GENERALIZED A-WEYL’S THEOREM
AND PERTURBATIONS

M. Berkani * and H. Zariouh

Abstract

In this paper we study the stability of generalized a-Weyl’s theorem
under perturbations by finite rank and nilpotent operators. Among other
results, we prove that if T is a bounded linear operator acting on a Banach
space X satisfies generalized a-Weyl’s theorem and F is a finite rank
operator commuting with T, then $T + F$ satisfies generalized a-Weyl’s
theorem if and only if $E_a(T + F) \cap \sigma_a(T) \subset E_a(T)$. Moreover we prove
that if T is a bounded linear operator acting on a Banach space satisfies
generalized a-Weyl’s theorem and N is a nilpotent operator commuting
with T, then $T + N$ satisfies generalized a-Weyl’s theorem if and only if
$\sigma_{SBF^+}(T + N) = \sigma_{SBF^+}(T)$.

1 Introduction

Throughout this paper $L(X)$ denote the Banach algebra of all bounded linear
operators acting on a Banach space X. For $T \in L(X)$, let T^*, $N(T)$, $R(T)$,
$\sigma(T)$ and $\sigma_a(T)$ denote respectively the adjoint, the null space, the range, the
spectrum and the approximate point spectrum of T. Let $\alpha(T)$ and $\beta(T)$ be
the nullity and the deficiency of T defined by $\alpha(T) = \dim N(T)$ and $\beta(T) = \text{codim} R(T)$. If the range $R(T)$ of T is closed and $\alpha(T) < \infty$ (resp. $\beta(T) < \infty$),
then T is called an upper (resp. a lower) semi-Fredholm operator. In the sequel
$SF^+_+(X)$ denotes the class of all upper semi-Fredholm operators. If $T \in L(X)$
is either an upper or a lower semi-Fredholm operator, then T is called a semi-
Fredholm operator , and the index of T is defined by $\text{ind}(T) = \alpha(T) - \beta(T)$.
If both $\alpha(T)$ and $\beta(T)$ are finite, then T is called a Fredholm operator. An
operator T is called a Weyl operator if it is a Fredholm operator of index zero.
The Weyl spectrum of T is defined by $\sigma_W(T) = \{ \lambda \in \mathbb{C} : T - \lambda I \text{ is not Weyl } \}$. For $T \in L(X)$, let $SF^+_+(X) = \{ T \in SF^+_+(X) : \text{ind}(T) \leq 0 \}$. Then the Weyl

*Supported by PGR- UMP.
2010 Mathematics Subject Classifications. 47A53, 47A10, 47A11.
Key words and Phrases. Generalized a-Weyl’s theorem, nilpotent operator.
Received: August 27, 2009
Communicated by Dragan S. Djordjević
essential approximate spectrum of T is defined by $\sigma_{SF^-}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin SF^- (X)\}$.

Let $\Delta(T) = \sigma(T) \setminus \sigma_W(T)$ and $\Delta_a(T) = \sigma_a(T) \setminus \sigma_{SF^-}(T)$. Following Coburn [11], we say that Weyl's theorem holds for $T \in L(X)$ if $\Delta(T) = E^0(T)$, where $E^0(T) = \{\lambda \in \text{iso}(T) : 0 < \alpha(T - \lambda I) < \infty\}$. Here and elsewhere in this paper, for $A \subset \mathbb{C}$, $\text{iso}A$ denotes the set of all isolated points of A and $\text{acc}A$ denotes the set of all points of accumulation of A.

According to Rakočević [20], an operator $T \in L(X)$ is said to satisfy a-Weyl’s theorem if $\Delta_a(T) = E^a_0(T)$, where $E^a_0(T) = \{\lambda \in \text{iso}_a(T) : 0 < \alpha(T - \lambda I) < \infty\}$. It is known [20] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s theorem, but not conversely.

For $T \in L(X)$ and a nonnegative integer n define $T_{[n]}$ to be the restriction of T to $R(T^n)$ viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_{[0]} = T$). If for some integer n the range space $R(T^n)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm operator. In this case the index of T is defined as the index of the semi-Fredholm operator $T_{[n]}$, see [6]. Moreover, if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator, see [7]. An operator $T \in L(X)$ is said to be a B-Weyl operator if it is a B-Fredholm operator of index zero. The B-Weyl spectrum of T is defined by $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} : T - \lambda I$ is not a B-Weyl operator}.

