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GENERALIZED A-WEYL’S THEOREM

AND PERTURBATIONS

M. Berkani ∗ and H. Zariouh

Abstract

In this paper we study the stability of generalized a-Weyl’s theorem
under perturbations by finite rank and nilpotent operators. Among other
results, we prove that if T is a bounded linear operator acting on a Banach
space X satisfies generalized a-Weyl’s theorem and F is a finite rank
operator commuting with T , then T + F satisfies generalized a-Weyl’s
theorem if and only if Ea(T + F ) ∩ σa(T ) ⊂ Ea(T ). Moreover we prove
that if T is a bounded linear operator acting on a Banach space satisfies
generalized a-Weyl’s theorem and N is a nilpotent operator commuting
with T , then T + N satisfies generalized a-Weyl’s theorem if and only if
σ

SBF−+
(T + N) = σ

SBF−+
(T ).

1 Introduction

Throughout this paper L(X) denote the Banach algebra of all bounded linear
operators acting on a Banach space X. For T ∈ L(X), let T ∗, N(T ), R(T ),
σ(T ) and σa(T ) denote respectively the adjoint, the null space, the range, the
spectrum and the approximate point spectrum of T . Let α(T ) and β(T ) be
the nullity and the deficiency of T defined by α(T ) = dimN(T ) and β(T ) =
codimR(T ). If the range R(T ) of T is closed and α(T ) < ∞ (resp. β(T ) < ∞),
then T is called an upper (resp. a lower) semi-Fredholm operator. In the sequel
SF+(X) denotes the class of all upper semi-Fredholm operators. If T ∈ L(X)
is either an upper or a lower semi-Fredholm operator, then T is called a semi-
Fredholm operator , and the index of T is defined by ind(T ) = α(T ) − β(T ).
If both α(T ) and β(T ) are finite, then T is called a Fredholm operator. An
operator T is called a Weyl operator if it is a Fredholm operator of index zero.
The Weyl spectrum of T is defined by σW (T ) = {λ ∈ C : T −λI is not Weyl }.
For T ∈ L(X), let SF−+ (X) = {T ∈ SF+(X) : ind(T ) ≤ 0}. Then the Weyl
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essential approximate spectrum of T is defined by σSF−+
(T ) = {λ ∈ C : T −λI /∈

SF−+ (X)}.
Let ∆(T ) = σ(T )\σW (T ) and ∆a(T ) = σa(T )\σSF−+

(T ). Following Coburn

[11], we say that Weyl’s theorem holds for T ∈ L(X) if ∆(T ) = E0(T ), where
E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T−λI) < ∞}. Here and elsewhere in this paper,
for A ⊂ C, isoA denotes the set of all isolated points of A and accA denotes the
set of all points of accumulation of A.

According to Rakočević [20], an operator T ∈ L(X) is said to satisfy a-Weyl’s
theorem if ∆a(T ) = E0

a(T ), where E0
a(T ) = {λ ∈ isoσa(T ) : 0 < α(T − λI) <

∞}. It is known [20] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but not conversely.

For T ∈ L(X) and a nonnegative integer n define T[n] to be the restriction of
T to R(Tn) viewed as a map from R(Tn) into R(Tn) ( in particular T[0] = T ). If
for some integer n the range space R(Tn) is closed and T[n] is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-
Fredholm operator. In this case the index of T is defined as the index of the semi-
Fredholm operator T[n], see [6]. Moreover, if T[n] is a Fredholm operator, then T
is called a B-Fredholm operator, see [7]. An operator T ∈ L(X) is said to be a B-
Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum
of T is defined by σBW (T ) = {λ ∈ C : T − λI is not a B-Weyl operator}.

Recall that the ascent of an operator T ∈ L(X) is defined by a(T ) = inf{n ∈
N : N(Tn) = N(Tn+1)} and the descent of T , is defined by δ(T ) = inf{N :
R(Tn) = R(Tn+1)}, with inf∅ = ∞. An operator T is called Drazin invertible
if it has finite ascent and descent. The Drazin spectrum of T is defined by
σD(T ) = {λ ∈ C : T − λI is not Drazin invertible }. An operator T ∈ L(X)
is called an upper semi-Browder if it is an upper semi-Fredholm of finite as-
cent, and is called Browder if it is a Fredholm of finite ascent and descent.
The upper semi-Browder spectrum of T is defined by σub(T ) = {λ ∈ C :
T − λI is not upper semi-Browder } and the Browder spectrum of T is defined
by σb(T ) = {λ ∈ C : T − λI is not Browder }.
Define also the set LD(X) as follows : LD(X) = {T ∈ L(X) : a(T ) <
∞ and R(T a(T )+1) is closed} and σLD(T ) = {λ ∈ C : T − λI /∈ LD(X)}.
An operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We
say that λ ∈ σa(T ) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T )
is a left pole of T of finite rank if λ is a left pole of T and α(T − λI) < ∞. Let
Πa(T ) denotes the set of all left poles of T and Π0

a(T ) denotes the set of all left
poles of T of finite rank. From [3, Theorem 2.8], it follows that if T ∈ L(X)
is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index
less or equal than zero.

