrum, the Weyl spectrum, the Browder essential approximate point spectrum \(\sigma_{ab}(S) \) and the Weyl essential approximate point spectrum of \(S \) are, respectively, the sets \(\sigma_e(S) = \{ \lambda \in \mathbb{C} : S - \lambda \) is not Browder \}, \(\sigma_w(S) = \{ \lambda \in \mathbb{C} : S - \lambda \) is not Weyl \}, \(\sigma_{ab}(S) = \{ \lambda \in \sigma_e(S) : \lambda \notin \Phi_+(S) \) or \(\text{asc}(S - \lambda) = \infty \} \) and \(\sigma_{aw}(S) = \{ \lambda \in \mathbb{C} : \lambda \notin \Phi_+(S) \) or \(\text{ind}(S - \lambda) \leq 0 \} \). An operator \(S \in B(\mathcal{X}) \) has the single-valued extension property at \(\lambda_0 \in \mathbb{C} \), \(\text{SVEP} \) at \(\lambda_0 \), if for every open disc \(D_{\lambda_0} \) centered at \(\lambda_0 \) the only analytic function \(f : D_{\lambda_0} \to \mathcal{X} \) which satisfies

\[
(S - \lambda)f(\lambda) = 0 \quad \text{for all} \quad \lambda \in D_{\lambda_0}
\]

is the function \(f \equiv 0 \). Trivially, every operator \(S \) has \(\text{SVEP} \) on its resolvent set \(\rho(S) = \mathbb{C} \setminus \sigma(S) \); also \(S \) has \(\text{SVEP} \) at points \(\lambda \in \text{iso}(S) \). (Here \(\text{iso}(S) \) denotes the set of isolated points of \(\sigma(S) \).) Let \(\Xi(S) \) denote the set of \(\lambda \in \mathbb{C} \) where \(S \) does not have \(\text{SVEP} \); we say that \(S \) has \(\text{SVEP} \) if \(\Xi(S) = \emptyset \). The quasinilpotent part \(H_0(S - \lambda) \) and the analytic core \(K(S - \lambda) \) of \((S - \lambda) \) are defined by

\[
H_0(S - \lambda) = \{ x \in \mathcal{X} : \lim_{n \to \infty} \|(S - \lambda)^n x\|^{\frac{1}{n}} = 0 \}
\]

and

\[
K(S - \lambda) = \{ x \in \mathcal{X} : \text{there exists a sequence } \{ x_n \} \subset \mathcal{X} \text{ and } \delta > 0 \text{ for which } x = x_0, (S - \lambda)x_{n+1} = x_n \text{ and } \|x_n\| \leq \delta^n \|x\| \text{ for all } n = 1, 2, \ldots \}.
\]

We note that \(H_0(S - \lambda) \) and \(K(S - \lambda) \) are (generally) non-closed hyperinvariant subspaces of \((S - \lambda) \) such that \((S - \lambda)^{-p}(0) \subseteq H_0(S - \lambda) \) for all \(p = 0, 1, 2, \ldots \) and \((S - \lambda)K(S - \lambda) = K(S - \lambda) \) [1]. Recall that if \(\lambda \in \text{iso}(S) \), then \(\mathcal{X} = H_0(S - \lambda) \oplus K(S - \lambda) \) [1, Theorem 3.74].

Unless otherwise evident from the context, we assume in the following that \(T \in B(\mathcal{X}) \), \(E \) is a closed \(T \)-invariant subspace of \(\mathcal{X} \), \(A = T|_E \) and \(B = T|_{\mathcal{X}/E} \). We write \(\text{iso}(A) \cup \text{iso}(B) \) for \(\{ \text{iso}(A) \cap \rho(B) \} \cup \{ \text{iso}(A) \cap \sigma(B) \} \) and \(\{ \rho(A) \cap \text{iso}(B) \} \), where \(\rho(\cdot) = \mathbb{C} \setminus \sigma(\cdot) \) is the resolvent set; the expressions \(p_0(A) \cup p_0(B) \) and \(\tau_0(A) \cup \tau_0(B) \) shall have a similar meaning. Henceforth, we shall write \(A - \lambda I|_E \), \(B - \lambda I|_{\mathcal{X}/E} \), \(\sigma_w(\cdot)^C \) for \(\sigma(\cdot) \setminus \sigma_w(\cdot) \) and \(\sigma_{aw}(\cdot)^C \) for \(\sigma_a(\cdot) \setminus \sigma_{aw}(\cdot) \).
It is well known that the equality \(\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B) \), where \(\sigma_x = \sigma \) or \(\sigma_b \) or \(\sigma_w \) or \(\sigma_{aw} \), does not hold in general. If \(\sigma_x = \sigma \) or \(\sigma_b \), then \(\sigma_x(T) \cup \{ \sigma_x(A) \cap \sigma_x(B) \} = \sigma_x(A) \cup \sigma_x(B) \) [6]. This equality, however, fails if \(\sigma_x = \sigma_w \) or \(\sigma_{aw} \), as follows from the following examples. If we let \(A, B \in B(\ell^2) \) be defined by

\[
A(x_1, x_2, x_3, \ldots) = (0, 0, 0, \tfrac{1}{2}x_2, 0, \tfrac{1}{3}x_3, \ldots),
\]

\[
B(x_1, x_2, x_3, \ldots) = (0, x_2, 0, x_4, \ldots)
\]

and \(T = A \oplus B \), then \(\sigma_w(A) = \{ 0 \} \), \(\sigma_w(B) = \{ 0, 1 \} \), \(\sigma_w(T) = \{ 0 \} \) and \(\sigma_w(T) \cup \{ \sigma_w(A) \cap \sigma_w(B) \} = \{ 0 \} \subset \sigma_w(A) \cup \sigma_w(B) \). Again, if we let \(A \in B(\ell^2) \) denote the forward unilateral shift, \(B = A^* \) and define the unitary operator \(T \) by

