
  

Faculty of Sciences and Mathematics, University of Niš, Serbia                                                
Available at:  http://www.pmf.ni.ac.yu/faac 
 
Functional Analysis, Approximation and Computation  1:2 (2009),  25– 35________________ 
 

SUBDIVISION  IN  POLYNOMIALS  SPACES 
 

 
Sonja Gegovska-Zajkova, Vesna Andova and Ljubiša M. Kocić 

 
 

Abstract. For the Lagrange interpolation operator, a multi-subdivision 
scheme is established. The existence of the corresponding functional 
equation of Read-Bajraktarević type is proved and used in construction of 
this scheme. Associated algorithms are developed and illustrated through 
adequate examples.  
 
2000 Mathematics Subject Classification: ? ? . 

Keywords and phrases: ? ? .  
 
Presented at the conference Functional Analysis and Its Applications,  
Niš, Serbia, June 16-18, 2009. The conference was organized and 
supported by the Faculty of Sciences and Mathematics – University of 
Niš, and the Ministry of Science and Technological Development of  
Serbia 

 
1. Introduction 

 
The notion of subdivision is present in many areas of applied mathematics. If one 

speaks on polynomials, then subdivision is mainly relates to Bernstein polynomials and 
induced Bézier curves or surfaces [10, 11, 13]. As it is noted in [4], any polynomial undergoes 
some subdivision process, and this process is always linear. As it is shown in [5, 10], 
polynomial subdivision performs by an AIFS, a variant of IFS introduced in [5] and further 
developed in [6-9, 13] and [2]. So, this introduction begins with a reminder concerning 
IFS/AIFS stuff. 

The concept of Iterated Function System (IFS), and its affine invariant counterpart 
AIFS appear to play a crucial role in constructive theory of fractal sets and in paving the way 
to have a good modeling tools for such sets. But, if the collection of objects to be modeled, 
besides fractals contains smooth objects as well (polynomials for ex.) then one needs to revisit 
classical algorithms for smooth objects generation and to introduce the new one that is capable 
to create both fractal and smooth forms. In this light, the purpose of this paper is to develop 
such algorithms for interpolating polynomials. 

Let{ }, 1, 2,..., , 1iw i n n=

,mR

>

i n

, be a set of contractive affine mappings defined on the 

complete Euclidian metric space   ( )Ed

( ) , , 1, 2,..., ,m
i i iw = + ∈ =x A x b x R                                      (1.1) 
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where  is an m  real matrix and  is an m-dimensional real vector. Supposing that 

the Lipschitz factors , satisfy condition 
iA m× ib

iLip{ }is = w 1is < , 1, 2,...,i n= , the system 

{ }1 2 ,m KR ; ,w w , nw is called (hyperbolic) Iterated Function System (IFS). Associated with 

given IFS, is so called Hutchinson operator ( ) ( )mRm →H HR , defined by   

( ) (
1

,
n

m
i

i

B w B B
=

∀ ∈a U H R ) .                                 (1.2) 

It turns to be a contractive mapping on the complete metric space ( )( ),m hH R  with 

contractivity factor { }max is = s . Here, ( )mRH  is the space of nonempty compact 

subsets of  and  stands for Hausdorff metric induced by , i.e. mR h Ed

{ } ( )( , ) max max min ( , ), max min ( , ) , , .m
E Eb B a Aa A b B

h A B d a b d b a A B
∈ ∈∈ ∈

= ∀ RH∈

)1

1m

 

Let  be an ( )  row-stochastic real matrix (its rows sum up 

to 1).  