Let Π(T ) be the set of all poles of the resolvent of T and let Π0(T ) be
the set of all poles of the resolvent of T of finite rank, that is Π0(T ) = {λ ∈
Π(T )} : α(T − λI) < ∞}. According to [15], a complex number λ is a pole
of the resolvent of T if and only if 0 < max (a(T − λI), δ(T − λI)) < ∞.
Moreover, if this is true then a(T −λI) = δ(T −λI). According also to [15], the
space R((T − λI)a(T−λI)+1) is closed for each λ ∈ Π(T ). Hence we have always
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Π(T ) ⊂ Πa(T ) and Π0(T ) ⊂ Π0
a(T ).

Following [3], we say that generalized a-Browder’s theorem holds for T if
∆g

a(T ) = Πa(T ) and that a-Browder’s theorem holds for T if ∆a(T ) = Π0
a(T ).

It is shown [2, Theorem 2.2] that generalized a-Browder’s theorem is equivalent
to a-Browder’s theorem.

Let ∆g(T ) = σ(T ) \ σBW (T ). We say that generalized Browder’s theorem
holds for T if ∆g(T ) = Π(T ); where Π(T ) is the set of all poles of T and that
Browder’s theorem holds for T if ∆(T ) = Π0(T ); where Π0(T ) is the set of
all poles of T of finite rank. It is proved in [2, Theorem 2.1] that generalized
Browder’s theorem is equivalent to Browder’s theorem.

Let SBF+(X) be the class of all upper semi-B-Fredholm operators, SBF−+ (X) =
{T ∈ SBF+(X) : ind(T ) ≤ 0}. The upper B-Weyl spectrum of T is defined by
σSBF−+

(T ) = {λ ∈ C : T − λI 6∈ SBF−+ (X)}. Let ∆g
a(T ) = σa(T ) \ σSBF−+

(T ).
We say that T obeys generalized a-Weyl’s theorem, if ∆g

a(T ) = Ea(T ); where
Ea(T ) is the set of all eigenvalues of T which are isolated in σa(T ) and that
T obeys generalized Weyl’s theorem if ∆g(T ) = E(T ); where E(T ) is the set
of all eigenvalues of T which are isolated in σ(T ) ([3, Definition 2.13]). Gen-
eralized a-Weyl’s theorem has been studied in [3, 8]. In [3, Theorem 3.11],
it is shown that an operator satisfying generalized a-Weyl’s theorem satisfies
a-Weyl’s theorem, but the converse is not true in general, and under the as-
sumption Ea(T ) = Πa(T ), it is proved in [8, Theorem 2.10] that generalized
a-Weyl’s theorem is equivalent to a-Weyl’s theorem. It is also proved in [3, The-
orem 3.7] that generalized a-Weyl’s theorem implies generalized Weyl’s which
in turn implies from [3, Theorem 3.9] Weyl’s theorem.

Definition 1.1. A bounded linear operator T ∈ L(X) is called isoloid (resp.
a-isoloid) if isoσ(T ) = E(T ) (resp. isoσa(T ) = Ea(T )). Moreover, if isoσa(T ) =
Πa(T ), then we will say that T is an a-polaroid operator.

We will say that T ∈ L(X) has the single valued-extension property at λ0,
(SVEP for short) if for every open neighborhood U of λ0, the only analytic
function f : U → X which satisfies the equation: (T − λI)f(λ) = 0, for all
λ ∈ U is the function f = 0. T ∈ L(X) is said to have the SVEP if T has this
property at every λ ∈ C (see [16]).

The aim of this paper is to study the stability of generalized a-Weyl’s theorem
under commuting nilpotent or finite rank perturbations. Thus, in the second
section, we prove in Theorem 2.2 that if T is a bounded linear operator acting on
a Banach space X satisfies generalized a-Weyl’s theorem and F is a finite rank
operator commuting with T , then T + F satisfies generalized a-Weyl’s theorem
if and only if Ea(T + F ) ∩ σa(T ) ⊂ Ea(T ). We obtain also similar results for a-
Weyl’s and Weyl’s theorem in the case of compact perturbations. Moreover we
prove also in Theorem 2.7 that if T ∈ L(X) satisfies generalized Weyl’s theorem
and if F ∈ L(X) is a finite rank operator commuting with T, then T +F satisfies
generalized Weyl’s theorem if and only if E(T + F ) ∩ σ(T ) ⊂ E(T ).