\[
T = \begin{pmatrix} A & 1 - AB \\ 0 & B \end{pmatrix},
\]

then \(\sigma_{aw}(A) \) is the boundary \(\partial D \) of the closed unit disc \(D \), \(\sigma_{aw}(B) = D \), \(\sigma_{aw}(T) = \partial D \) and \(\sigma_{aw}(T) \cup \{ \sigma_{aw}(A) \cap \sigma_{aw}(B) \} = \partial D \subset \sigma_{aw}(A) \cup \sigma_{aw}(B) \). If \(\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \) whenever either of the left hand side or the right hand side of the equality is defined (a hypothesis trivially satisfied by operators \(T \) with an upper triangular representation), then \(\sigma_x(T) \subseteq \sigma_x(A) \cup \sigma_x(B) \) for \(\sigma_x = \sigma_w \) or \(\sigma_{aw} \). This follows from a straightforward argument when \(\sigma_x = \sigma_w \) [6]; for the case in which \(\sigma_x = \sigma_{aw} \) one argues as follows. Let \(\lambda \notin \sigma_{aw}(A) \cup \sigma_{aw}(B) \). Then \(\lambda \in \Phi_+(A) \cap \Phi_+(B) \), \(\alpha(T - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda) < \infty \) and \(\lambda \in \Phi_+(T) \). We have two possibilities: either \(\alpha(T - \lambda) < \beta(T - \lambda) \) or \(\alpha(T - \lambda) \geq \beta(T - \lambda) \). If \(\alpha(T - \lambda) < \beta(T - \lambda) \), then \(\lambda \notin \Phi_+(T) \). If, on the other hand, \(\alpha(T - \lambda) \geq \beta(T - \lambda) \), then \(\lambda \in \Phi(T) \). Since \(\lambda \in \Phi(T) \) implies \(\lambda \in \Phi_+(A) \cap \Phi_-(B) \), \(\lambda \in \Phi(B) \), and hence also that \(\lambda \notin \Phi(A) \). But then \(\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \leq 0 \); hence \(\text{ind}(T - \lambda) = 0 \), which implies that \(\lambda \notin \sigma_{aw}(T) \).

The equality \(\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B) \), \(\sigma_x = \sigma_w \) or \(\sigma_{aw} \), fails to hold in general. However:

Lemma 2.1. If \(\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \), then either of the hypotheses \(A \) and \(A^* \), or \(A \) and \(B \), or \(A^* \) and \(B^* \), or \(B \) and \(B^* \) have SVEP on \(\sigma_w(T)^c = \sigma(T) \setminus \sigma_w(T) \) implies that \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \).

Proof. We have to prove that \(\sigma_w(T) \supseteq \sigma_w(A) \cup \sigma_w(B) \). If \(\lambda \in \sigma_w(T)^c \), then \(\lambda \in \Phi_+(A) \cap \Phi_-(B) \) and \(\text{ind}(A - \lambda) + \text{ind}(B - \lambda) = 0 \). If either of the SVEP hypotheses holds, then \(\text{ind}(A - \lambda) = \text{ind}(B - \lambda) = 0 \) (see the argument of the proof of [10, Proposition 4.5]). This implies that \(\lambda \notin \sigma_w(A) \cup \sigma_w(B) \). \(\square \)

Again:

Lemma 2.2. If \(\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda) \), \(A \) and \(A^* \) have SVEP on \(\sigma_{aw}(T)^c = \sigma_{aw}(T) \setminus \sigma_{aw}(T) \), and \(B - \lambda \) has closed range for all \(\lambda \in \sigma_{aw}(T)^c \), then \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \).
Proof. We have to prove that $\sigma_{aw}(T) \supset \sigma_{aw}(A) \cup \sigma_{aw}(B)$. If $\lambda \in \sigma_{aw}(T)^C$, then
$\lambda \in \Phi_+(A)$ and $\text{ind}(A - \lambda) + \text{ind}(B - \lambda) \leq 0$. Since A and A^* have SVEP at λ, $\text{ind}(A - \lambda) = 0$, and so $\lambda \in \Phi^0(A)$. We (now borrow an argument from [4], proof of Proposition 8, (2) \implies (3), to) prove that $\alpha(B - \lambda) < \infty$; this, because $B - \lambda$ has closed range, would then imply that $\lambda \in \Phi^+_w(B)$ (and hence that $\sigma_{aw}(T) \supset \sigma_{aw}(A) \cup \sigma_{aw}(B)$). Start by observing that $\alpha(B - \lambda) = \dim(Y/E)$, where
$Y = (T - \lambda)^{-1}[E] = \{x \in X : (T - \lambda)x \in E\}$. Since $\alpha(B - \lambda) < \infty$, there exists a finite dimensional subspace F of E such that $E = (T - \lambda)E \oplus F$. Take a $y \in Y$ (thus
$(T - \lambda)y = 0$). Then there exist $e \in E$ and $f \in F$ such that $(T - \lambda)y = (T - \lambda)e + f$. But then $(T - \lambda)(y - e) = f$, i.e., $y \in (T - \lambda)^{-1}[F] + E$. Since F and $\alpha(T - \lambda)$ are finite dimensional, $(T - \lambda)^{-1}[F]$ is finite dimensional. Consequently, $Y \subseteq (T - \lambda)^{-1}[F] + E$, which implies that E has finite codimension in Y. \qed

The interested reader is invited to consult [10] for (further) conditions implying the equality $\sigma_x(T) = \sigma_{aw}(A) \cup \sigma_x(B)$, $\sigma_x = \sigma_{aw}$ or σ_{aw}, in the case in which the operator T has an upper triangular representation with diagonal (A, B).