1

, 11S
m

i j i jm s
+

=+ ⎡ ⎤= ⎣ ⎦ (1m m+ × +

Definition 1. We refer to the linear mapping 1: m+ +→R RL , such that  as 
the linear mapping associated with S. The corresponding Hutchinson operator is 

T( )=r S rL

                                                                                 

(1.3) 

( ) ( ) ( 1

1

,
n

m
i

i

W B B B +

=

= ∀ ∈U H RL )

)

According to the contraction mapping theorem, both Hutchinson operators (1.2) and (1.3) 
have the unique fixed point called the attractor of the IFS/AIFS. In the case of AIFS, the 
attractor  satisfies . ( 1mA +∈H R ( )A W A=

Definition 2. A (non-degenerate) m-dimensional simplex  (m-simplex) is the convex hull ˆ
mP

{ }ˆ conv mm =P P  of a set of mP 1m +  affinely independent points/vectors 

 in Euclidean space of dimension ≥ m  that will be denoted in matrix form, 

. 

1 2 1, , , m+p p pK

T T
1 2 ...=P p p T

1

T
m m+⎡ ⎤⎣ ⎦p

Definition 3. The areal (also normalized barycentric) coordinates of the point x ∈ Rm w.r.t. 
the simplex  are defined as ˆ

mP ˆ ˆi
mP ˆ

ˆ ˆ i

ˆ

ρ

area areai mρ = P ,   i = 1, 2, …, m+1, where  

is the signed m-dimensional volume of the simplex  and  is the simplex derived from 

 by substituting the i-th vertex, ei by the point x. It follows by definition that areal 

coordinates obey the unity partition property 

area mP

mP

1

mP

mP

ii
=∑ . 
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Definition 4. Let  be a non-degenerate simplex and let ˆ
mP 1{ }n

i i=S
m

 be a set of real square 

non-singular row-stochastic matrices of order 1+ . The system 

( ) { }1 2; ,Sˆ ˆ , ,m mΩ =P P S SK n  is called (hyperbolic) Affine invariant IFS (AIFS), provided 

that the linear mappings associated with Si are contractions in ( )E,m dR  ([5-7]). 

 
 2. Subdivision 

 
Although the notion of subdivision is usually attributed to m-dimensional ( ) 

continuous parametric mapping , 
1m ≥

( )nt P ta ( )[ , ],t a b a b∈ < , so that , for 
the purpose of study the basic properties, it is enough to consider one-dimensional case 
( ).   

( )nP t ∈ mR

1m =
Let 

                                              ,                                               

(2.1) 
0

( ) ( ), [ , ]
n

n
n k k

k
P t A B t t a b

=

= ∈∑

where Ak are real coefficients and  

                                    ,                                   
(2.2)   

0 1( ) { ( ), ( ), ..., ( )}, [ , ]n n n
nt B t B t B t t a b= ∈nB

is some functional basis, it may happened that both Ak and depend on the interval of 

definition. To stress this fact, it is suitable to write  as well as . Then, 
the subdivision is defined as follows. 

( )tnB
]b[ ,kA a [ , ]( )a b tnB

 
Definition 5. The function , defined by (2.1) is said to permit linear subdivision if and only 

if for each nonempty subinterval [ ,
nP

] [ , ]p q a b⊂ , there exists a set of coefficients 

 such that  { 0
[ , ] n

k k
A p q

=}

)                              ,                            

(2.3)                 

(
0 0

[ , ] [ , ]( ) [ , ] [ , ] ( )
n n

n n
k k k k

k k
A p q B p q t A a b B a b tϕ

= =

=∑ ∑

for , where   [ , ]t a b∈

(1( ) ( )t q p t b p
b a

ϕ = − + −
−

)a q ,                                                 (2.4) 

maps [a,  b]  into  [p,  q]. 
Moreover, restriction on  to belong to the set  of algebraic polynomials of 

dg≤ n, allows the subdivision to be linear and only linear. 
( )nP t nP
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Theorem 2 (Goldman and Heath [4]).  The function , defined by (2.1) admits linear 

subdivision if and only if is a polynomial basis. 
nP

( )tnB

The classic, and best known subdivision phenomena is connected with Bernstein 
polynomial basis, but subdivision is also possible for monomial, Lagrange, Newton or any 
other polynomial basis ([1], [10]). Here, the focus will be set on Lagrange interpolation 
polynomials. 
 