Recall that the ascent of an operator $T \in L(X)$ is defined by $a(T) = \inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}$ and the descent of T, is defined by $\delta(T) = \inf\{n \in \mathbb{N} : R(T^n) = R(T^{n+1})\}$, with $\inf\emptyset = \infty$. An operator T is called Drazin invertible if it has finite ascent and descent. The Drazin spectrum of T is defined by $\sigma_D(T) = \{\lambda \in \mathbb{C} : T - \lambda I$ is not Drazin invertible $\}$. An operator $T \in L(X)$ is called an upper semi-Browder if it is an upper semi-Fredholm of finite ascent, and is called Browder if it is a Fredholm of finite ascent and descent. The upper semi-Browder spectrum of T is defined by $\sigma_{ub}(T) = \{\lambda \in \mathbb{C} : T - \lambda I$ is not upper semi-Browder $\}$ and the Browder spectrum of T is defined by $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I$ is not Browder $\}$.

Define also the set $LD(X)$ as follows : $LD(X) = \{T \in L(X) : a(T) < \infty$ and $R(T^{a(T)+1})$ is closed} and $\sigma_{LD}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin LD(X)\}$. An operator $T \in L(X)$ is said to be left Drazin invertible if $T \in LD(X)$. We say that $\lambda \in \sigma_a(T)$ is a left pole of T if $T - \lambda I \in LD(X)$, and that $\lambda \in \sigma_a(T)$ is a left pole of T of finite rank if λ is a left pole of T and $\alpha(T - \lambda I) < \infty$. Let $\Pi_a(T)$ denotes the set of all left poles of T and $\Pi^0_a(T)$ denotes the set of all left poles of T of finite rank. From [3, Theorem 2.8], it follows that if $T \in L(X)$ is left Drazin invertible, then T is an upper semi-B-Fredholm operator of index less or equal than zero.

Let $\Pi(T)$ be the set of all poles of the resolvent of T and let $\Pi^0(T)$ be the set of all poles of the resolvent of T of finite rank, that is $\Pi^0(T) = \{\lambda \in \Pi(T) \setminus \Pi(T) : (a(T - \lambda I) = \infty\}$. According to [15], a complex number λ is a pole of the resolvent of T if and only if $0 < \max \{a(T - \lambda I), \delta(T - \lambda I)\} < \infty$. Moreover, if this is true then $a(T - \lambda I) = \delta(T - \lambda I)$. According also to [15], the space $R(T - \lambda I)^a(T - \lambda I) + 1$ is closed for each $\lambda \in \Pi(T)$.
Generalized a-Weyl’s theorem and perturbations

\(\Pi(T) \subset \Pi_a(T) \) and \(\Pi^0(T) \subset \Pi^0_a(T) \).

Following [3], we say that generalized a-Browder’s theorem holds for \(T \) if \(\Delta^g_a(T) = \Pi_a(T) \) and that a-Browder’s theorem holds for \(T \) if \(\Delta_a(T) = \Pi^0_a(T) \). It is shown [2, Theorem 2.2] that generalized a-Browder’s theorem is equivalent to a-Browder’s theorem.

Let \(\Delta^g_a(T) = \sigma(T) \setminus \sigma_{BW}(T) \). We say that generalized Browder’s theorem holds for \(T \) if \(\Delta^g(T) = \Pi(T) \); where \(\Pi(T) \) is the set of all poles of \(T \) and that Browder’s theorem holds for \(T \) if \(\Delta(T) = \Pi^0(T) \); where \(\Pi^0(T) \) is the set of all poles of \(T \) of finite rank. It is proved in [2, Theorem 2.1] that generalized Browder’s theorem is equivalent to Browder’s theorem.