Below we consider operators T such that $\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B)$ for $\sigma_x = \sigma_{aw}$ or σ_{aw}. Such operators have some interesting properties, amongst them that $\sigma(T) = \sigma(A) \cup \sigma(B)$.

Theorem 2.3. (i) If $\sigma_x(T) = \sigma_x(A) \cup \sigma_x(B)$, where $\sigma_x = \sigma_{aw}$ or σ_{aw}, then $\sigma(T) = \sigma(A) \cup \sigma(B)$.

(ii) If $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$ and A^* has SVEP on $\sigma_{aw}(T)^C$, then $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$.

Proof. (i) We have to prove that $\sigma(A) \cup \sigma(B) \subseteq \sigma(T)$. Let $\lambda \notin \sigma(T)$. Then
$\lambda \in \Phi^0(T)$, so $\alpha(A - \lambda) \leq \alpha(T - \lambda) = 0$, $\beta(B - \lambda) \leq \beta(T - \lambda) = 0$ and $\lambda \in \Phi^-_w(A) \cap \Phi^+_w(B)$. Since $\lambda \notin \sigma_{aw}(T)$, the hypothesis $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$ implies that $\lambda \in \Phi^0(A) \cap \Phi^0(B)$. Hence $\alpha(A - \lambda) = \alpha(B - \lambda) = \beta(A - \lambda) = \beta(B - \lambda) = 0$, which implies that $\lambda \notin \sigma(A) \cup \sigma(B)$ ($\implies \sigma(A) \cup \sigma(B) \subseteq \sigma(T)$). Now let $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$. Then $\lambda \notin \sigma_{aw}(T)$ implies that $\lambda \in \Phi^-_w(A) \cap \Phi^+_w(B)$. Already, $\lambda \in \Phi^+_w(B)$; hence $\lambda \in \Phi^0(B)$, which implies that $B - \lambda$ is invertible. This forces $A - \lambda$ to be invertible, leading us to the conclusion that $\lambda \notin \sigma(A) \cup \sigma(B)$. Once again, $\sigma(A) \cup \sigma(B) \subseteq \sigma(T)$.

(ii) If $\lambda \notin \sigma_{aw}(A) \cup \sigma_{aw}(B)$, then $\alpha(A - \lambda) = \alpha(B - \lambda) = 0$ and (since $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$) $\lambda \in \Phi^-_w(A) \cap \Phi^-_w(B)$. Since $\alpha(T - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda)$ [4], we conclude that $\alpha(T - \lambda) = 0$. Recalling the isomorphisms $E^\perp \cong (X/E^*)^*$ and $E^* \cong X^*/E^\perp$, and identifying A^* with $T^*|_{X^*/E^\perp}$ and B^* with $T^*|_{E^\perp}$, it follows that
$\lambda \in \Phi^+_w(A^*) \cap \Phi^+_w(B^*)$. Hence
$\beta(T^* - \lambda I^*) \leq \beta(A^* - \lambda I^*|_{X^*/E^\perp} + B^* - \lambda I^*|_{E^\perp}) < \infty$ [4, Proposition 7]. This implies that $T^* - \lambda I^*$, and so also $T - \lambda$, has closed range. Already $\alpha(T - \lambda) = 0$; hence $\lambda \notin \sigma_{aw}(T)$, which implies that $\sigma_{aw}(T) \subseteq \sigma_{aw}(A) \cup \sigma_{aw}(B)$. For the reverse inclusion, let $\lambda \notin \sigma_{aw}(T)$. Then $T - \lambda$ is left invertible and $\lambda \in \Phi^-_w(A) \cap \Phi^-_w(B)$, which implies that $A - \lambda$ is left invertible. Thus $A^* - \lambda I_{|E^\perp}$ is surjective. Since a surjective operator has SVEP at 0 if and only if it is injective...
The hypothesis A^* has SVEP at λ implies that $A^* - \lambda(I|_E)^*$, and so also $A - \lambda$, is invertible. We prove next that $B - \lambda$ is left invertible. Let $(T - \lambda)^{-1}[E] = \{x \in X : (T - \lambda)x \in E\}$. We prove that $(T - \lambda)^{-1}[E] = E$. Choose an $x \in X$ such that $(T - \lambda)x \in E$. Then there exist $y, z \in E$ such that $(T - \lambda)x = y = (A - \lambda)z = ((T - \lambda)|_E)z = (T - \lambda)z$, i.e., $(T - \lambda)(x - z) = 0$. Since $T - \lambda$ is left invertible, $x = z$; consequently, $(T - \lambda)^{-1}[E] = E$. In view of this, we now have that $(B - \lambda)^{-1}(0) = \{x + E : (T - \lambda)x \in E\} = ((T - \lambda)^{-1}(0) + E)/E = (Y \oplus E)/E$, where Y is any subspace of $(T - \lambda)^{-1}(0)$ such that $(T - \lambda)^{-1}(0) = (A - \lambda)^{-1}(0) \oplus Y$. Since $(A - \lambda)^{-1}(0) = \{0\}$, $\alpha(B - \lambda) = \dim Y \leq \dim (T - \lambda)^{-1}(0) = 0$. Since $B - \lambda$ has closed range, we conclude that $B - \lambda$ is left invertible. Consequently, $\lambda \notin \sigma_u(A) \cup \sigma_u(B)$, which implies that $\sigma_u(A) \cup \sigma_u(B) \subseteq \sigma_u(T)$.

