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GENERALIZED A-WEYL’S THEOREM
AND PERTURBATIONS

M. Berkani * and H. Zariouh

Abstract

In this paper we study the stability of generalized a-Weyl’s theorem
under perturbations by finite rank and nilpotent operators. Among other
results, we prove that if T is a bounded linear operator acting on a Banach
space X satisfies generalized a-Weyl’s theorem and F' is a finite rank
operator commuting with 7', then T + F satisfies generalized a-Weyl’s
theorem if and only if Eq(T + F) N oa(T) C Eo(T). Moreover we prove
that if T is a bounded linear operator acting on a Banach space satisfies
generalized a-Weyl’s theorem and N is a nilpotent operator commuting
with T, then T' 4+ N satisfies generalized a-Weyl’s theorem if and only if

IsBF (T+N)= IsBF (T).

1 Introduction

Throughout this paper L(X) denote the Banach algebra of all bounded linear
operators acting on a Banach space X. For T € L(X), let T*, N(T), R(T),
o(T) and 0,(T) denote respectively the adjoint, the null space, the range, the
spectrum and the approximate point spectrum of T. Let a(T) and 3(T) be
the nullity and the deficiency of T defined by «(T) = dimN(T) and S(T) =
codimR(T). If the range R(T) of T is closed and a(T) < oo (resp. B(T) < 00),
then T is called an upper (resp. a lower) semi-Fredholm operator. In the sequel
SF,(X) denotes the class of all upper semi-Fredholm operators. If T € L(X)
is either an upper or a lower semi-Fredholm operator, then T is called a semi-
Fredholm operator , and the index of T is defined by ind(T) = a(T) — 5(T).
If both «(T) and B(T) are finite, then T is called a Fredholm operator. An
operator T is called a Weyl operator if it is a Fredholm operator of index zero.
The Weyl spectrum of T is defined by ow (T') = {A € C: T — AI is not Weyl }.
For T € L(X), let SF(X) = {T € SF.(X) : ind(T) < 0}. Then the Weyl
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essential approximate spectrum of T is defined by Tsky (T)={XeC:T-X ¢

SF7(X)}.

Let A(T) = o(T)\ow (T) and A (T) = 04(T) \USF; (T). Following Coburn
[11], we say that Weyl’s theorem holds for T' € L(X) if A(T) = E°(T), where
E%T)={X€isoo(T) : 0 < a(T—AI) < oo}. Here and elsewhere in this paper,
for A C C, isoA denotes the set of all isolated points of A and accA denotes the
set of all points of accumulation of A.

According to Rakocevi¢ [20], an operator T € L(X) is said to satisfy a-Weyl’s
theorem if A,(T) = E(T), where EX(T) = {\ € is004(T) : 0 < (T — XI) <
oo}. It is known [20] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but not conversely.

For T' € L(X) and a nonnegative integer n define Tj,,; to be the restriction of
T to R(T™) viewed as a map from R(T™) into R(T™) ( in particular Tig) = T). If
for some integer n the range space R(T") is closed and T}, is an upper (resp. a
lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-
Fredholm operator. In this case the index of T is defined as the index of the semi-
Fredholm operator 1},), see [6]. Moreover, if T}y is a Fredholm operator, then T'
is called a B-Fredholm operator, see [7]. An operator T € L(X) is said to be a B-
Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum
of T is defined by opw (T) = {A € C : T — AI is not a B-Weyl operator}.