Let \(SBF_+(X) \) be the class of all upper semi-B-Fredholm operators, \(SBF^-_+(X) = \{ T \in SBF_+(X) : \text{ind}(T) \leq 0 \} \). The upper B-Weyl spectrum of \(T \) is defined by \(\Delta^g(T) = \sigma_a(T) \setminus \sigma_{SBF^-_+(T)}(T) \). We say that \(T \) obeys generalized a-Weyl’s theorem, if \(\Delta^g_a(T) = \Pi_a(T) \); where \(\Pi_a(T) \) is the set of all eigenvalues of \(T \) which are isolated in \(\sigma_a(T) \) and that \(T \) obeys generalized Weyl’s theorem if \(\Delta^g(T) = \Pi(T) \); where \(\Pi(T) \) is the set of all eigenvalues of \(T \) which are isolated in \(\sigma(T) \) ([3, Definition 3.1]). Generalized a-Weyl’s theorem has been studied in [3, 8]. In [3, Theorem 3.11], it is shown that an operator satisfying generalized a-Weyl’s theorem satisfies a-Weyl’s theorem, but the converse is not true in general, and under the assumption \(E_a(T) = \Pi_a(T) \), it is proved in [8, Theorem 2.10] that generalized a-Weyl’s theorem is equivalent to a-Weyl’s theorem. It is also proved in [3, Theorem 3.7] that generalized a-Weyl’s theorem implies generalized Weyl’s which in turn implies from [3, Theorem 3.9] Weyl’s theorem.

Definition 1.1. A bounded linear operator \(T \in \mathcal{L}(X) \) is called isoloid (resp. a-isoloid) if \(\text{iso}(T) = E(T) \) (resp. \(\text{iso}_{a}(T) = E_a(T) \)). Moreover, if \(\text{iso}_{a}(T) = \Pi_a(T) \), then we will say that \(T \) is an a-polaroid operator.

We will say that \(T \in \mathcal{L}(X) \) has the single valued-extension property at \(\lambda_0 \), (SVEP for short) if for every open neighborhood \(U \) of \(\lambda_0 \), the only analytic function \(f : U \to X \) which satisfies the equation: \((T - \lambda I)f(\lambda) = 0\), for all \(\lambda \in U \) is the function \(f = 0 \). \(T \in \mathcal{L}(X) \) is said to have the SVEP if \(T \) has this property at every \(\lambda \in \mathbb{C} \) (see [16]).

The aim of this paper is to study the stability of generalized a-Weyl’s theorem under commuting nilpotent or finite rank perturbations. Thus, in the second section, we prove in Theorem 2.2 that if \(T \) is a bounded linear operator acting on a Banach space \(X \) satisfies generalized a-Weyl’s theorem and \(F \) is a finite rank operator commuting with \(T \), then \(T + F \) satisfies generalized a-Weyl’s theorem if and only if \(E_a(T + F) \cap \sigma_a(T) \subset E_a(T) \). We obtain also similar results for a-Weyl’s and Weyl’s theorem in the case of compact perturbations. Moreover we prove also in Theorem 2.7 that if \(T \in \mathcal{L}(X) \) satisfies generalized Weyl’s theorem and if \(F \in \mathcal{L}(X) \) is a finite rank operator commuting with \(T \), then \(T + F \) satisfies generalized Weyl’s theorem if and only if \(E(T + F) \cap \sigma(T) \subset E(T) \).

In the third section we consider in Theorem 3.2 an operator \(T \) satisfying generalized a-Weyl’s theorem and a nilpotent operator \(N \) commuting with \(T \),
and we prove that $T + N$ satisfies generalized a-Weyl's theorem if and only if $\sigma_{SBF^{-}}(T + N) = \sigma_{SBF^{-}}(T)$. As a consequence, we show in Theorem 3.3 that if $T \in L(X)$ is an operator satisfying generalized a-Weyl's theorem, if $E_a(T) \subset iso\sigma(T)$ and if $N \in L(X)$ is a nilpotent operator commuting with T, then $T + N$ satisfies generalized a-Weyl's theorem. We conclude this paper by some open questions related to the ideas developed in this section.

2 Finite rank perturbations

The next theorem had been established in [3, Theorem 4.2] for Hilbert spaces operators. We show here that it holds also in the general case of Banach spaces.

For $T \in L(X)$, let $c_n(T) = \dim \frac{N(T^n+1)}{N(T^n)T}$.

