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Abstract. For the Lagrange interpolation operator, a multi-subdivision
scheme is established. The existence of the corresponding functional
equation of Read-Bajraktarevic type is proved and used in construction of
this scheme. Associated algorithms are developed and illustrated through
adequate examples.
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1. Introduction

The notion of subdivision is present in many areas of applied mathematics. If one
speaks on polynomials, then subdivision is mainly relates to Bernstein polynomials and
induced Bézier curves or surfaces [10, 11, 13]. As it is noted in [4], any polynomial undergoes
some subdivision process, and this process is always linear. As it is shown in [5, 10],
polynomial subdivision performs by an AIFS, a variant of IFS introduced in [5] and further
developed in [6-9, 13] and [2]. So, this introduction begins with a reminder concerning
IFS/AIFS stuff.

The concept of Iterated Function System (IFS), and its affine invariant counterpart
AIFS appear to play a crucial role in constructive theory of fractal sets and in paving the way
to have a good modeling tools for such sets. But, if the collection of objects to be modeled,
besides fractals contains smooth objects as well (polynomials for ex.) then one needs to revisit
classical algorithms for smooth objects generation and to introduce the new one that is capable
to create both fractal and smooth forms. In this light, the purpose of this paper is to develop
such algorithms for interpolating polynomials.

Let{wi, i=12,..., n} , n>1, be a set of contractive affine mappings defined on the

complete Euclidian metric space (Rm ,d, )

w(x)=Ax+b,, xeR", i=12,.,n, (1.1)
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where Ai is an m X m real matrix and bl. is an m-dimensional real vector. Supposing that
the Lipschitz factors s, = Lip {w,}, satisfy condition |Si| <1, i=1,2,...,n, the system
{Rm IWLW,,, Wn} is called (hyperbolic) Iterated Function System (IFS). Associated with

given IFS, is so called Hutchinson operator H (Rm) —>H (Rm ) , defined by
B> Lnjwl.(B), VB eH (R) (12)
i=1

It turns to be a contractive mapping on the complete metric space (H (Rm), h) with

contractivity factor § = max {Si}. Here, H (Rm) is the space of nonempty compact

subsets of R™ and / stands for Hausdorff metric induced by d, i.e.

h(A, B) :max{max min d,(a, b), max miAp d,(b, a)}, VA, BeH (R’").

acA beB
Let Sm+1 = |:Si_/.]

to 1).

m+1

~_, bean ( m+ 1) X ( m+ 1) row-stochastic real matrix (its rows sum up
L=

Definition 1. We refer to the linear mapping L : R”"' — R™"" such that L (r)=S"r as
the linear mapping associated with S. The corresponding Hutchinson operator is

w(B) :OLi(B), VB eH (R'"“)
. (1.3)

According to the contraction mapping theorem, both Hutchinson operators (1.2) and (1.3)
have the unique fixed point called the attractor of the IFS/AIFS. In the case of AIFS, the

attractor A € H (Rm“) satisfies 4 = W (A) .

Definition 2. A (non-degenerate) m-dimensional simplex f’m (m-simplex) is the convex hull
lsm :conV{Pm} of a set P of m +1 affinely independent points/vectors

P> P,,---,P,,,; in Euclidean space of dimension > m that will be denoted in matrix form,
T
T T T
Pm :I:pl p2 pm+1:| :

Definition 3. The areal (also normalized barycentric) coordinates of the point x € " w.r.t.

the simplex 13m are defined as p, =area IA’I; /area 13m , 1=1,2,...,mt]l, where area 13m
is the signed m-dimensional volume of the simplex f’m and 13,’,, is the simplex derived from
f’m by substituting the i-th vertex, e; by the point x. It follows by definition that areal

coordinates obey the unity partition property Zi pi=1.
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Definition 4. Let lA)m be a non-degenerate simplex and let {Si}?:1 be a set of real square

non-singular row-stochastic matrices of  order m+1. The system
Q(f’m) = {IA)m; S..S,... .,Sn} is called (hyperbolic) Affine invariant IFS (AIFS), provided

that the linear mappings associated with S; are contractions in (Rm ,d £ ) ([5-7D).