Recall that the ascent of an operator T € L(X) is defined by a(T") = inf{n €

N : N(T") = N(T"1)} and the descent of T, is defined by §(T) = inf{N :
R(T™) = R(T™*1)}, with inf) = co. An operator T is called Drazin invertible
if it has finite ascent and descent. The Drazin spectrum of T is defined by
op(T) = {A € C: T — Al is not Drazin invertible }. An operator T' € L(X)
is called an upper semi-Browder if it is an upper semi-Fredholm of finite as-
cent, and is called Browder if it is a Fredholm of finite ascent and descent.
The upper semi-Browder spectrum of T is defined by o,(T) = {A € C :
T — Al is not upper semi-Browder } and the Browder spectrum of T is defined
by op(T) = {X € C: T — A is not Browder }.
Define also the set LD(X) as follows : LD(X) = {T € L(X) : a(T) <
oo and R(T*T)*1) is closed} and orp(T) = {N € C: T — X ¢ LD(X)}.
An operator T € L(X) is said to be left Drazin invertible if T € LD(X). We
say that A € 0,(T) is a left pole of T if T — A\I € LD(X), and that A € 0,(T)
is a left pole of T' of finite rank if A is a left pole of T and «(T — AI) < co. Let
I1,(T) denotes the set of all left poles of 7' and II2(T') denotes the set of all left
poles of T of finite rank. From [3, Theorem 2.8], it follows that if 7" € L(X)
is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index
less or equal than zero.

Let II(T) be the set of all poles of the resolvent of T" and let 11°(7T) be
the set of all poles of the resolvent of T' of finite rank, that is II°(T) = {\ €
IT)} : (T — M) < oo}. According to [15], a complex number A is a pole
of the resolvent of T if and only if 0 < max (a(T — AI),0(T — M) < .
Moreover, if this is true then a(T — AI) = §(T — AI). According also to [15], the
space R((T — AI)*T=AD+1) is closed for each A € II(T'). Hence we have always
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I(T) C I,(T) and TI%(T") C TI9(T).

Following [3], we say that generalized a-Browder’s theorem holds for T' if
AI(T) = U,(T) and that a-Browder’s theorem holds for T if A,(T) = TY(T).
It is shown [2, Theorem 2.2] that generalized a-Browder’s theorem is equivalent
to a-Browder’s theorem.

Let A9(T) = o(T) \ opw(T). We say that generalized Browder’s theorem
holds for T if A9(T') = II(T'); where II(T) is the set of all poles of T' and that
Browder’s theorem holds for T if A(T) = II°(T); where IT°(T) is the set of
all poles of T of finite rank. It is proved in [2, Theorem 2.1] that generalized
Browder’s theorem is equivalent to Browder’s theorem.

Let SBF (X) be the class of all upper semi-B-Fredholm operators, SBF (X) =
{T' € SBF+(X) : ind(T) < 0}. The upper B-Weyl spectrum of T is defined by
TsBr; (T)={Ae€C : T-X ¢SBF_(X)}. Let AY(T) = UG(T)\O'SBF; (7).
We say that T obeys generalized a-Weyl’s theorem, if AY(T) = E,(T); where
E,(T) is the set of all eigenvalues of T which are isolated in o,(T) and that
T obeys generalized Weyl’s theorem if AY(T) = E(T); where E(T) is the set
of all eigenvalues of T' which are isolated in o(7T') ([3, Definition 2.13]). Gen-
eralized a-Weyl’s theorem has been studied in [3, 8]. In [3, Theorem 3.11],
it is shown that an operator satisfying generalized a-Weyl’s theorem satisfies
a-Weyl’s theorem, but the converse is not true in general, and under the as-
sumption E,(T) = II,(T), it is proved in [8, Theorem 2.10] that generalized
a-Weyl’s theorem is equivalent to a-Weyl’s theorem. It is also proved in [3, The-
orem 3.7] that generalized a-Weyl’s theorem implies generalized Weyl’s which
in turn implies from [3, Theorem 3.9] Weyl’s theorem.

Definition 1.1. A bounded linear operator T' € L(X) is called isoloid (resp.
a-isoloid) if isoo (T') = E(T) (resp. isoca(T) = E.(T)). Moreover, if isoo,(T) =
IT1,(T), then we will say that T is an a-polaroid operator.

We will say that T € L(X) has the single valued-extension property at A,
(SVEP for short) if for every open neighborhood U of A, the only analytic
function f : U — X which satisfies the equation: (T'— AI)f(A) = 0, for all
A € U is the function f = 0. T € L(X) is said to have the SVEP if T has this
property at every A € C (see [16]).