 

3. Lagrange subdivision 
 

Let the interval [t0, tn] be subdivided by a nonuniformly spaced knots  

[ ]0 1
T... nt t t=τ  ,   (n ≥ 2),                                               (3.1)  0 1 ... nt t t< < <

and let the vector contains the Lagrange basis functions over 

�,  
0

T
( , ) ( ) ... ( )n n

n t t t⎡= ⎣l τ l l n ⎤⎦

0
0

( , ) , [ , ], 0,1,
n

n i
k n

i k i
i k

t tt t t t k
t t=

≠

−
= ∈ =

−∏τl Kn

T ⎤⎦

is  

nt≤ .                                  (3.4) 

Lemma 1. Let 

.                                      (3.2) 

Then, the vector of ordinates  defines the matrix of the interpolating 
nodes 

0 1
T[ ... ]ny y y=y

 ,                                                    (3.3)  0 0
T T[ ] ... [ ]n nt y t y⎡= ⎣P

that uniquely defines ,  the interpolation polynomial which Lagrange form ( , , )nL ⋅ ∈τ P nP

0
0

T( , , ) ( ) ( ) ,
n

n
n k k n

k

L t y t t t t
=

= = ⋅ ≤∑τ P l yl

[ ]0
T...1 nθ θ θ=θ

n

 be any set of knots satisfying 

0 1 ...θ θ θ < +∞ , (n ≥ 2). Th
n

−∞ < < < < en, the following expansion holds 

θ .                                                (3.5) 

Proof. The right side of (3.5) is a polynomial from

0

( , ) ( , ) ( , )n n n
k k

k

t tν ν θ
=

= ∑τ τl l l

 nP , 
0k

( ) ( , )
n

n
k kp t tνλ= ∑ θl

=

, where 

for fixed 0 nν≤ ≤ , ( , )k kν
nνλ θ= τl . By the cardinal property of Lagrange basis, 

( ,n )k kν νθ δ=θl  (Kronecker “d llows elta”), it fo
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0
( ) ( , ) ( , )

n
n n

k k
k

p ν ν
ν ν ν ν νθ λ θ λ

=

= = =∑ θ τl l θ for 0 nν≤ ≤

( )

. Thus, p(t) equals to 

 in (n+1) non-coincident points, which means that ( , )n tν τl ( , )np t tν≡ τl . � 

Now, let the set of n contractive affine mappings { }1 2, , ..., nϕ ϕ ϕ be given so that 

0 1: [ , ] [ , ]k n k kt t t tϕ −→ . In other words,  

                         1 1 0

0 0

k n k

n n

t t t t
t t

− −( )kϕ k kt tt t
t t
− −
− −

= + ,  0[ , ]nt t t∈ .                                 

(3.6) 

The image of the knot vector (3.1) upon the mapping [ 0 1
T( ) ( ) ... ( )k k k nt t tϕ ϕ ϕ ] kϕ  will 

be denoted simply by ( )kϕ τ

( , , )nL ⋅τ P
[ ]

0 1

T
...k k k k

n⎡ ⎤= ⎣ ⎦Q Q Q Q

( ( ), ( , ,k
i k i nt Lϕ=Q τ P

( )[ ]( ), ,k
n kL ϕ ⋅τ Q

. 

Theorem 1. Let  be polynomial from , interpolating the points (3.3). Let 

, where  

nP

)ϕ

( ,nL

( ))k it ,    i = 0, …, n.                                   (3.7)   

Then, the operator  coincides with , )⋅τ P . 