In the third section we consider in Theorem 3.2 an operator T satisfying
generalized a-Weyl’s theorem and a nilpotent operator N commuting with T ,
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and we prove that T + N satisfies generalized a-Weyl’s theorem if and only
if σSBF−+

(T + N) = σSBF−+
(T ). As a consequence, we show in Theorem 3.3

that if T ∈ L(X) is an operator satisfying generalized a-Weyl’s theorem, if
Ea(T ) ⊂ isoσ(T ) and if N ∈ L(X) is a nilpotent operator commuting with T ,
then T + N satisfies genralized a-Weyl’s theorem. We conclude this paper by
some open questions related to the ideas developed in this section.

2 Finite rank perturbations

The next theorem had been established in [3, Theorem 4.2] for Hilbert spaces
operators. We show here that it holds also in the general case of Banach spaces.

For T ∈ L(X), let c′n(T ) = dim N(T n+1)
N(T n) .

Theorem 2.1. Let X be a Banach space and let T ∈ L(X). Then

σLD(T ) =
⋂

F∈F (X), FT=TF

σLD(T + F )

where F (X) denotes the ideal of finite rank operators in L(X).

Proof. If λ 6∈ σLD(T ), then λ 6∈ σLD(T + 0). Since 0 is a finite rank operator,
it follows that λ 6∈ ⋂{σLD(T + F ) : F ∈ F (X), FT = TF}.

To show the opposite inclusion, let λ 6∈ ⋂{σLD(T + F ) : F ∈ F (X), FT =
TF}. Then there exists a finite rank operator F commuting with T such that
T +F −λI is left Drazin invertible. So T +F −λI is an upper semi-B-Fredholm.
From [6, Theorem 2.7], T − λI is also an upper semi B-Fredholm operator. In
particular the two operators T −λI and T −λI +F are operators of topological
uniform descent [6]. By [14, Theorem 5.8], for n large enough we have c′n(T −
λI) = c′n(T − λI + F ). Since T − λI + F is left Drazin invertible, then for
n large enough we have c′n(T − λI + F ) = 0. So for n large enough we have
c′n(T − λI) = 0 and a(T − λI) < ∞. On the other hand, for n large enough
R(T −λI)n is closed and by [19, Lemma 12], R(T −λI)a(T−λI)+1 is also closed.
Hence T − λI is left Drazin invertible.

From Theorem 2.1 we conclude that if T ∈ L(X) and if F ∈ L(X) is a finite
operator commuting with T, then σLD(T ) = σLD(T +F ). However, these result
do not extend to commuting compact perturbations. To see this,consider on the
Hilbert space `2(N), the operators T = 0 and Q defined by Q(x0, x1, x2, ...) =
(x0, x1/2, x2/3, ...). Then Q is compact, TQ = QT = 0, isoσa(T ) = Πa(T ) =
{0}, isoσa(T + Q) = {0} and Πa(T + Q) = Πa(Q) = ∅. So σLD(T ) = ∅ but
σLD(T + Q) = {0}.
Theorem 2.2. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X)
be a finite rank operator commuting with T . If T satisfies generalized a-Weyl’s
theorem, then the following assertions are equivalent.
(i) T + F satisfies generalized a-Weyl’s theorem;
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(ii) Ea(T + F ) = Πa(T + F );
(iii) Ea(T + F ) ∩ σa(T ) ⊂ Ea(T ).

Proof. (i) ⇐⇒ (ii) If T + F satisfies generalized a-Weyl’s theorem, then from
[3, Corollary 3.2], we have Ea(T + F ) = Πa(T + F ). Conversely, assume that
Ea(T + F ) = Πa(T + F ), since T satisfies generalized a-Weyl’s theorem, then
σSBF−+

(T ) = σLD(T ). Since F is a finite rank operator, from [5, Lemma 2.3]
we have σSBF−+

(T ) = σSBF−+
(T + F ). As F commutes with T , from Theorem

2.1 we have σLD(T ) = σLD(T + F ). So σSBF−+
(T + F ) = σLD(T + F ). As

Ea(T +F ) = Πa(T +F ), then from [3, Corollary 3.2], T +F satisfies generalized
a-Weyl’s theorem.
(iii) =⇒ (ii) Let λ ∈ Ea(T + F ). Then λ ∈ isoσa(T + F ). If λ 6∈ σa(T ), then
λ 6∈ σSBF−+