The aim of this paper is to study the stability of generalized a-Weyl’s theorem
under commuting nilpotent or finite rank perturbations. Thus, in the second
section, we prove in Theorem 2.2 that if T is a bounded linear operator acting on
a Banach space X satisfies generalized a-Weyl’s theorem and F' is a finite rank
operator commuting with 7', then T+ F satisfies generalized a-Weyl’s theorem
if and only if E,(T + F)No,(T) C E,(T). We obtain also similar results for a-
Weyl’s and Weyl’s theorem in the case of compact perturbations. Moreover we
prove also in Theorem 2.7 that if T € L(X) satisfies generalized Weyl’s theorem
and if F' € L(X) is a finite rank operator commuting with 7', then 7'+ F’ satisfies
generalized Weyl’s theorem if and only if E(T' + F)No(T) C E(T).

In the third section we consider in Theorem 3.2 an operator T satisfying
generalized a-Weyl’s theorem and a nilpotent operator N commuting with T,
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and we prove that T+ N satisfies generalized a-Weyl’s theorem if and only
if Tspr; (T+N) = Tspr; (T). As a consequence, we show in Theorem 3.3
that if T € L(X) is an operator satisfying generalized a-Weyl’s theorem, if
E,(T) C isoc(T) and if N € L(X) is a nilpotent operator commuting with T
then T + N satisfies genralized a-Weyl’s theorem. We conclude this paper by
some open questions related to the ideas developed in this section.

2 Finite rank perturbations

The next theorem had been established in [3, Theorem 4.2] for Hilbert spaces
operators. We show here that it holds also in the general case of Banach spaces.

For T € L(X), let ¢,(T) = dim NJ\({;:;)

Theorem 2.1. Let X be a Banach space and let T € L(X). Then

ULD(T): ﬂ JLD(T+F)
FEF(X), FT=TF

where F(X) denotes the ideal of finite rank operators in L(X).

Proof. If A& or,p(T), then A & or,p(T + 0). Since 0 is a finite rank operator,
it follows that A &€ ({op (T + F): F € F(X), FT =TF}.

To show the opposite inclusion, let A & {op(T' + F) : F € F(X), FT =
TF}. Then there exists a finite rank operator F' commuting with T such that
T+ F — A is left Drazin invertible. So T+ F'— A\ is an upper semi-B-Fredholm.
From [6, Theorem 2.7], T — AI is also an upper semi B-Fredholm operator. In
particular the two operators T'— AI and T'— A\ + F' are operators of topological
uniform descent [6]. By [14, Theorem 5.8], for n large enough we have ¢ (T —
M) = (T — M + F). Since T — A + F is left Drazin invertible, then for
n large enough we have ¢, (T — A + F) = 0. So for n large enough we have
(T —A) =0 and a(T — M) < oco. On the other hand, for n large enough
R(T — AI)™ is closed and by [19, Lemma 12], R(T — A\I)*T=*D+1 is also closed.
Hence T' — AI is left Drazin invertible. O

From Theorem 2.1 we conclude that if T € L(X) and if F' € L(X) is a finite
operator commuting with T, then o1,p(T) = orp(T + F). However, these result
do not extend to commuting compact perturbations. To see this,consider on the
Hilbert space ¢?(N), the operators T = 0 and @ defined by Q(zg,z1,x2,...) =
(z0,21/2,22/3,...). Then @ is compact, TQ = QT = 0, isoc,(T) = I, (T) =
{0}, is00o (T + Q) = {0} and I, (T + Q) = I(Q) = 0. So orp(T) = 0 but
oup(T +Q) = {0},

Theorem 2.2. Let X be a Banach space and let T € L(X) and F € L(X)
be a finite rank operator commuting with T. If T satisfies generalized a-Weyl’s
theorem, then the following assertions are equivalent.

(i) T + F satisfies generalized a-Weyl’s theorem;
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(i1) Eo(T + F) = I, (T + F);
(iii) Eo(T + F) N0, (T) C E,(T).