Remark 2.4. (i) The hypothesis $\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B)$ in Theorem 2.3(i) may be replaced by the (weaker) hypothesis that $\sigma_w(A)$ or $\sigma_w(B)$ (even, $\sigma_w(A) \cap \sigma_w(B)$) $\subseteq \sigma_w(T)$. Observe that if $\sigma_w(A) \subseteq \sigma_w(T)$, then $\lambda \notin \sigma_w(T) \Rightarrow \lambda \notin \sigma_w(A)$. Thus, since $\lambda \notin \sigma(T)$ implies $\lambda \in \Phi_+(A) \cap \Phi_-(B)$ with $\alpha(A - \lambda) = \beta(B - \lambda) = 0$, it follows that $\alpha(A - \lambda) = \beta(B - \lambda) = 0$. Consequently, $T - \lambda$ and $A - \lambda$ are invertible; this forces $B - \lambda$ to be invertible.

(ii) The hypothesis $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$ in Theorem 2.3 may be replaced by the hypothesis that $\sigma_{aw}(B) \subseteq \sigma_{aw}(T)$. Thus, if $\lambda \notin \sigma(T)$, then $\sigma_{aw}(B) \subseteq \sigma_{aw}(T)$ implies that $\lambda \in \Phi_-(B)$, $\beta(B - \lambda) = 0$ and $\lambda \in \Phi_+(B)$. But then $\alpha(B - \lambda) = \beta(B - \lambda) = 0$ and $B - \lambda$ is invertible; since $T - \lambda$ is invertible, it follows that $A - \lambda$ is invertible. Again, let $\lambda \notin \sigma_u(T)$ and $\sigma_{aw}(B) \subseteq \sigma_{aw}(T)$. Then the SVEP hypothesis on A^* implies that $A - \lambda$ is invertible, and this in turn implies that $\alpha(B - \lambda) = 0$. Since $\lambda \notin \sigma_{aw}(B)$, $B - \lambda$ has closed range; hence $B - \lambda$ is left invertible.

For an operator $S \in B(X)$, let $\text{acc}\sigma(S)$ denote the points of accumulation of $\sigma(S)$. S satisfies Browder’s theorem (or, condition), Bt for short, if $\text{acc}\sigma(S) \subseteq \sigma_u(S)$; S satisfies a-Browder’s theorem (or, condition), $a-Bt$ for short, if $\text{acc}\sigma_a(S) \subseteq \sigma_{aw}(S)$. The following implications are well known [1, 7, 10, 14]:

1. S satisfies $Bt \iff S^*$ satisfies $Bt \iff \sigma_u(S) = \sigma_w(S) \iff \sigma(S) \setminus \sigma_u(S) = p_0(S) \iff S$ has SVEP on $\sigma_u(S)^c$;

2. S satisfies $a-Bt \iff \sigma_{aw}(S) = \sigma_{aw}(S) \iff \sigma_a(S) \setminus \sigma_{aw}(S) = p_0^a(S) \iff S$ has SVEP on $\sigma_{aw}(S)^c$;

3. $a-Bt \implies Bt$, but the converse is generally false.

Bt, much less $a-Bt$, does not transfer from A and B to T: consider the operator $T = A \oplus B$, where $A \in B(\ell^2)$ is the forward unilateral shift and $B = A^*$ (when it is seen that A and B satisfy Bt but T does not). The following theorem gives a sufficient condition for the transfer of Bt (resp., $a-Bt$) from A and B to T.

Theorem 2.5. (i) If $\sigma_w(T) = \sigma_u(A) \cup \sigma_u(B)$, then A and B satisfy Bt implies T satisfies Bt.

(ii) If $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B)$, then A and B satisfy $a-Bt$ implies T satisfies $a-Bt$.
Proof. (i) We prove that \(\sigma_w(T) = \sigma_b(T) \): since \(\sigma_w(T) \subseteq \sigma_b(T) \) for every operator \(T \), it would suffice to prove the reverse inclusion. Let \(\lambda \notin \sigma_w(T) \). Then the hypothesis \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) implies that \(\lambda \in \Phi^0(A) \cap \Phi^0(B) \). Since \(A \) and \(B \) satisfy \(Bt \), it follows that \(\lambda \in p_0(A) \cup p_0(B) \). Consequently, \(\text{asc}(T - \lambda) \leq \text{asc}(A - \lambda) + \text{asc}(B - \lambda) < \infty \) and \(\text{dsc}(T - \lambda) \leq \text{dsc}(A - \lambda) + \text{dsc}(B - \lambda) < \infty \) [15, Exercise 7, Page 293]. Evidently, \(\alpha(T - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda) < \infty \). Hence \(\lambda \notin \sigma_b(T) \).

(ii) We prove that \(\sigma_{aw}(T) = \sigma_{ab}(T) \): since \(\sigma_{aw}(T) \subseteq \sigma_{ab}(T) \) for every operator \(T \), it would suffice to prove the reverse inclusion. Let \(\lambda \notin \sigma_{aw}(T) \). Then (the hypothesis \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \) implies that) \(\lambda \in \Phi^0_+(A) \cap \Phi^0_+(B) \). The hypothesis \(A \) and \(B \) satisfy \(a - Bt \) implies that \(A \) has SVEP on \(\sigma_{aw}(A)^c \) and \(B \) has SVEP on \(\sigma_{aw}(B)^c \). Recall, [1, Theorem 3.16], that if an operator \(S \) has SVEP at a point \(\mu \in \Phi_+(S) \), then \(\text{asc}(S - \mu) < \infty \). Thus \(\text{asc}(T - \lambda) \leq \text{asc}(A - \lambda) + \text{asc}(B - \lambda) < \infty \). Evidently, \(\lambda \in \Phi_+(T) \); hence \(\lambda \notin \sigma_{ab}(T) \).