(T ), then λ /∈ σSBF−+
(T + F ). As λ ∈ isoσa(T + F ), it follows from

[3, Theorem 2.8] that λ ∈ Πa(T +F ). If λ ∈ σa(T ), then λ ∈ Ea(T +F )∩σa(T ),
and by assumption λ ∈ Ea(T ). Since T satisfies generalized a-Weyl’s theorem,
then λ 6∈ σSBF−+

(T + F ). Hence λ ∈ Πa(T + F ). In the two cases, we have
Ea(T + F ) ⊂ Πa(T + F ). As we have always Ea(T + F ) ⊃ Πa(T + F ), then
Ea(T + F ) = Πa(T + F ).
(ii) =⇒ (iii) Assume that Ea(T+F ) = Πa(T+F ) and let λ ∈ Ea(T+F )∩σa(T ),
then λ ∈ Πa(T + F ) ∩ σa(T ). So λ 6∈ σLD(T + F ). As σLD(T ) = σLD(T + F )
and λ ∈ σa(T ), then λ ∈ Πa(T ). Since the inclusion Πa(T ) ⊂ Ea(T ) is always
true, then λ ∈ Ea(T ). Hence Ea(T + F ) ∩ σa(T ) ⊂ Ea(T ).

In the next result we prove a similar characterization for a-Weyl’s theorem,
in the case of a compact pertubation.

Theorem 2.3. Let X be a Banach space and let T ∈ L(X) and K ∈ L(X) be a
compact operator commuting with T . If T satisfies a-Weyl’s theorem, then the
following properties are equivalent.
(i) T + K satisfies a-Weyl’s theorem;
(ii) E0

a(T + K) = Π0
a(T + K);

(iii) E0
a(T + K) ∩ σa(T ) ⊂ E0

a(T ).

Proof. (i) ⇐⇒ (ii) If T satisfies a-Weyl’s theorem, then from [3, Theorem 3.4]
we have E0

a(T +K) = Π0
a(T +K). Conversely, if E0

a(T +K = Π0
a(T +K), since T

satisfies a-Weyl’s theorem, then from [3, Theorem 3.4] we have E0
a(T ) = Π0

a(T ).
Since K is a compact operator, then we also have σSF−+

(T + K) = σSF−+
(T ) =

σa(T )\E0
a(T ) = σa(T )\Π0

a(T ) = σub(T ). Since K commutes with T , then from
[1, Corollary 3.45], we have σub(T ) = σub(T + K) = σa(T + K) \Π0

a(T + K) =
σa(T +K) \E0

a(T +K). Therefore σSF−+
(T +K) = σa(T +K) \E0

a(T +K) and
T + K satisfies a-Weyl’s theorem.
(ii) =⇒ (iii) Suppose that E0

a(T +K) = Π0
a(T +K). If λ ∈ E0

a(T +K)∩σa(T ),
then λ ∈ Π0

a(T +K)∩σa(T ). So λ 6∈ σub(T +K). As σub(T ) = σub(T +K) and
λ ∈ σa(T ), then λ ∈ Π0

a(T ) = E0
a(T ). Hence E0

a(T + K) ∩ σa(T ) ⊂ E0
a(T ).

(iii) =⇒ (ii) Suppose that E0
a(T + K) ∩ σa(T ) ⊂ E0

a(T ). Since Π0
a(T + K) ⊂

E0
a(T+K) is always true, we only have to show that Π0

a(T+K) ⊃ E0
a(T+K). Let
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λ ∈ E0
a(T +K). If λ 6∈ σa(T ), then λ 6∈ σub(T ). As σub(T ) = σub(T +K) and λ ∈

σa(T +K), then λ ∈ Π0
a(T +K). If λ ∈ σa(T ), then λ ∈ E0

a(T +K)∩σa(T ), and
by hypothesis λ ∈ E0

a(T ) = Π0
a(T ). So λ 6∈ σub(T ). As σub(T ) = σub(T + K),

then λ ∈ Π0
a(T + K). In the two cases, we have Π0

a(T + K) ⊃ E0
a(T + K).

Remark 2.4. (1)– Theorem 2.2 extends [17, Theorem 2.4] which establishes
that T + F satisfies generalized a-Weyl’s theorem when T is an a-isoloid op-
erator satisfying generalized a-Weyl’s theorem and F is a finite rank operator
commuting with T . Since acc σa(T ) = acc σa(T + F ) (see [13, Theorem 3.2]),
we observe that if T is an a-isoloid operator, then Ea(T + F )∩ σa(T ) ⊂ Ea(T ).