Proof. (i) <= (i1) If T + F satisfies generalized a-Weyl’s theorem, then from
[3, Corollary 3.2], we have E,(T + F) = II,(T + F'). Conversely, assume that
E, T+ F) =1I,(T + F), since T satisfies generalized a-Weyl’s theorem, then
TsBr; (T) = orp(T). Since F is a finite rank operator, from [5, Lemma 2.3]

we have TsBr; (1) = Tspr- (T + F). As F commutes with T, from Theorem
2.1 we have O'LD(T) = O'LD(T+F). So USBFJ:(T+F) = O’LD(T+F). As

E,(T+F)=11,(T+F), then from [3, Corollary 3.2], T+ F satisfies generalized
a-Weyl’s theorem.

(#91) = (ii) Let A € Eo(T + F). Then A € isoo,(T + F). If A & 0,(T), then
A OSBF; (T'), then \ ¢ OSBF; (T+ F). As X € is00,(T + F), it follows from
[3, Theorem 2.8] that A € I, (T+ F). If A € 0,(T), then A € E,(T+ F)No,(T),
and by assumption A € E,(T'). Since T satisfies generalized a-Weyl’s theorem,
then A\ & OSBF; (T + F). Hence A € II,(T + F). In the two cases, we have

E, T+ F) C II,(T + F). As we have always E.(T + F) D II,(T + F'), then
E.(T+F)=1,T+F).

(#1) = (4i1) Assume that E,(T+F) =I,(T+F) and let A € E,(T+F)Noa(T),
then A € I, (T + F)Noo(T). So A€ orp(T+ F). Asopp(T) =orp(T+ F)
and A € 04(T), then A € II,(T). Since the inclusion II,(T) C E,(T) is always
true, then A € E,(T). Hence Eo(T + F)Noo(T) C Eo(T). O

In the next result we prove a similar characterization for a-Weyl’s theorem,
in the case of a compact pertubation.

Theorem 2.3. Let X be a Banach space and let T € L(X) and K € L(X) be a
compact operator commuting with T. If T satisfies a-Weyl’s theorem, then the
following properties are equivalent.

(i) T + K satisfies a-Weyl’s theorem;

(ii) EQ(T + K) =TI%(T + K);

(iii) E(T + K) N oo(T) C E9(T).

Proof. (i) <= (ii) If T satisfies a-Weyl’s theorem, then from [3, Theorem 3.4]
we have EQ(T+K) = II%(T+K). Conversely, if EQ(T+K = II%(T+K), since T
satisfies a-Weyl’s theorem, then from [3, Theorem 3.4] we have E2(T) = I1%(T).
Since K is a compact operator, then we also have Tsr: (T+K)= Tspy (T) =

0o (T)\ EXT) = 0,(T)\TI%(T) = 0,(T). Since K commutes with 7', then from
[1, Corollary 3.45], we have 0,,(T) = oy (T + K) = 0o(T + K) \II2(T + K) =
0o(T+ K)\ EX(T + K). Therefore TsF; (T+K)=0,T+K)\EYT+K) and
T + K satisfies a-Weyl’s theorem.

(ii) = (ii) Suppose that EQ(T+ K) =I%(T+ K). If A € EX(T + K)No.(T),
then A € IY(T+ K)Noo(T). So A& oup(T+K). As 0yp(T) = 0p(T + K) and
A € 04(T), then A € IY(T) = E%(T). Hence EY(T + K) N o, (T) C EY(T).

(iii) = (i) Suppose that EQ(T + K) No,(T) C EX(T). Since UY(T + K) C
EX(T+K) is always true, we only have to show that IS (T+K) D EY(T+K). Let
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A€ ENTH+K). A ¢ 0a(T), then A & 0up(T). As 0up(T) = 0up(T+E) and A €
0o(T+K), then A € IY(T+K). If A\ € 04(T), then A € ES(T+K)No,(T), and
by hypothesis A € EX(T) = TI9(T). So XA € 0.up(T). As 0up(T) = oup(T + K),
then A € II2(T + K). In the two cases, we have II%(T + K) D EX(T + K). O

Remark 2.4. (1)~ Theorem 2.2 extends [17, Theorem 2.4] which establishes
that T+ F satisfies generalized a-Weyl’s theorem when T is an a-isoloid op-
erator satisfying generalized a-Weyl’s theorem and F' is a finite rank operator
commuting with 7. Since acco,(T) = acco,(T + F) (see [13, Theorem 3.2]),
we observe that if 7" is an a-isoloid operator, then E, (T + F)No,(T) C E.(T).