2. Subdivision

Although the notion of subdivision is usually attributed to m-dimensional (m > 1)
continuous parametric mapping ¢ > P, (t), t €[a, b], (a < b) ,sothat P (1) e R™, for
the purpose of study the basic properties, it is enough to consider one-dimensional case
(m=1).

Let

R()=Y 4, B/(0), tela, b],

2.1
where A, are real coefficients and

B, (1) =B} (1), B(1), ... B/(1)}. t€la, b,
(2.2)

is some functional basis, it may happened that both 4; and B (#) depend on the interval of

definition. To stress this fact, it is suitable to write 4, [a, b] as well as B [a, D](¢). Then,

the subdivision is defined as follows.

Definition 5. The function P , defined by (2.1) is said to permit linear subdivision if and only

if for each nonempty subinterval [p, g]C[a, b], there exists a set of coefficients

{Ak [P, 6]]}::0 such that

n

40p. 1B/[p. 0= 4la. bIBTa, b)(p(0)).

k=0 k=0
2.3)
for t €[a, b], where

1
¢(t)=m((q—p)t+bp—aq), 2.4)

maps [a, b] into [p, q].

Moreover, restriction on P (¢) to belong to the set P of algebraic polynomials of

dg< n, allows the subdivision to be linear and only linear.
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Theorem 2 (Goldman and Heath [4]). The function P , defined by (2.1) admits linear

subdivision if and only if B, () is a polynomial basis.

The classic, and best known subdivision phenomena is connected with Bernstein
polynomial basis, but subdivision is also possible for monomial, Lagrange, Newton or any
other polynomial basis ([1], [10]). Here, the focus will be set on Lagrange interpolation
polynomials.

3. Lagrange subdivision

Let the interval [#, #,] be subdivided by a nonuniformly spaced knots

T
T=[tt, . ] p <t <. <t (122), 3.1)

T
and let the vector 1 (T, t) = [ﬁ 0@ . )} contains the Lagrange basis functions over

R
" it
(T, t)=| I , telt, t], k=0,1...n. (3.2)
i=0 L — 1
i#k

Then, the vector of ordinates Y =[), J ... yn]T defines the matrix of the interpolating

nodes
P =l y1" I, 3,0 ], (33)

that uniquely defines L (T, P,-) € P, the interpolation polynomial which Lagrange form

is

L(t,P,O=>ylit)=1,0""y, t,<t<t,. (3.4)

k=0

T
Lemma 1. Let 92[(90 o .. Hn] be any set of knots satisfying

—00 < 90 < 91 <. < 9}1 < +00, (n = 2). Then, the following expansion holds
0ty 1) =) _0(1, 6,)04(8, 1). (3.5)
k=0

n
Proof. The right side of (3.5) is a polynomial from F?] , p(t) = Zﬂ;fz (0, ), where
k=0

for fixed 0<v <n, A, =/)(t, 6,). By the cardinal property of Lagrange basis,
0.0, 60)=9, (Kronecker “delta”), it follows
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p(6,)=> 4000, 6,)=2 =1(t, 6)for 0<v<n. Thus, p(r) equals to

k=0

0" (7, t) in (n+1) non-coincident points, which means that p(#)=/" (T, t) .0

Now, let the set of n contractive affine mappings {(01, (1) (/)n} be given so that

o, [t,, t,]— [t,,, t.]. Inother words,

t,—t -
o (="t + , telt, t].
t,—t, t,—t,

n

(3.6)

T
The image [(pk ) o, (1) ... ¢ (tn)] of the knot vector (3.1) upon the mapping ¢, will
be denoted simply by @, (T) .

Theorem 1. Let L (T, P,-) be polynomial from P, interpolating the points (3.3). Let
T
Qi = [Qg Q' ... Qj] , where
k .
Q' =(p.(t), L,(t, P, 9. (1)), i=0,...n. (3.7)
Then, the operator L, (% (1), Q*, - ) coincides with L (7, P, ).