(2)– There exists an operator T which is not a-isoloid, satisfying general-
ized a-Weyl’s theorem and a finite rank operator commuting with T such that
Ea(T + F ) ∩ σa(T ) ⊂ Ea(T ). To see this, consider the operator T defined on
the Hilbert space `2(N) by T (x1, x2, x3, ...) = (x1/2, x2/3, ...) and let F = 0.
Then σa(T ) = {0}, Ea(T ) = ∅ and σSBF−+

(T ) = {0}. So T satisfies generalized
a-Weyl’s theorem, Ea(T + F ) ∩ σa(T ) = Ea(T ), but T is not a-isoloid.

(3)– Theorem 2.3 extends [13, Theorem 3.4] which establishes that if T is an
a-isoloid operator satisfying a-Weyl’s theorem and if F is a finite rank operator
commuting with T , then T +F satisfies a-Weyl’s theorem. To see this, we know
that α(T ) < ∞ if and only if α(T + F ) < ∞ (see [18, Lemma 2.1]), so it follows
that if T is a-isoloid then E0

a(T + F ) ∩ σa(T ) ⊂ E0
a(T ).

There exists quasinilpotent operators which do not satisfy generalized a-
Weyl’s theorem. For example, if we consider the operator T defined on `2(N) by
T (x1, x2, x3, ...) = (0, x2/2, x3/3, ...), then T is quasinilpotent but generalized
a-Weyl’s theorem fails for T , since σa(T ) = σSBF−+

(T ) = {0} and Ea(T ) = {0}.
But if a quasinilpotent operator satisfies generalized a-Weyl’s theorem, then the
following perturbation result holds.

Corollary 2.5. Let T ∈ L(X) be a quasinilpotent operator and let F ∈ L(X)
be a finite rank operator commuting with T . If T satisfies generalized a-Weyl’s
theorem, then T + F satisfies generalized a-Weyl’s theorem.

Proof. If T is injective, as TF is a finite rank quasinilpotent operator, then TF
is a nilpotent operator. Since T is injective, then F is nilpotent . Therefore
σa(T + F ) = σa(T ) and Ea(T + F ) = Ea(T ) (see Lemma 3.1). Moreover, since
F is of finite rank, it follows that σSBF−+

(T + F ) = σSBF−+
(T ). As T satisfies

generalized a-Weyl’s theorem then ∆g
a(T ) = Ea(T ). So ∆g

a(T +F ) = Ea(T +F )
and T + F satisfies generalized a-Weyl’s theorem.

If T is not injective, then isoσa(T ) = Ea(T ) = {0} and T is an a-isoloid
operator. Therefore by Theorem 2.2, we conclude that T+F satisfies generalized
a-Weyl’s theorem.

Remark 2.6. The hypothesis of commutativity in Corollary 2.5 is crucial.
Indeed, if we consider the Hilbert space H = `2(N), and the operators T and F
defined on H by:

T (x1, x2, x3, ....) = (0, x1/2, x2/3, ....) , F (x1, x2, x3, ....) = (0,−x1/2, 0, 0, ....).
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Then T is quasi-nilpotent, F is a finite rank operator which do not commutes
with T. Moreover, we have σa(T ) = σSBF−+

(T ) = {0} and Ea(T ) = ∅. Hence T

satisfies generalized a-Weyl’s theorem. But T + N does not satisfy generalized
a-Weyl’s theorem because σa(T +N) = σSBF−+

(T +F ) = {0} and Ea(T +N) =
{0}.
Theorem 2.7. Let X be a Banach space and let T ∈ L(X) and F ∈ L(X)
be a finite rank operator commuting with T . If T satisfies generalized Weyl’s
theorem, then the following properties are equivalent.
(i) T + F satisfies generalized Weyl’s theorem;
(ii) E(T + F ) = Π(T + F );
(iii) E(T + F ) ∩ σ(T ) ⊂ E(T ).

Proof. The equivalence of the two first properties is well known in [9, Theorem
3.2]. Let us show that (ii) is equivalent to (iii). Assume that E(T +F )∩σ(T ) ⊂
E(T ). Let λ ∈ E(T + F ), then λ ∈ isoσ(T + F ). If λ 6∈ σ(T ), then λ 6∈ σD(T ).
Since F commutes with T , from [10, Theorem 2.7] we have σD(T ) = σD(T +F ).
As λ ∈ σ(T +F ), then λ ∈ Π(T +F ). If λ ∈ σ(T ), then λ ∈ E(T +F )∩σ(T ) and
by hypothesis we have λ ∈ E(T ). As T satisfies generalized Weyl’s theorem,
it follows that λ ∈ Π(T ). As σD(T ) = σD(T + F ) and λ ∈ σ(T + F ) then
λ ∈ Π(T + F ). Finally we have E(T + F ) ⊂ Π(T + F ). As we have always
E(T + F ) ⊃ Π(T + F ), then E(T + F ) = Π(T + F ).