(2)— There exists an operator T which is not a-isoloid, satisfying general-
ized a-Weyl’s theorem and a finite rank operator commuting with 7" such that
E (T + F)N 04(T) C E(T). To see this, consider the operator T' defined on
the Hilbert space (?(N) by T(x1,2,23,...) = (v1/2,72/3,...) and let F = 0.
Then o, (T) = {0}, E,(T) = 0 and Tspr; (T) = {0}. So T satisfies generalized
a-Weyl’s theorem, E,(T + F) N 04(T) = E,(T), but T is not a-isoloid.

(3)— Theorem 2.3 extends [13, Theorem 3.4] which establishes that if T is an
a-isoloid operator satisfying a-Weyl’s theorem and if F' is a finite rank operator
commuting with 7', then T+ F satisfies a-Weyl’s theorem. To see this, we know
that a(T") < oo if and only if a(T'+ F') < oo (see [18, Lemma 2.1]), so it follows
that if T is a-isoloid then EX(T + F) Na,(T) C EX(T).

There exists quasinilpotent operators which do not satisfy generalized a-
Weyl’s theorem. For example, if we consider the operator 7' defined on ¢?(N) by
T(z1,22,23,...) = (0,22/2,25/3,...), then T is quasinilpotent but generalized
a-Weyl’s theorem fails for T, since o, (T) = TsBE; (T) = {0} and E,(T) = {0}.
But if a quasinilpotent operator satisfies generalized a-Weyl’s theorem, then the
following perturbation result holds.

Corollary 2.5. Let T € L(X) be a quasinilpotent operator and let F' € L(X)
be a finite rank operator commuting with T. If T satisfies generalized a-Weyl’s
theorem, then T + F' satisfies generalized a- Weyl’s theorem.

Proof. If T is injective, as T'F' is a finite rank quasinilpotent operator, then T'F
is a nilpotent operator. Since T is injective, then F' is nilpotent . Therefore
0a(T+ F)=0,(T) and E,(T + F) = E,(T) (see Lemma 3.1). Moreover, since
F' is of finite rank, it follows that Tspr: (T+F)= Tspr- (T'). As T satisfies
generalized a-Weyl’s theorem then AY(T') = E,(T). So AY(T+F) = E(T+F)
and T + F satisfies generalized a-Weyl’s theorem.

If T is not injective, then isoo,(T) = E.(T) = {0} and T is an a-isoloid
operator. Therefore by Theorem 2.2, we conclude that T+ F' satisfies generalized
a-Weyl’s theorem. O

Remark 2.6. The hypothesis of commutativity in Corollary 2.5 is crucial.
Indeed, if we consider the Hilbert space H = ¢?(N), and the operators T and F
defined on H by:

T(Z‘l,mg,xg,....) = (O7$1/2,$2/3, ) s F(l‘l,xg,xg,....) = (O7 —$1/2,0,O7....).
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Then T is quasi-nilpotent, F' is a finite rank operator which do not commutes
with T. Moreover, we have 0, (T) = Tspr; (T) = {0} and E,(T) = 0. Hence T
satisfies generalized a-Weyl’s theorem. But 7'+ N does not satisfy generalized
a-Weyl’s theorem because o, (T + N) = TsBr: (T+F)={0}and E,(T+N) =

{0}

Theorem 2.7. Let X be a Banach space and let T € L(X) and F € L(X)
be a finite rank operator commuting with T'. If T satisfies generalized Weyl’s
theorem, then the following properties are equivalent.

(i) T + F satisfies generalized Weyl’s theorem;

(i) E(T+ F)=1(T+ F);

(iti) E(T+ F)No(T) C E(T).