Remark 2.6. The hypothesis \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) is not sufficient for \(T \) satisfies \(Bt \) to imply \(A \) and \(B \) satisfy \(Bt \). To see this, let \(T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \), where \(A = U \in B(\ell^2) \) is the forward unilateral shift, \(C = (1 - UU^*) \) and \(B = U^* \oplus U \). Then \(\sigma(T) = \sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) is the closed unit disc \(D, \ p_0(T) = \emptyset, \ \sigma(B) = D, \ \sigma_w(B) = \partial D, \) both \(T \) and \(A \) satisfy \(Bt \) but \(B \) does not satisfy \(Bt \).

Recall that an operator \(S \in B(X) \) is polaroid at a point \(\lambda, \lambda \in \rho(S) \) (resp., \(a \)-polaroid at \(\lambda, \lambda \in \rho^a(S) \)) if (either \(\lambda \in \rho(S) \) or) \(\lambda \in \sigma(S) \) is a pole of the resolvent of \(S \) (resp., \(\lambda \in \sigma(S) \)), \((S - \lambda)X \) is closed and \(\text{asc}(S - \lambda) < \infty \) [11, 12]; we say that \(S \) is polaroid (resp., \(a \)-polaroid) if \(\{ \lambda : \lambda \in \sigma(S) \} = \rho(S) \) (resp., \(\{ \lambda : \lambda \in \sigma(S) \} = \rho^a(S) \)). The following theorem relates the polaroid points of \(T, A \) and \(B \) satisfying \(\sigma(T) = \sigma(A) \cup \sigma(B) \).

Theorem 2.7. If \(\sigma(T) = \sigma(A) \cup \sigma(B) \), then \(T \) is polaroid at a point \(\lambda \) if and only if \(A \) and \(B \) are polaroid at \(\lambda \).

Proof. Let \(\lambda \in \sigma(S) \). Then \(\lambda \in \sigma(A) \cup \sigma(B) \). If \(A \) and \(B \) are polaroid at \(\lambda \), then the inequalities \(\text{asc}(T - \lambda) \leq \text{asc}(A - \lambda) + \text{asc}(B - \lambda) \) and \(\text{dsc}(T - \lambda) \leq \text{dsc}(A - \lambda) + \text{dsc}(B - \lambda) \) imply that \(T \) is polaroid at \(\lambda \). Conversely, assume that \(T \) is polaroid at \(\lambda \). Then \(\text{asc}(B - \lambda) \leq \text{asc}(T - \lambda) < \infty \) and \(\text{dsc}(A - \lambda) \leq \text{dsc}(T - \lambda) < \infty \). Since \(B \) has SVEP at \(\lambda, \ \text{asc}(B - \lambda) < \infty \) [1, Theorem 3.81]. This implies that \(\lambda \in \rho(B) \). The hypothesis that \(\lambda \) is a pole of the resolvent of \(T \) implies that \(H_0(T - \lambda) = (T - \lambda)^{-p}(0) \) for some integer \(p \geq 1 \). Since

\[
H_0(A - \lambda) = H_0((T - \lambda)|_E) \subseteq (T - \lambda)^{-p}(0) \cap E = (\lambda^p(0)) \subseteq H_0(A - \lambda),
\]

it follows that \(H_0(A - \lambda) = (A - \lambda)^{-p}(0) \). Since \(\lambda \in \sigma(A) \),

\[
E = H_0(A - \lambda) \oplus K(A - \lambda) = (A - \lambda)^{-p}(0) \oplus K(A - \lambda),
\]

from which it follows that

\[
E = (A - \lambda)^{-p}(0) \oplus (A - \lambda)^p(E),
\]
i.e., $\lambda \in p(A)$. □

Remark 2.8. Apparently, if $\sigma(T) = \sigma(A) \cup \sigma(B)$, then A and B polaroid implies T polaroid. The implication T is polaroid implies A and B are polaroid is however false (even if one assumes that $\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B)$). Let $T = A \oplus B \in B(\ell^2 \oplus \ell^2)$, where A is the forward unilateral shift and B is a quasinilpotent. Then $\sigma(T) = \sigma_w(T) = \sigma(A) = \sigma_w(A)$ is the closed unit disc, and T and A are (vacuously) polaroid. However, $\sigma(B) = \sigma_w(B) = \{0\}$ and B is not polaroid at 0. In the presence of $\sigma(T) = \sigma(A) \cup \sigma(B)$, a sufficient condition for T polaroid to imply A and B polaroid is that the sets $\text{acc}(T) \cap \text{iso}(A)$ and $\text{acc}(T) \cap \text{iso}(B)$ are empty: this condition is however not necessary, as follows from a consideration of the operator $T = A \oplus B \in B(\ell^2 \oplus \ell^2)$, where A is the forward unilateral shift and B is a nilpotent.

The operator S is said to be finitely polaroid at a point λ if $\lambda \in p_0(S)$. The following corollary generalizes [2, Theorems 1 and 2].

Corollary 2.9. If $\sigma(T) = \sigma(A) \cup \sigma(B)$, then T is finitely polaroid at (a point) λ if and only if A and B are finitely polaroid at λ.

Proof. Since $\alpha(T - \lambda) \leq \alpha(A - \lambda) + \alpha(B - \lambda)$ whenever $\alpha(A - \lambda)$ and $\alpha(B - \lambda)$ are finite [4, Proposition 7], Theorem 2.7 implies that T is finitely polaroid at λ whenever A and B are finitely polaroid at λ. Conversely, if T is finitely polaroid at λ, then $\lambda \in \text{iso}(T)$ implies $\lambda \in \Phi(T)$. Hence, if $\lambda \in p_0(T)$, then $\lambda \in \Phi_+(A) \cap \Phi_-(B)$ and λ is a pole of the resolvents of A and B (or, λ is in the resolvent set of A and/or B). Thus $\lambda \in \Phi^0(A) \cap \Phi^0(B)$, which implies that λ is a finite rank pole of the resolvents of A and B. □

The sufficiency part of Corollary 2.9 extends to finitely a-polaroid operators.