Proof.    Let  �be any set of knots satisfying conditions of Lemma 1. The Lagrange 
basis over �  will be { } 0,

( , )n
k k n

t
=

θl

( , , )nL ⋅τ P ( , (k k n=Q τ

0 0

0 0

0 0

( , , ) ( , ) (

( , ) ( ,

( , ) ( ,

n n
n n

n k k
k k

n n
n n
k k

n n
n n

k

L t t q

. From the graph of the interpolating polynomial 

, let the points   be selected with 

abscisae at the knots �k. The interpolating polynomial to the points Q Q  will 
be  

), , )k kθ=P, ) (kLθ θ

0

) ( , ,

.

k n

n

k k

t L

t y

q

k y

[ ]0
T... nQ=

0

, )

) ( , ) ( , )

)

k

n
n n
k

k k

t y tν ν νθ θ
=

⎛ ⎞
⎜ ⎟
⎝ ⎠

∑

τ

θ τl l ν
ν ν

ν ν

θ

=

= =∑

P

ν

θ

= =

= =

= =

= =

=

∑ ∑

∑ ∑

∑ ∑

θ Q θ θ

θ τ

θ τ

l l

l l

l l
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In virtue of Lemma 1, , so 
0

( , ) ( , ) ( , )
n

n n n
k k

k

t tν νθ
=

=∑ θ τ τl l l

0
( , , ) ( , )

n
n

nL t t yν ν
ν =

=∑θ Q τl

( )k

= , for all finite t. The proof completes by 

setting  

( , ,nL τ P )t

ϕ=θ τ , k = 1, …, n. � 

 

Corollary 1.  Let kφ  be the polynomial mapping, 

. Then, the Lagrange interpolating polynomial 

 satisfies the Read-Bajraktarević type functional equation  

( [ ]: ( , ) ( ), , ( )k
k n kt y L tφ ϕ τ Qa

( , , )nL tτ P
)kϕ

( )1 1( , , ) ( ), , , ( )n k k n kL t t L tφ ϕ ϕ− −⎡ ⎤= ⎣ ⎦τ P τ P ,    1[ ,k kt t t− ]∈ . 

For the next theorem the following lemma is needed. 

Lemma 2. Let P and Q are two m-simplexes and let ( )=Q PL , in the sense 

of Def. 1. Let = be areal coordinates of the point x w.r.t. P. Then, if 

, it holds 

T( )=r S rL

( )Pρ x
)x

1 1

T
... mρ ρ +⎡⎣

P P ⎤⎦

P

P

' (=x L

( ') ( )T=Pρ x S ρ x .                                                                (3.8)  

Proof. The relation , means that P and Q are linearly equivalent, which 

implies equality of areal coordinates of the corresponding point i.e. . Also, 
, so 

( )=Q L
( ) ( ')=P Qρ x ρ x

= ⋅Q S P

( ) ( )T T T' ( ') ( ) ( ) ( ')= ⋅ = ⋅ ⋅ = ⋅ ⋅ =Q P P Px ρ x Q ρ x S P ρ x S P ρ x PT ⋅

)
n=

n=

, 

wherefrom,  which is (3.8). � ( TT( ') ( )= ⋅P Pρ x ρ x S

Theorem 2. The points  (n ≥ 2),  given by (3.7) are 

images of the interpolating nodes P given by (3.3), upon the linear mapping , 
where 

[ ]
0 1

T
... , 1, ...,k k k k

n k⎡ ⎤= ⎣ ⎦Q Q Q Q
T( )= kr S rkL

 .                                          (3.9)  ( ) 0 ,
, ( ) , 1, ...,n

k j k i i j n
t kϕ

≤ ≤
⎡ ⎤= ⎣ ⎦S τl

and kϕ  is given by (3.6). More precisely, [ ]k
k= ⋅Q S P . 
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Proof.   Choose an arbitrary value 0[ , ]A nt t t∈  and consider the point  

. The areal coordinates of the point A w.r.t. simplex P,  are 

given by the Lagrange basic functions for 

( , ( , , )A n At L t=A τ P ) ( )Pρ A

At t= , i.e. 