Proof. The equivalence of the two first properties is well known in [9, Theorem
3.2]. Let us show that (ii) is equivalent to (iii). Assume that E(T+F)No(T) C
E(T). Let A € E(T+ F), then A €isoc(T + F). If A\ € o(T), then A € op(T).
Since F' commutes with T, from [10, Theorem 2.7] we have op(T) = op(T+F).
As A€ o(T+F), then A\ e II(T+F). If A\ € o(T), then A € E(T+F)No(T) and
by hypothesis we have A € E(T). As T satisfies generalized Weyl’s theorem,
it follows that A € II(T). As op(T) = op(T'+ F) and A € o(T + F) then
A € IT + F). Finally we have E(T + F) C II(T + F). As we have always
E(T+F)DII(T + F), then E(T+ F)=1I(T+ F).

Conversely, suppose that E(T + F) =II(T + F). If A € E(T+ F)Nno(T),
then A e II(T' + F) No(T). Therefore A\ & op(T + F). As op(T) =op(T + F)
and A € o(T), then A € I(T") = E(T). Hence E(T + F)No(T) C E(T). O

Similarly to Theorem 2.7, we have the following characterization in the case
of Weyl’s theorem. We give this result without proof.

Theorem 2.8. Let X be a Banach and let T € L(X) and K € L(X) be a
compact operator commuting with T. If T satisfies Weyl’s theorem, then the
following properties are equivalent.

(i) T + K satisfies Weyl’s theorem;

(ii) E°(T + K) =1I°(T + K);

(iii) EY(T + K)No(T) C E°(T).

Remark 2.9. (1) It is proved in [5, Theorem 2.6] that generalized Wey!’s theo-
rem for isoloid operators is preserved under perturbations by commuting finite
rank operators. This result becomes as an immediate consequence of Theorem
2.7. As acco(T) = acco(T + F) (see [18, Lemma 2.1]), we observe that if T' is
isoloid, then E(T' + F)No(T) C E(T).

(2) Since a(T") < oo if and only if a(T + F) < oo, we observe that if T' is isoloid
then

E%T + F)No(T) C E°T). Therefore Theorem 2.8 extends a result of W. Y.
Lee and S. H. Lee in [18], where Weyl’s theorem was proved for T + F when T
is an isoloid operator satisfying Weyl’s theorem, and F' is a finite rank operator
commuting with 7.
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Examples 2.10. (a)— In general generalized a-Weyl’s theorem, a-Weyl’s theo-
rem, generalized Weyl’s theorem and Weyl’s theorem are not transmitted from
an operator to a commuting finite rank perturbation as the following example
shows.

Let S : £2(N) — (2(N) be an injective quasinilpotent operator which is not
nilpotent. We define T' on the Banach space X = >(N) @ (?(N) by T=1® S
where I is the identity operator on ¢2(N). Then o(T) = 0,(T) = {0,1} and
E,(T) = {1}. It follows from [9, Example 2] that opw (T') = {0}. This implies
that TsBE; (T)) = {0}. Hence 0,(T) \O’SBF; (T) = B (T) = {1} and T satis-
fies generalized a-Weyl’s theorem, so it satisfies a-Weyl’s theorem, generalized
Weyl’s theorem and Weyl’s theorem.