Theorem 2.1. Let X be a Banach space and let $T \in L(X)$. Then

$$\sigma_{LD}(T) = \bigcap_{F \in F(X), FT = TF} \sigma_{LD}(T + F)$$

where $F(X)$ denotes the ideal of finite rank operators in $L(X)$.

Proof. If $\lambda \notin \sigma_{LD}(T)$, then $\lambda \notin \sigma_{LD}(T + 0)$. Since 0 is a finite rank operator, it follows that $\lambda \notin \bigcap \{\sigma_{LD}(T + F) : F \in F(X), FT = TF\}$. To show the opposite inclusion, let $\lambda \notin \bigcap \{\sigma_{LD}(T + F) : F \in F(X), FT = TF\}$. Then there exists a finite rank operator F commuting with T such that $T + F - \lambda I$ is left Drazin invertible. So $T + F - \lambda I$ is an upper semi-B-Fredholm. From [6, Theorem 2.7], $T - \lambda I$ is also an upper semi B-Fredholm operator. In particular the two operators $T - \lambda I$ and $T - \lambda I + F$ are operators of topological uniform descent [6]. By [14, Theorem 5.8], for n large enough we have $c_n(T - \lambda I) = c_n(T - \lambda I + F)$. Since $T - \lambda I + F$ is left Drazin invertible, then for n large enough we have $c_n(T - \lambda I + F) = 0$. So for n large enough we have $c_n(T - \lambda I) = 0$ and $a(T - \lambda I) < \infty$. On the other hand, for n large enough $R(T - \lambda I)^n$ is closed and by [19, Lemma 12], $R(T - \lambda I)^{n(T - \lambda I)}$ is also closed. Hence $T - \lambda I$ is left Drazin invertible.

From Theorem 2.1 we conclude that if $T \in L(X)$ and if $F \in L(X)$ is a finite operator commuting with T, then $\sigma_{LD}(T) = \sigma_{LD}(T + F)$. However, these result do not extend to commuting compact perturbations. To see this consider on the Hilbert space $\ell^2(\mathbb{N})$, the operators $T = 0$ and Q defined by $Q(x_0, x_1, x_2, \ldots) = (x_0, x_1/2, x_2/3, \ldots)$. Then Q is compact, $TQ = QT = 0$, $iso\sigma_a(T) = \Pi_a(T) = \{0\}$, $iso\sigma_a(T + Q) = \{0\}$ and $\Pi_a(T + Q) = \Pi_a(Q) = \emptyset$. So $\sigma_{LD}(T) = \emptyset$ but $\sigma_{LD}(T + Q) = \{0\}$.

Theorem 2.2. Let X be a Banach space and let $T \in L(X)$ and $F \in L(X)$ be a finite rank operator commuting with T. If T satisfies generalized a-Weyl's theorem, then the following assertions are equivalent.

(i) $T + F$ satisfies generalized a-Weyl's theorem;
(ii) \(E_a(T + F) = \Pi_a(T + F) \);
(iii) \(E_a(T + F) \cap \sigma_a(T) \subset E_a(T) \).

Proof. (i) \(\iff \) (ii) If \(T + F \) satisfies generalized a-Weyl’s theorem, then from [3, Corollary 3.2], we have \(E_a(T + F) = \Pi_a(T + F) \). Conversely, assume that \(E_a(T + F) = \Pi_a(T + F) \), since \(T \) satisfies generalized a-Weyl’s theorem, then \(\sigma_{SBF^c_+}(T) = \sigma_{LD}(T) \). Since \(F \) is a finite rank operator, from [5, Lemma 2.3] we have \(\sigma_{SBF^c_+}(T) = \sigma_{SBF^c_+}(T + F) \). As \(F \) commutes with \(T \), from Theorem 2.1 we have \(\sigma_{LD}(T) = \sigma_{LD}(T + F) \). So \(\sigma_{SBF^c_+}(T + F) = \sigma_{LD}(T + F) \). As \(E_a(T + F) = \Pi_a(T + F) \), then from [3, Corollary 3.2], \(T + F \) satisfies generalized a-Weyl’s theorem.