. It is the consequence of the fact that 

 and the unity partition property 

( )0( ) , ...n⎡= ⎣
Pρ A τl l

0
( , )

n
n

k k A
k

t
=

= ∑A P τl

( ) T
,n

A n At tτ ⎤⎦

0
( ,

n
n
k

k =
) 1t =∑ τl . On the other hand, 

the corresponding point to A, for the transformed node mesh ( )kϕ τ

( ) =

 is the point 

. Consequently, 

. By Lemma 2, then ρ ,  

with Sk as it is given in (3.9). By setting 

( ( ), ( , ,k A nt Lϕ ϕ=B τ

[ ]

0( ) ( , (
k n

k A=Qρ B τ

) (k n
i i τl

T
( )n

k Aϕ⎡ ⎤⎣ ⎦τ

A it t

0

( ))
n

k A
i

t
=
∑P

) ... ( ,ntϕl l

, ( ))k Atϕ= Q

t

(0 )i n

T (k
P PB S ρ A)

= ≤ ≤

P

, the last equality turns into 

 which yields . � T( ) ( )i k i=P Pρ Q S ρ P [ ]k
k= ⋅Q S

Finally, one has 

Theorem 3. The graph Gp of the polynomial ( )nP t ∈ nP , defined by the Lagrange 

interpolation data (3.3), is the attractor of the AIFS {P; S1 ,..., Sn}, where  is given by (3.9), 

and 
kS

kϕ  is given by (3.6). 

Proof.  First, the hyperbolicity of the AIFS will be shown. The spectrum of the matrix 
Sk, as it is known from [5-7] is of the form  

( ) { }1 2 1sp 1, , , ...,k k k
k nλ λ λ −=S , where 1

0

k k k
j

n

j
t t
t t

λ −⎛ ⎞−
= ⎜ −⎝ ⎠

⎟ . Since n ≥ 2, 

1
1

0

1k k k

n

t t
t t

λ −−
= <

−
 for all k, making 1

kλ  the second greatest eigenvalue of Sk. So, there 

exists matrix norm such that 1 1.k <k λ=S

]

 So, the AIFS is hyperbolic, ensuring existence 
of the unique attractor. Denote it by Gp.  Since matrix Sk, that defines the 
mapping , maps P0 and Pn into Pk1 and Pk , the image of P upon Hutchinson 

operator W contains as a subset. The same is for any power Wm of  W. So, P ∈ W∞ = Gp ,  i.e., 
the interpolating points lie on the attractor. Further, by Theorem 2, and Theorem 1, the 
mapping maps the graph of the polynomial , interpolating the points P, into the 

segment of the graph of  on the subinterval  . The proof is then follows by the 
Collage theorem [3]. � 

T( )= kr SkL

kL

r

( )nL t

1[ ,kt −( )nL t kt

  
Example 1. Let P = ( )diag ×τ y  be the interpolating data in ,  where  2R
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3 71 11
5 5 5 5

T1 3= − −⎡ ⎤⎣ ⎦τ and . [ ]T1.2 2.5 3.25 2.38 2.2 0.4= − −y
 The graph of the polynomial interpolating these data  

2 3 4
5 ( ) 2.69951 0.934912 0.0703125 0.878092 1.59912 0.417074L t t t t t t= + − + − + 5

on the interval [1, 3], is given in Fig.1. 

 
       

 
Figure 1.  

 
There are five subintervals, so the AIFS will be {P; S1 ,..., S5}, where the matrices are given 
by (3.9), which makes 
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The Figure 2. shows results of repeated application of  Hutchinson operator on the 
interpolation data P. 
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Figure 2.  

 
 
 
 

4. Conclusion 
 

The subdivision scheme, developed in this paper allows fast evaluation of interpolating 
polynomial, and it is suitable for graphical visualization. The scheme is given in the form of 
iterated function system, and therefore compatible with other schemes and algorithms that are 
in use for evaluation and visualization of fractal sets. As a consequence, it makes possible to 
combine fractal shapes with smooth, polynomial shapes, with possibility of continuous 
altering from one to other. The problems that are still open are comparing the speed of the 
algorithm that rises from Theorem 3 and other algorithms for polynomial evaluation. 
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