We define the operator U on ¢?(N) by U(&1,&s,&3,...) = (—£1,0,0,...) and

F = U @ 0 on the Banach space X = ¢?(N) @ ¢?(N). Then F is a finite rank
operator commuting with 7. On the other hand, o(T + F) = 0,(T + F) =
{0,1} and E,(T + F) = {0,1}. As USBF;(T—i— F) = TsBr: (T) = {0}, then
oo(T+ F)\ Tspr; (T+ F)={1} # E,(T+ F) and T + F does not satisfy
generalized a-Weyl’s theorem. Not that E,(T+ F)No,(T) ¢ E.(T). Moreover,
E(T+F) ={0,1}, and as by [4, Theorem 4.3] we have ogw (T+F) = opw (T) =
{0}, then T + F does not satisfy generalized Weyl’s theorem. Observe that
E(T+F)no(T)¢ E(T) ={1}.
Moreover we have ow (T + F) = {0,1} and E(T + F) = {0}. As o(T + F) =
{0,1} then A(T + F) # E°(T + F) and T + F does not satisfy Weyl’s theorem.
So T + F does not satisfy a-Weyl’s theorem. Note that E*(T' + F) No(T) ¢
E%T) =0, and EX(T + F)No,(T) = {0} n{0,1} ¢ EX(T) = 0.

(b)— Theorem 2.2 and Theorem 2.7 do not extend to a commuting compact
perturbation. Indeed, if we consider on the Hilbert space £2(N) the operators
T = 0 and Q defined by Q(z1,x2,x3,...) = (x2/2,23/3,24/4,...). Then Q is a
compact operator commuting with T. Moreover,we have

cq.(T) = {0}, OsBr- (T) = 0,E,(T) = {0}. Hence T satisfies generalized
a-Weyl’s theorem. So it satisfies generalized Weyl’s theorem. But generalized
a-Weyl’s theorem and generalized Weyl’s fails for T+Q = Q. Indeed 045 Fr (T+
Q) = UG(T + Q) = {O}v Ea(T + Q) = {0} and U(T+ Q) = {O}vaBW(T + Q) =
{0}, E(T + Q) = E(T) = {0}. Thought we have E,(T + Q) N0 (T) C E4(T)
and E(T +Q)No(T) C E(T).

3 Nilpotent perturbations

Let T € L(X) and let N be a nilpotent operator commuting with 7. In a first
step we prove that T and T + N have the same isolated eigenvalues in the
approximate spectrum.

Lemma 3.1. Let X be a Banach space and let T € L(X). If N € L(X) is a
nilpotent operator commuting with 7', then E,(T + N) = E,(T).

Proof. Let A € E,(T) be arbitrary. There is no loss of generality if we assume
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that A = 0. As N is nilpotent we know that 0,(T + N) = 04(T), thus 0 €
isoo, (T + N). Let m € N be such that N™ = 0. If x € N(T), then (T +
N)™(z) =Yy CE TEN™=*(2) = 0. So N(T) C N(T + N)™. As o(T) > 0,
it follows that a((T + N)™) > 0 and this implies that o(7 + N) > 0. Hence
0 € E,(T+ N). So E,(T) C E,(T + N). By symmetry we have E,(T) =
E.(T+N). O

In the next theorem, we consider an operator T € L(X) satisfying gener-
alized a-Weyl’s theorem, a nilpotent operator commuting with 7', and we give
necessary and sufficient conditions for T4+ N to satisfy generalized a-Weyl’s
theorem.

Theorem 3.2. Let X be a Banach space and T € L(X) and N € L(X) be a
nilpotent operator commuting with T. If T satisfies generalized a- Weyl’s theo-
rem, then the following statements are equivalent.

(i) T + N satisfies generalized a-Weyl’s theorem;

(ii) ISBF; (T+N) = OSBF; (T);

(iii) Eo(T) = IL,(T + N).

Proof. (i) <= (ii) Assume that T + N satisfies generalized a-Weyl’s theorem,
then

oo(T + N)\ TsBr: (T+ N) =E,(T+ N). As 0,(T+ N) = 0,(T) and
E,(T + N) = E.(T) then o,(T) \ Tspr- (T + N) = E,(T). Since T satisfies
generalized a-Weyl’s theorem, then