Proof.  Let P/pe any set of knots satisfying conditions of Lemma 1. The Lagrange

basis over 5 will be {EZ (0, t)} . From the graph of the interpolating polynomial
n

k=0,
L (t,P,-), let the points Q, = (Qk, L(t,P,0, )) =, q,) be selected with

T
abscisae at the knots = The interpolating polynomial to the points Q = [Qo Qn] will
be

L,(0,Q,0)=Y 018, t)g, => 010, L (1, P,6,)
k=0 k=0

n n

=000, ) 00T, 6)y, = D (O, (T, 6,),
k=0 v=0

k=0 v=0

n

-y ( WA Hk)]yv-

v=0
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In virtue of  Lemma 1, ZEZ(H, He(t, 6) = 1(t, 1), S0
=0

L (0,Q,1) :Z 0 (t, )y,= L (t,P,t), for all finite . The proof completes by
v=0

setting @ =@, (1), k=1,....n. 0

Corollary 1. Let ¢k be the polynomial mapping,
¢t y)—=L, (¢k (1), Q, o, (1) ) Then, the Lagrange interpolating polynomial
L, (t, P, t) satisfies the Read-Bajraktarevi¢ type functional equation

-1 -1
L PO =¢|0' 0, L(t. R0 )] el .4].

For the next theorem the following lemma is needed.
Lemma 2. Let P and Q are two m-simplexes and let Q =L (P), L (r)=S"r in the sense

T
of Def. 1. Let pP(X) = [plP p,];+1:| be areal coordinates of the point x w.r.t. P. Then, if
x'=L (X),itholds

P T P
p (x)=8"p (x). (3.8)
Proof. The relationQ = L (P), means that P and Q are linearly equivalent, which

implies equality of areal coordinates of the corresponding point i.e. p¥(x)=p?(x'). Also,

Q=S:P,s0
x'=p°()" - Q=p"(0) (S P)=(p"(0)'-8) P=p"(x)" -P.
wherefrom, p’(x') = (pP(X)T -S)T which is (3.8). [

- (k] k (yk Al ,
Theorem 2. The points Q" = [Qo Q... Qn] , k=1,...,n (n>2), givenby (3.7) are

images of the interpolating nodes P given by (3.3), upon the linear mapping L, (r)= S;(rr ,

where
S, =[(x, ¢k(t[))}og’jgn, k=1,..n. (3.9)

and @, is given by (3.6). More precisely, Q¥ =8 P
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Proof. Choose an arbitrary value f, €[f,, ;] and consider the point
A= (IA, L(z,P, tA)) . The areal coordinates of the point A w.r.t. simplex P, p®(A) are

given by the Lagrange basic functions for t=t,, ie.

pP(A)Z[ﬁg(T, tA)...f'fl(‘r, tA)}T. It is the consequence of the fact that

A= ZPkf (T, t,) and the unity partition property Zﬁ (T, t) =1. On the other hand,
k=0 k=0

the corresponding point to A, for the transformed node mesh @, (T) is the point
X k pn

B=(p,(1,), L,(t, P, 0.(t,)) =D Qi (x, p.(t,)). Consequently,
i=0

0" (B)=[ 1%, 0,(t,) - £1(%, 9(¢)] . By Lemma 2, then p" (B) =STp*(A),
with S as it is given in (3.9). By setting ¢, =¢, (0 <i<n), the last equality turns into
p’(Q,)=S]p"(P.) whichyields Q"' =S, -P .0

Finally, one has
Theorem 3. The graph G, of the polynomial P (f)€ P, defined by the Lagrange
interpolation data (3.3), is the attractor of the AIFS {P; S, ,..., S,}, where S ¢ s given by (3.9),
and ¢, is given by (3.6).

Proof. First, the hyperbolicity of the AIFS will be shown. The spectrum of the matrix
S;, as it is known from [5-7] is of the form

J
t, —t
kooak k k _ .
Sp(Sk)Z{l, Ay Agy sy /1,1_1}, where A, :(%J . Since n = 2,
n 0

t, —t
ﬂli =k kL <1 for all k, making /11; the second greatest eigenvalue of S;. So, there

tn - tO

exists matrix norm such that ”S k” = /11; < 1. So, the AIFS is hyperbolic, ensuring existence
of the unique attractor. Denote it by G,. Since matrix S;, that defines the
mapping L, (r)=Szr , maps P, and P, into Py, and P, , the image of P upon Hutchinson

operator W contains as a subset. The same is for any power W" of W.So,P € W* =G, , i.e.,
the interpolating points lie on the attractor. Further, by Theorem 2, and Theorem 1, the

mapping L, maps the graph of the polynomial L (), interpolating the points P, into the
segment of the graph of L, (#) on the subinterval [f, |, ¢, ]. The proof is then follows by the
Collage theorem [3]. [J

Example 1. Let P = diag (T X y) be the interpolating data in R, where
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5575
The graph of the polynomial interpolating these data

Ly(¢) =2.69951+0.934912 t—0.0703125 ¢ + 0.878092 £ —1.59912 t* + 0.417074 ¢’

on the interval [1, 3], is given in Fig.1.

t=[-1 -1 224 3] and y=[-12 2.5 3.25 238 —22 04]".