Proposition 2.10. If $\sigma_a(T) = \sigma_a(A) \cup \sigma_a(B)$ and A, B are finitely a-polaroid at a point λ, then T is finitely a-polaroid at λ.

Proof. The hypothesis $\sigma_a(T) = \sigma_a(A) \cup \sigma_a(B)$ implies that if $\lambda \in \text{iso}_a(T)$ then $\lambda \in \text{iso}_a(A) \cup \text{iso}_a(B)$. Thus, if A, B are finitely polaroid at λ and $\lambda \in \text{iso}_a(T)$, then $\lambda \in \Phi_+(A) \cap \Phi_-(B)$, $\text{asc}(A - \lambda) < \infty$ and $\text{asc}(B - \lambda) < \infty$. But then $\lambda \in \Phi_+(T)$ and $\text{asc}(T - \lambda) < \infty$, i.e., $\lambda \in p^a_0(T)$. □

$S \in B(\mathcal{X})$ satisfies Weyl’s theorem (or, condition), Wt for short, if $\sigma(S) \setminus \sigma_w(S) = \pi_0(S)$; S satisfies a-Weyl’s theorem (or, condition), aWt for short, if $\sigma_a(S) \setminus \sigma_{aw}(S) = \pi^a_0(S)$. A necessary and sufficient condition for S to satisfy Wt (resp., aWt) is that S satisfies Bt (resp., aBt) and S is polaroid on $\pi_0(S)$ (resp., S is a-polaroid on $\pi^a_0(S)$) [10, Theorem 4.3]. It is well known that $aWt \iff Wt$; the reverse implication is generally false.

The hypothesis A and B satisfy Wt (or, aWt) is neither necessary nor sufficient for T to satisfy Wt (resp., aWt). Thus, if A and $B \in B(\ell^2)$ are the operators $A(x_1, x_2, x_3, \ldots) = (0, 0, 0, \frac{1}{3}x_2, 0, \frac{1}{5}x_3, \ldots)$ and $B(x_1, x_2, x_3, \ldots) = (0, x_2, 0, x_4, \ldots)$, then $\sigma(A) = \sigma_w(A) = \pi_0(A) = \{0\}$, $\sigma(B) = \sigma_w(B) = \sigma_{aw}(B) = \{0, 1\}$, $\pi^a_0(B) = p^a_0(B) = \emptyset$, A does not satisfy Wt but both B and $T = A \oplus B$ satisfy
Suppose that \(a - Wt \). Again, if \(B \) is the operator above, and \(A \) and \(C \in B(\ell^2) \) are the operators \(A(x_1, x_2, x_3, \ldots) = (0, x_1, \frac{1}{2}x_2, 0, \frac{1}{3}x_3, \ldots) \) and \(C(x_1, x_2, x_3, \ldots) = (x_1, 0, x_2, 0, x_3, \ldots) \), then \(A \) and \(B \) satisfy \(a - Wt \), but \(T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \) does not satisfy \(Wt \) (since \(\sigma(T) = \sigma_w(T) = \{0, 1\} \) and \(\pi_0(T) = \{0\} \)). Observe that neither of the equalities \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) and \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \) holds for the operators of the examples above. The following theorem proves that the hypothesis \(A \) and \(B \) satisfy \(Wt \) is sufficient for \(T \) to satisfy \(Wt \) if \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) and \(A, B \) are isoloid. Recall that the operator \(S \) is isoloid (resp., \(a \)-isoloid) if the isolated points of \(\sigma(S) \) (resp., \(\sigma_a(S) \)) are eigenvalues of \(S \).

Theorem 2.11. Suppose that \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \). If \(A, B \) are isoloid and satisfy \(Wt \), then \(T \) satisfies \(Wt \).

Proof. Evidently, \(A \) and \(B \) satisfy \(Bt \). Hence, see Theorem 2.5(i), \(T \) satisfies \(Bt \), i.e., \(\sigma(T) \setminus \sigma_w(T) = p_0(T) \). Since \(p_0(T) \subseteq \pi_0(T) \), to complete the proof it would suffice to prove the reverse inclusion. Let \(\lambda \in \pi_0(T) \). Recall from Theorem 2.3(i) that the hypothesis \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) implies \(\sigma(T) = \sigma(A) \cup \sigma(B) \). Hence \(\lambda \in \sigma(A) \cup \sigma(B) \). Clearly, \(\alpha(A - \lambda) = \dim \{ (T - \lambda)^{-1}(0) \cap E \} < \infty \). Since \(A \) is isoloid, we may assume that \(\lambda \in \pi_0(A) \); hence, since \(A \) satisfies \(Wt \), \(\lambda \in p_0(A) \). Evidently, \(\beta(A - \lambda) < \infty \). Arguing as in the proof of Lemma 2.2 it is seen that \(\alpha(B - \lambda) < \infty \). Since \(B \) is isoloid and satisfies \(Bt \), \(\lambda \in p_0(B) \) (or, \(\lambda \in \rho(B) \)). Applying Theorem 2.7 it follows that \(\lambda \in p_0(T) \). Hence \(\pi_0(T) \subseteq p_0(T) \). \(\square \)

The operator \(T \) of Remark 2.6 satisfies \(\sigma(T) = \sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) = D \), \(\sigma(A) = \sigma_w(A) = D \) and \(\pi_0(T) = \pi_0(A) = \emptyset \). Hence both \(T \) and \(A \) satisfy \(Wt \). However, since \(B \) does not satisfy \(Bt \), it does not satisfy \(Wt \): the condition \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \) is not sufficient for \(T \) satisfies \(Wt \) to imply \(A \) and \(B \) satisfy \(Wt \).