(Ta(T)\O'SBF; (T) = E,(T). So TsBr; (T+N) = TsBr: (T'). Conversely, as-
sume that Tspr; (T+N) = TsBr: (T), then as T satisfies generalized a-Weyl’s
theorem it follows that T' 4 N satisfies also generalized a-Weyl’s theorem.
(i) <= (7i1) Assume that T + N satisfies generalized a-Weyl’s theorem, then
from [3, Corollary 3.2], we have E (T + N) = I1,(T 4+ N). Therefore E,(T) =
II,(T + N). Conversely, assume that F,(T) = II,(T + N). Since T sat-
isfies generalized a-Weyl’s theorem, then T satisfies generalized a-Browder’s
theorem. As we know from [2, Theorem 2.2] that a-Browder’s theorem is
equivalent to generalized a-Browder’s theorem, then T satisfies a-Browder’s
theorem. So Tsp; (T) = ow(T). From [12, Theorem 2.13|, we know that

Tsk; (T) = Tsr: (T + N). By [1, Theorem 3.65], we know that o,,(T) =
Tsp- (T') Uacco,(T). Hence oyup(T) = oy (T + N). Therefore Tor- (T+N) =
oup(T + N) and T + N satisfies a-Browder’s theorem. So it satisfies generalized
a-Browder’s that is o, (T + N) \GSBF; (T+N)=1,(T+N). As by assumption
E.(T) =11,(T + N), it follows that 04(T + N) \O’SBF; (IT'+N)=E,(T+N)
and so T+ N satisfies generalized a-Weyl’s theorem. O

Theorem 3.3. Let X be a Banach space and let T € L(X) be an operator
satisfying generalized a-Weyl’s theorem. If E,(T) C isoo(T) and if N € L(X)
s a nilpotent operator commuting with T, then T + N satisfies generalized a-
Weyl’s theorem.
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Proof. Let A € E,(T), since E,(T) C isoo(T), then A € E(T).

As T satisfies generalized a-Weyl’s theorem, from [3, Theorem3.7] T satisfies
generalized Weyl’s theorem. Hence A\ € II(T). As we know that op(T) =
op(T + N), then A € II(T' + N). Hence A € I, (T + N). Consequently we have
E (T) =1I,(T + N). Conversely if A € II,(T' + N), then A € E, (T + N). As we
know that E,(T) = E.(T + N), (see Lemmma 3.1), then A € E,(T + N). So
E,(T) =1,(T + N). From Theorem 3.2, T + N satisfies generalized a-Weyl’s
theorem. O

Remark 3.4. 1- The hypothesis of commutativity in the Theorem 3.2 corol-
lary is crucial. The following example shows that if we do not assume that N
commutes with 7', then the result may fails. Let H = ¢?>(N), and let T and N
defined by:

T(l’l,{EQ,(Eg, ) = (0,$1/2,(E2/37....) 5 N(.’El,x271'3,....) = (0, —551/2,0,0,....).

Clearly N is a nilpotent operator which does not commute with 7. Moreover,
we have 0,(T) = TsBF; (T) = {0} and E,(T) = . Therefore T satisfies
generalized a-Weyl’s theorem. But T'+ N does not satisfy generalized a-Weyl’s
theorem because 0, (T + N) = Ospr; (T+ N)={0} and E,(T + N) = {0}.
(2) Generally, generalized a-Weyl’s theorem does not extend to a quasinilpo-
tent perturbation: Define on the Banach space ¢?(N) the operator T' = 0 and the
quasinilpotent operator @ defined by Q(z1,x2,x3,...) = (x2/2,25/3,24/4,...).
Then ¢,(T) = {0} and TSBE; (T) = (. Moreover we have E,(T) = {0}. Hence
T satisfies generalized a-Weyl’s theorem. But generalized a-Weyl’s theorem
does not hold for T+ @ = @, since TsBr; (T+ Q) = 0,(T + Q) = {0} and

Eu(T +Q) = {0}.

Open questions: The proof of Theorem 3.2 suggests the following ques-
tions:

1. let T € L(X) and let N € L(X) be a nilpotent operator commuting with
T. Under which conditions a(T + N) is finite if a(T") is finite?

2. let T € L(X) and let N € L(X) be a nilpotent operator commuting with
T. Under which conditions R((T + N)™) is closed for m large enough i if
R(T™) is closed for m large enough?

3. let T € L(X) and let N € L(X) be a nilpotent operator commuting with
T. Under which conditions I1,(T + N) = I1,(T)?
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