Conversely, suppose that E(T + F ) = Π(T + F ). If λ ∈ E(T + F ) ∩ σ(T ),
then λ ∈ Π(T + F ) ∩ σ(T ). Therefore λ 6∈ σD(T + F ). As σD(T ) = σD(T + F )
and λ ∈ σ(T ), then λ ∈ Π(T ) = E(T ). Hence E(T + F ) ∩ σ(T ) ⊂ E(T ).

Similarly to Theorem 2.7, we have the following characterization in the case
of Weyl’s theorem. We give this result without proof.

Theorem 2.8. Let X be a Banach and let T ∈ L(X) and K ∈ L(X) be a
compact operator commuting with T . If T satisfies Weyl’s theorem, then the
following properties are equivalent.
(i) T + K satisfies Weyl’s theorem;
(ii) E0(T + K) = Π0(T + K);
(iii) E0(T + K) ∩ σ(T ) ⊂ E0(T ).

Remark 2.9. (1) It is proved in [5, Theorem 2.6] that generalized Weyl’s theo-
rem for isoloid operators is preserved under perturbations by commuting finite
rank operators. This result becomes as an immediate consequence of Theorem
2.7. As acc σ(T ) = acc σ(T + F ) (see [18, Lemma 2.1]), we observe that if T is
isoloid, then E(T + F ) ∩ σ(T ) ⊂ E(T ).
(2) Since α(T ) < ∞ if and only if α(T +F ) < ∞, we observe that if T is isoloid
then
E0(T + F ) ∩ σ(T ) ⊂ E0(T ). Therefore Theorem 2.8 extends a result of W. Y.
Lee and S. H. Lee in [18], where Weyl’s theorem was proved for T + F when T
is an isoloid operator satisfying Weyl’s theorem, and F is a finite rank operator
commuting with T .
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Examples 2.10. (a)– In general generalized a-Weyl’s theorem, a-Weyl’s theo-
rem, generalized Weyl’s theorem and Weyl’s theorem are not transmitted from
an operator to a commuting finite rank perturbation as the following example
shows.
Let S : `2(N) → `2(N) be an injective quasinilpotent operator which is not
nilpotent. We define T on the Banach space X = `2(N) ⊕ `2(N) by T = I ⊕ S
where I is the identity operator on `2(N). Then σ(T ) = σa(T ) = {0, 1} and
Ea(T ) = {1}. It follows from [9, Example 2] that σBW (T ) = {0}. This implies
that σSBF−+

(T ) = {0}. Hence σa(T ) \ σSBF−+
(T ) = Ea(T ) = {1} and T satis-

fies generalized a-Weyl’s theorem, so it satisfies a-Weyl’s theorem, generalized
Weyl’s theorem and Weyl’s theorem.

We define the operator U on `2(N) by U(ξ1, ξ2, ξ3, ...) = (−ξ1, 0, 0, ...) and
F = U ⊕ 0 on the Banach space X = `2(N) ⊕ `2(N). Then F is a finite rank
operator commuting with T . On the other hand, σ(T + F ) = σa(T + F ) =
{0, 1} and Ea(T + F ) = {0, 1}. As σSBF−+

(T + F ) = σSBF−+
(T ) = {0}, then

σa(T + F ) \ σSBF−+
(T + F ) = {1} 6= Ea(T + F ) and T + F does not satisfy

generalized a-Weyl’s theorem. Not that Ea(T +F )∩σa(T ) 6⊂ Ea(T ). Moreover,
E(T+F ) = {0, 1}, and as by [4, Theorem 4.3] we have σBW (T+F ) = σBW (T ) =
{0}, then T + F does not satisfy generalized Weyl’s theorem. Observe that
E(T + F ) ∩ σ(T ) 6⊂ E(T ) = {1}.
Moreover we have σW (T + F ) = {0, 1} and E0(T + F ) = {0}. As σ(T + F ) =
{0, 1} then ∆(T + F ) 6= E0(T + F ) and T + F does not satisfy Weyl’s theorem.
So T + F does not satisfy a-Weyl’s theorem. Note that E0(T + F ) ∩ σ(T ) 6⊂
E0(T ) = ∅, and E0

a(T + F ) ∩ σa(T ) = {0} ∩ {0, 1} 6⊂ E0
a(T ) = ∅.