Remark 2.12. The hypothesis that \(A \) and \(B \) satisfy \(Wt \) in Theorem 2.11 may be replaced by the hypotheses that \(A \) and \(B \) satisfy \(Bt \), \(A \) is polaroid on \(\pi_0(A) \) and \(B \) is polaroid on \(\pi_0(B) \). A tightening of the hypotheses of Theorem 2.11 is possible in the case in which either \(X = H \) is a Hilbert space or the subspace \(E \) is complemented in \(X \). In such a case, \(T \) has an upper triangular representation \(T = \begin{pmatrix} A & C \\ 0 & B_1 \end{pmatrix} \), where \(B_1 \) is similar to \(B \). Let \(T_0 = A \oplus B_1 \). Then \(\sigma(T) \subseteq \sigma(T_0) = \sigma(A) \cup \sigma(B_1) \) and \(\sigma_w(T) \subseteq \sigma_w(T_0) \subseteq \sigma_w(A) \cup \sigma_w(B_1) \). This, since \(\sigma_x(B_1) = \sigma_x(B) \) for \(\sigma_x = \sigma \) or \(\sigma_w \), implies that if \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \), then \(\sigma_x(T_0) = \sigma_x(T) \) for all \(\sigma \).

Proposition 2.13. (cf. [9, Theorem 3.7]) Let \(T_0 \) and \(T \) be defined as above. If \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B) \), \(T_0 \) satisfies \(Wt \) and \(A \) is polaroid on \(\pi_0(T) \), then \(T \) satisfies \(Wt \).

Proof. Apparently, \(\lambda \in p_0(T_0) \) if and only if \(\lambda \in p_0(A) \cup p_0(B) \) \(\iff \lambda \in p_0(A) \cup p_0(B_1) \) if and only if \(\lambda \in p_0(T) \); hence \(p_0(T_0) = p_0(T) \). Since \(T_0 \) satisfies \(Wt \),
\[
\sigma(T) \setminus \sigma_w(T) = \sigma(T_0) \setminus \sigma_w(T_0) = p_0(T_0) = \pi_0(T_0) = p_0(T) \subseteq \pi_0(T).
\]
Let $\lambda \in \pi_0(T)$. Then $\lambda \in \text{iso}(A) \cup \text{iso}(B_1)$. Since A is polaroid on $\pi_0(T)$, $\lambda \in p_0(A) = \pi_0(A)$. Arguing as in the proof of Theorem 2.11, it is seen that $0 \leq \alpha(B_1 - \lambda) < \infty$, and hence that $\lambda \in \pi_0(A) \cap \pi_0(B_1)$. Since T_0 satisfies Wt, $\lambda \in \pi_0(T_0)$. Thus $\pi_0(T) = \pi_0(T_0)$, and T satisfies Wt. \qed

An easy argument shows that if any two of T_0, A and B satisfy Wt, then so does the third one. Again, if A is isoloid and satisfies Wt, then $\lambda \in \pi_0(T)$ implies $\lambda \in p_0(A) = \pi_0(A)$ (implies A is polaroid on $\pi_0(T)$.) Hence Proposition 2.13 implies Theorem 2.4 of [13].

If A^* and B^* have SVEP, then A and B satisfy $a - Bt$ [10, Corollary 3.5], $\sigma_a(A) = \sigma(A)$ and $\sigma_a(B) = \sigma(B)$ [1, Corollary 2.45], and (this follows from a straightforward argument) $\sigma_{aw}(A) = \sigma_w(A)$ and $\sigma_{aw}(B) = \sigma_w(B)$. If, furthermore, $\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda)$, then it is seen that $\sigma_w(T) = (\sigma_{aw}(T)) = \sigma_w(A) \cup \sigma_w(B) = (\sigma_{aw}(A) \cup \sigma_{aw}(B))$. The following theorem generalizes [9, Theorem 3.11].

Theorem 2.14. If $\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B - \lambda)$, A^* and B^* have SVEP, A is polaroid on $\pi_0(T)$ and B is polaroid on $\pi_0(B)$, then T satisfies $a - Wt$.

Proof. Theorem 2.3 implies that $\sigma_a(T) = \sigma_a(A) \cup \sigma_a(B) = \sigma(A) \cup \sigma(B) = \sigma(T)$. Evidently, T satisfies $a - Bt$; indeed

$$\sigma_a(T) \setminus \sigma_{aw}(T) = \sigma(T) \setminus \sigma_w(T) = p_0(T) = p_0^B(T) \cup \pi_0(T) = \pi_0(T).$$

Observe that if $\lambda \in \pi_0(T)$, then $\lambda \in p_0(A) = p_0^B(A)$ (or, $\lambda \in \rho(A)$) and $\lambda \in p_0(B) = p_0^B(B)$ (or, $\lambda \in \rho(B)$). Hence $\lambda \in \pi_0(T) \implies \lambda \in \pi_0(T)$, which completes the proof. \qed

Remark 2.15. The example of the operator $T = \begin{pmatrix} A & C \\ 0 & B \end{pmatrix} \in B(\ell^2 \oplus \ell^2)$, where $A(x_1, x_2, x_3, \ldots) = (0, x_1, 0, \frac{1}{2}x_2, 0, \frac{1}{3}x_3, \ldots), B(x_1, x_2, x_3, \ldots) = (0, x_2, 0, x_4, 0, \ldots)$ and $C(x_1, x_2, x_3, \ldots) = (0, 0, x_2, 0, x_3, \ldots)$, shows that the hypothesis A is polaroid on $\pi_0(T)$ in Theorem 2.14 can not be replaced by the hypothesis that A is polaroid on $\pi_0(A)$. Observe that all the hypotheses of the theorem are satisfied, except for the fact that $\pi_0(T) = \{0\}$ and $0 \notin \rho(A)$; T does not satisfy $a - Wt$, even Wt.