(iii) \(\implies \) (i) Let \(\lambda \in E_a(T + F) \). Then \(\lambda \in \text{iso}_a(T + F) \). If \(\lambda \notin \sigma_a(T) \), then \(\lambda \notin \text{iso}_a(T + F) \). As \(\lambda \in \sigma_{SBF^c_+}(T + F) \), it follows from [3, Theorem 2.8] that \(\lambda \in \Pi_a(T + F) \). If \(\lambda \notin \sigma_a(T) \), then \(\lambda \in E_a(T + F) \cap \sigma_a(T) \), and by assumption \(\lambda \in E_a(T) \). Since \(T \) satisfies generalized a-Weyl’s theorem, then \(\lambda \notin \sigma_{SBF^c_+}(T + F) \). Hence \(\lambda \in \Pi_a(T + F) \). In the two cases, we have \(E_a(T + F) \subset \Pi_a(T + F) \). As we have always \(E_a(T + F) \subset \Pi_a(T + F) \), then \(E_a(T + F) = \Pi_a(T + F) \).

(ii) \(\implies \) (iii) Assume that \(E_a(T + F) = \Pi_a(T + F) \) and let \(\lambda \in E_a(T + F) \cap \sigma_a(T) \), then \(\lambda \in \Pi_a(T + F) \cap \sigma_a(T) \). So \(\lambda \notin \sigma_{LD}(T + F) \). As \(\sigma_{LD}(T) = \sigma_{LD}(T + F) \) and \(\lambda \in \sigma_a(T) \), then \(\lambda \in \Pi_a(T) \). Since the inclusion \(\Pi_a(T) \subset E_a(T) \) is always true, then \(\lambda \in E_a(T) \). Hence \(E_a(T + F) \cap \sigma_a(T) \subset E_a(T) \).

In the next result we prove a similar characterization for a-Weyl’s theorem, in the case of a compact perturbation.

Theorem 2.3. Let \(X \) be a Banach space and let \(T \in L(X) \) and \(K \in L(X) \) be a compact operator commuting with \(T \). If \(T \) satisfies a-Weyl’s theorem, then the following properties are equivalent.
(i) \(T + K \) satisfies a-Weyl’s theorem;
(ii) \(E^0_a(T + K) = \Pi^0_a(T + K) \);
(iii) \(E^0_a(T + K) \cap \sigma_a(T) \subset E^0_a(T) \).

Proof. (i) \(\iff \) (ii) If \(T \) satisfies a-Weyl’s theorem, then from [3, Theorem 3.4] we have \(E^0_a(T + K) = \Pi^0_a(T + K) \). Conversely, if \(E^0_a(T + K) = \Pi^0_a(T + K) \), since \(T \) satisfies a-Weyl’s theorem, then from [3, Theorem 3.4] we have \(E^0_a(T) = \Pi^0_a(T) \). Since \(K \) is a compact operator, then we also have \(\sigma_{SBF^c_+}(T + K) = \sigma_{SBF^c_+}(T) = \sigma_a(T) \setminus E^0_a(T) = \sigma_a(T) \setminus \Pi^0_a(T) = \sigma_{ab}(T) \). Since \(K \) commutes with \(T \), then from [1, Corollary 3.45], we have \(\sigma_{ab}(T + K) = \sigma_{ab}(T + K) \setminus \Pi^0_a(T + K) = \sigma_a(T + K) \setminus E^0_a(T + K) \). Therefore \(\sigma_{SBF^c_+}(T + K) = \sigma_a(T + K) \setminus E^0_a(T + K) \) and \(T + K \) satisfies a-Weyl’s theorem.

(ii) \(\implies \) (iii) Suppose that \(E^0_a(T + K) = \Pi^0_a(T + K) \). If \(\lambda \in E^0_a(T + K) \cap \sigma_a(T) \), then \(\lambda \in \Pi^0_a(T + K) \cap \sigma_a(T) \). So \(\lambda \notin \sigma_{ab}(T + K) \). As \(\sigma_{ab}(T + K) = \sigma_{ab}(T + K) \) and \(\lambda \in \sigma_a(T) \), then \(\lambda \in \Pi^0_a(T + K) \). Hence \(E^0_a(T + K) \cap \sigma_a(T) \subset E^0_a(T) \).