(b)– Theorem 2.2 and Theorem 2.7 do not extend to a commuting compact
perturbation. Indeed, if we consider on the Hilbert space `2(N) the operators
T = 0 and Q defined by Q(x1, x2, x3, ...) = (x2/2, x3/3, x4/4, ...). Then Q is a
compact operator commuting with T. Moreover,we have

σa(T ) = {0}, σSBF−+
(T ) = ∅, Ea(T ) = {0}. Hence T satisfies generalized

a-Weyl’s theorem. So it satisfies generalized Weyl’s theorem. But generalized
a-Weyl’s theorem and generalized Weyl’s fails for T +Q = Q. Indeed σSBF−+

(T +
Q) = σa(T + Q) = {0}, Ea(T + Q) = {0} and σ(T + Q) = {0}, σBW (T + Q) =
{0}, E(T + Q) = E(T ) = {0}. Thought we have Ea(T + Q) ∩ σa(T ) ⊂ Ea(T )
and E(T + Q) ∩ σ(T ) ⊂ E(T ).

3 Nilpotent perturbations

Let T ∈ L(X) and let N be a nilpotent operator commuting with T. In a first
step we prove that T and T + N have the same isolated eigenvalues in the
approximate spectrum.

Lemma 3.1. Let X be a Banach space and let T ∈ L(X). If N ∈ L(X) is a
nilpotent operator commuting with T , then Ea(T + N) = Ea(T ).

Proof. Let λ ∈ Ea(T ) be arbitrary. There is no loss of generality if we assume
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that λ = 0. As N is nilpotent we know that σa(T + N) = σa(T ), thus 0 ∈
isoσa(T + N). Let m ∈ N be such that Nm = 0. If x ∈ N(T ), then (T +
N)m(x) =

∑m
k=0 C k

mT kNm−k (x ) = 0. So N(T ) ⊂ N(T + N)m. As α(T ) > 0,
it follows that α((T + N)m) > 0 and this implies that α(T + N) > 0. Hence
0 ∈ Ea(T + N). So Ea(T ) ⊂ Ea(T + N). By symmetry we have Ea(T ) =
Ea(T + N).

In the next theorem, we consider an operator T ∈ L(X) satisfying gener-
alized a-Weyl’s theorem, a nilpotent operator commuting with T , and we give
necessary and sufficient conditions for T + N to satisfy generalized a-Weyl’s
theorem.

Theorem 3.2. Let X be a Banach space and T ∈ L(X) and N ∈ L(X) be a
nilpotent operator commuting with T . If T satisfies generalized a-Weyl’s theo-
rem, then the following statements are equivalent.
(i) T + N satisfies generalized a-Weyl’s theorem;
(ii) σSBF−+

(T + N) = σSBF−+
(T );

(iii) Ea(T ) = Πa(T + N).

Proof. (i) ⇐⇒ (ii) Assume that T + N satisfies generalized a-Weyl’s theorem,
then

σa(T + N) \ σSBF−+
(T + N) = Ea(T + N). As σa(T + N) = σa(T ) and

Ea(T + N) = Ea(T ) then σa(T ) \ σSBF−+
(T + N) = Ea(T ). Since T satisfies

generalized a-Weyl’s theorem, then
σa(T )\σSBF−+

(T ) = Ea(T ). So σSBF−+
(T +N) = σSBF−+

(T ). Conversely, as-
sume that σSBF−+

(T +N) = σSBF−+
(T ), then as T satisfies generalized a-Weyl’s

theorem it follows that T + N satisfies also generalized a-Weyl’s theorem.
(i) ⇐⇒ (iii) Assume that T + N satisfies generalized a-Weyl’s theorem, then
from [3, Corollary 3.2], we have Ea(T + N) = Πa(T + N). Therefore Ea(T ) =
Πa(T + N). Conversely, assume that Ea(T ) = Πa(T + N). Since T sat-
isfies generalized a-Weyl’s theorem, then T satisfies generalized a-Browder’s
theorem. As we know from [2, Theorem 2.2] that a-Browder’s theorem is
equivalent to generalized a-Browder’s theorem, then T satisfies a-Browder’s
theorem. So σSF−+

(T ) = σub(T ). From [12, Theorem 2.13], we know that
σSF−+

(T ) = σSF−+
(T + N). By [1, Theorem 3.65], we know that σub(T ) =

σSF−+
(T ) ∪ accσa(T ). Hence σub(T ) = σub(T + N). Therefore σSF−+

(T + N) =
σub(T + N) and T + N satisfies a-Browder’s theorem. So it satisfies generalized
a-Browder’s that is σa(T +N)\σSBF−+

(T +N) = Πa(T +N). As by assumption
Ea(T ) = Πa(T + N), it follows that σa(T + N) \ σSBF−+

(T + N) = Ea(T + N)
and so T + N satisfies generalized a-Weyl’s theorem.