A
3L N
| i k-
e - \
V2T A
[l 0 :
[} 1 |}
*:.1. 5 & 4 1 X
- - - V=
4 3 3 \3 |P
\s |
%/
=3t \/

Figure 1.

There are five subintervals, so the AIFS will be {P; S, ,..., Ss}, where the matrices are given
by (3.9), which makes

i1 o 0 o 0 0
B3TE 2384 _ 2128 1368 _ 504 a58
15 €25 3125 3125 3125 3125 15 EZ5
238z d588 ZEEl  1ESE 328 3E8
51 - 15 €25 3125 3125 3125 3125 15 EZ5 :
ZEL8 4627 2244 1308 _ 362 357
15 €25 3125 3125 3125 3125 15 EZ5
524 JERE _ l2az g1z _ 23l 178
15 €25 3125 3125 3125 3125 15 EZ5
Lo 1 0 o 0 0 )
(0 1 o a 0o 0
_ a8 z3ct4 1187 _ 532 171 _ lze
15623 31z5 3125 3125  31zs 13 EZS
_ _4e8 1E38 2184 _ BH1G 252 182
S. = 15623 31z5 3125 3125  31zs 13 EZS .
= 3157 52 ZBEE BElE 238 1E8 '
15623 31z5 3125 3125  31zs 13 EZS
_ 175 3BE 1R _ 2B 148 to
15623 31z5 3125 3125  31zs 13 EZS
Lo o 1 @ o 0 )
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=
-
=
[
[

126 _ Z3l  E77E 6Bl 154 oo
15 £25 25 alzs  gles 2125 1565
182 _ Z1E4 1456 _ 273 168
5, - | l5es  3lZ Al alss 25 15EE5 |
168 _ 273 1456 Z1E4 182
15625 #1258 315 @1Es 4128 15 EES
B¢ 154 B3 ETTE _ ZIl 1%
15625 #1258 315 @1Es 4128 15 EES
L0 0 0 1 a a
(o o0 1 o 0
__BE 144 _ 5ZE  3lEE  §EE 176
15625 9125 21E5  31E5 9125 L5ESS
_ 168 38 _ BlE gZESE EEE 357
Sy = 15625 a1zs 3135 3125 glzs 1SEES |,
_ 182 =5 _ BlE  gZlE4 1638 _ 468
15625 9125 21E5  31E5 9125 L5ESS
_ 1@ 171 _ s3E 1187 234 38g
15625 9125 21E5  31E5 9125 L5ESS

(0 o o 0 1 0
1 _Z3l  €7F  lzaz 3686 Bad
15625  31Z5 315 2125 3125 15 65
357 46z 1308 gz4d 3827 Z6lE
S, - | 1ses 31T 3zs Az s 1ses |,
£ 268 588 1656 ZESL 3588 538%
15 €25 31Z5 31z5  31I5 3126 LG 625
358 S04 1368 glIE ZIB4 5576
15625  31Z5 315 2125 3125 15 65
L a 0 0 0 0 1

The Figure 2. shows results of repeated application of Hutchinson operator on the
interpolation data P.
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Figure 2.

4. Conclusion

The subdivision scheme, developed in this paper allows fast evaluation of interpolating
polynomial, and it is suitable for graphical visualization. The scheme is given in the form of
iterated function system, and therefore compatible with other schemes and algorithms that are
in use for evaluation and visualization of fractal sets. As a consequence, it makes possible to
combine fractal shapes with smooth, polynomial shapes, with possibility of continuous
altering from one to other. The problems that are still open are comparing the speed of the
algorithm that rises from Theorem 3 and other algorithms for polynomial evaluation.
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