Remark 2.16. Let E be complemented in X, so that T_0 and T have the representations of Remark 2.12. Since B has SVEP at a point if and only if B_1 has SVEP at the point, and since $\text{ind}(T - \lambda) = \text{ind}(A - \lambda) + \text{ind}(B_1 - \lambda)$), either of the conditions A and A^*, or A and B, or A^* and B^*, or B and B^* have SVEP on $\sigma_w(T)^C$ implies that $\sigma_w(T_0) = \sigma_w(T) = \sigma_w(A) \cup \sigma_w(B_1)$ (see Lemma 2.1). Again, either of the conditions A and A^*, or A and B, have SVEP on $\sigma_{aw}(T)^C$ implies that $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B_1)$ [9, Theorem 4.12(ii)]. (Observe that if A^* and B^* have SVEP on $\sigma_{aw}(T)^C$, then $\sigma_{aw}(T) = \sigma_{aw}(A) = \sigma_{aw}(A) \cup \sigma_{aw}(B_1) = \sigma_{aw}(A) \cup \sigma_{aw}(B_1)$.)

Evidently, $\sigma_{aw}(T) \subseteq \sigma_{aw}(T_0)$; if $\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B_1)$, then the following implications show that $\sigma_{aw}(T_0) \subseteq \sigma_{aw}(T)$ (so that $\sigma_{aw}(T) = \sigma_{aw}(T_0)$):

$$\lambda \notin \sigma_{aw}(T) \implies \lambda \in \Phi_+(A) \cap \Phi_+(B_1) \implies \lambda \notin \Phi_+(T_0) \implies \lambda \notin \sigma_{aw}(T_0).$$
It is known, [9, Theorems 5.1 and 5.7], that: (i) If \(\sigma_w(T) = \sigma_w(A) \cup \sigma_w(B_1) \), then the equivalence \(T \) satisfies \(W_t \Leftrightarrow T_0 \) satisfies \(W_t \) holds if and only if \(\pi_0(T) = \pi_0(T_0) \); (ii) If \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B_1) \) and \(A^* \) has SVEP on \(\sigma_{aw}(T)^c \), then the equivalence \(T \) satisfies \(a-Wt \Leftrightarrow T_0 \) satisfies \(a-Wt \) holds if and only if \(\pi_0^a(T) = \pi_0^a(T_0) \).

We prove next an analogue of Theorem 2.11 for operators \(T \) satisfying \(a-Wt \).

Theorem 2.17. If \(\sigma_{aw}(T) = \sigma_{aw}(A) \cup \sigma_{aw}(B) \), \(A^* \) has SVEP on \(\pi_0^a(T) \), \(A \) and \(B \) are \(a \)-isoloid, and both \(A \) and \(B \) satisfy \(a-Wt \), then \(T \) satisfies \(a-Wt \).

Proof. The hypotheses imply that \(\sigma_a(A) \setminus \sigma_{aw}(A) = p_0^a(A) = \pi_0^a(A) \), \(\sigma_a(B) \setminus \sigma_{aw}(B) = p_0^a(B) = \pi_0^a(B) \), and \(\sigma_a(T) \setminus \sigma_{aw}(T) = p_0^a(T) \subseteq \pi_0^a(T) \) (see Theorem 2.5). Since \(\sigma_{au}(T)^c \subseteq \pi_0^a(T) \), \(A^* \) has SVEP on \(\sigma_{au}(T)^c \); hence \(\sigma_a(T) = \sigma_a(A) \cup \sigma_a(B) \) (by Theorem 2.3). Thus to complete the proof, we have to prove that \(\pi_0^a(T) \subseteq p_0^a(T) \). Let \(\lambda \in \pi_0^a(T) \). Then \(\lambda \in \text{iso}_a(T) = \text{iso}_a(A) \cup \text{iso}_{aw}(B) \) and \(\alpha(T-\lambda) < \infty \). Evidently, \(\alpha(A-\lambda) < \infty \); hence (since \(A \) is \(a \)-isoloid) \(\lambda \in \pi_0^a(A) \) (or, \(\lambda \in \rho(A) \)). Since \(A^* \) has SVEP at \(\lambda \), \(\lambda \in p_0^a(A) \), so that \(\beta(A-\lambda) < \infty \). Arguing as before, it is seen that \(\lambda \in p_0^a(B) \) (or, \(\lambda \in \rho(B) \)). Applying Proposition 2.10 we conclude that \(\lambda \in p_0^a(T) \). \(\square \)

Acknowledgement. The contents of this note were presented at the conference on “Functional Analysis and its Applications, Niš (Serbia), June 16–18, 2009” by the first author. It is his pleasure to thank the organizing committee for their excellent organization and hospitality.

References

B. P. Duggal
E-mail: e-mail: bpduggal@yahoo.co.uk

S. V. Djordjević
Facultad de Ciencias Fisico-Matematicas, BUAP, Puebla, Mexico
E-mail: slavdj@fcfm.buap.mx

M. Chō
Department of Mathematics, Kanagawa University, Yokohama, 221-8686, Japan
E-mail: chiyom01@kanagawa-u.ac.jp