Theorem 3.3. Let X be a Banach space and let T ∈ L(X) be an operator
satisfying generalized a-Weyl’s theorem. If Ea(T ) ⊂ isoσ(T ) and if N ∈ L(X)
is a nilpotent operator commuting with T , then T + N satisfies generalized a-
Weyl’s theorem.



16 M. Berkani and H. Zariouh

Proof. Let λ ∈ Ea(T ), since Ea(T ) ⊂ isoσ(T ), then λ ∈ E(T ).
As T satisfies generalized a-Weyl’s theorem, from [3, Theorem3.7] T satisfies

generalized Weyl’s theorem. Hence λ ∈ Π(T ). As we know that σD(T ) =
σD(T + N), then λ ∈ Π(T + N). Hence λ ∈ Πa(T + N). Consequently we have
Ea(T ) = Πa(T + N). Conversely if λ ∈ Πa(T + N), then λ ∈ Ea(T + N). As we
know that Ea(T ) = Ea(T + N), (see Lemmma 3.1), then λ ∈ Ea(T + N). So
Ea(T ) = Πa(T + N). From Theorem 3.2, T + N satisfies generalized a-Weyl’s
theorem.

Remark 3.4. 1- The hypothesis of commutativity in the Theorem 3.2 corol-
lary is crucial. The following example shows that if we do not assume that N
commutes with T , then the result may fails. Let H = `2(N), and let T and N
defined by:

T (x1, x2, x3, ....) = (0, x1/2, x2/3, ....) , N(x1, x2, x3, ....) = (0,−x1/2, 0, 0, ....).

Clearly N is a nilpotent operator which does not commute with T. Moreover,
we have σa(T ) = σSBF−+

(T ) = {0} and Ea(T ) = ∅. Therefore T satisfies
generalized a-Weyl’s theorem. But T + N does not satisfy generalized a-Weyl’s
theorem because σa(T + N) = σSBF−+

(T + N) = {0} and Ea(T + N) = {0}.
(2) Generally, generalized a-Weyl’s theorem does not extend to a quasinilpo-

tent perturbation: Define on the Banach space `2(N) the operator T = 0 and the
quasinilpotent operator Q defined by Q(x1, x2, x3, ...) = (x2/2, x3/3, x4/4, ...).
Then σa(T ) = {0} and σSBF−+

(T ) = ∅. Moreover we have Ea(T ) = {0}. Hence
T satisfies generalized a-Weyl’s theorem. But generalized a-Weyl’s theorem
does not hold for T + Q = Q, since σSBF−+

(T + Q) = σa(T + Q) = {0} and
Ea(T + Q) = {0}.

Open questions: The proof of Theorem 3.2 suggests the following ques-
tions:

1. let T ∈ L(X) and let N ∈ L(X) be a nilpotent operator commuting with
T . Under which conditions a(T + N) is finite if a(T ) is finite?

2. let T ∈ L(X) and let N ∈ L(X) be a nilpotent operator commuting with
T . Under which conditions R((T + N)m) is closed for m large enough i if
R(Tm) is closed for m large enough?

3. let T ∈ L(X) and let N ∈ L(X) be a nilpotent operator commuting with
T . Under which conditions Πa(T + N) = Πa(T )?
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[12] Djordjević, D. S., Djordjević, S. V., On a-Weyl’s theorem, Rev. Roumaine
Math. Pures Appl. 44 (1999), 361–369.

[13] Djordjevic, D. S., Operators obying a-Weyl’s theorem.Publ. Math. Debre-
cen, 55(3-4), 283–298 (1999).

[14] S. Grabiner, Uniform ascent and descent of bounded operators, J. Math.
Soc. Japan 34 (1982), 317–337.

[15] H. Heuser, Functionl Analysis, John Wiley & Sons Inc, New York, 1982.

[16] K. B. Laursen, M. M. Neumann, An Introduction to Local Spectral Theory,
Clarendon, Oxford, (2000).

[17] M. Lahrouz and M. Zohri, Weyl type Theorems and the Approximate Point
Spectrum. Irish Math. Soc. Bulletin 55 (2005), 41–51.

[18] W. Y. Lee, S. H. Lee, On Weyl’s theorem II.Math. Japonica 43 (1996),
549–553.

[19] M. Mbekhta and V. Müller, On the axiomatic theory of the spectrum, II,
Studia Math. 119 (1996), 129–147.



18 M. Berkani and H. Zariouh
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