(iii) \(\implies \) (ii) Suppose that \(E^0_a(T + K) \cap \sigma_a(T) \subset E^0_a(T) \). Since \(\Pi^0_a(T + K) \subset E^0_a(T + K) \) is always true, we only have to show that \(\Pi^0_a(T + K) \supset E^0_a(T + K) \). Let
Theorem 2.2 extends [17, Theorem 2.4] which establishes if \(\lambda \notin \sigma_a(T) \), then \(\lambda \notin \sigma_{ab}(T) \). As \(\sigma_{ab}(T) = \sigma_{ub}(T+K) \) and \(\lambda \in \sigma_a(T+K) \), then \(\lambda \in \Pi^0_a(T+K) \). If \(\lambda \in \sigma_a(T) \), then \(\lambda \in \Pi^0_a(T+K) \cap \sigma_a(T) \), and by hypothesis \(\lambda \in \Pi^0_a(T) = \Pi^0_a(T+K) \). So \(\lambda \notin \sigma_{ab}(T) \). As \(\sigma_{ab}(T) = \sigma_{ub}(T+K) \), then \(\lambda \in \Pi^0_a(T+K) \). In the two cases, we have \(\Pi^0_a(T+K) \supset E^0_a(T+K) \).

Remark 2.4. (1)– Theorem 2.2 extends [17, Theorem 2.4] which establishes that \(T + F \) satisfies generalized a-Weyl’s theorem when \(T \) is an a-isoloid operator satisfying generalized a-Weyl’s theorem and \(F \) is a finite rank operator commuting with \(T \). Since \(acc \sigma_a(T) = acc \sigma_a(T + F) \) (see [13, Theorem 3.2]), we observe that if \(T \) is an a-isoloid operator, then \(E_a(T + F) \cap \sigma_a(T) \subset E_a(T) \).

(2)– There exists an operator \(T \) which is not a-isoloid, satisfying generalized a-Weyl’s theorem and a finite rank operator commuting with \(T \) such that \(E_a(T + F) \cap \sigma_a(T) \subset E_a(T) \). To see this, consider the operator \(T \) defined on the Hilbert space \(\ell^2(\mathbb{N}) \) by \(T(x_1, x_2, x_3, ...) = (x_1/2, x_2/3, ...) \) and let \(F = 0 \). Then \(\sigma_a(T) = \{0\}, E_a(T) = \emptyset \) and \(\sigma_{SBF}^-(T) = \{0\} \). So \(T \) satisfies generalized a-Weyl’s theorem, \(E_a(T + F) \cap \sigma_a(T) = E_a(T) \), but \(T \) is not a-isoloid.

(3)– Theorem 2.3 extends [13, Theorem 3.4] which establishes that if \(T \) is an a-isoloid operator satisfying a-Weyl’s theorem and if \(F \) is a finite rank operator commuting with \(T \), then \(T + F \) satisfies a-Weyl’s theorem. To see this, we know that \(\alpha(T) < \infty \) if and only if \(\alpha(T + F) < \infty \) (see [18, Lemma 2.1]), so it follows that if \(T \) is a-isoloid then \(E^0_a(T + F) \cap \sigma_a(T) \subset E^0_a(T) \).

There exists quasinilpotent operators which do not satisfy generalized a-Weyl’s theorem. For example, if we consider the operator \(T \) defined on \(\ell^2(\mathbb{N}) \) by \(T(x_1, x_2, x_3, ...) = (0, x_2/2, x_3/3, ...) \), then \(T \) is quasinilpotent but generalized a-Weyl’s theorem fails for \(T \), since \(\sigma_a(T) = \sigma_{SBF}^-(T) = \{0\} \) and \(E_a(T) = \{0\} \). But if a quasinilpotent operator satisfies generalized a-Weyl’s theorem, then the following perturbation result holds.

Corollary 2.5. Let \(T \in L(X) \) be a quasinilpotent operator and let \(F \in L(X) \) be a finite rank operator commuting with \(T \). If \(T \) satisfies generalized a-Weyl’s theorem, then \(T + F \) satisfies generalized a-Weyl’s theorem.

Proof. If \(T \) is injective, as \(TF \) is a finite rank quasinilpotent operator, then \(TF \) is a nilpotent operator. Since \(T \) is injective, then \(F \) is nilpotent. Therefore \(\sigma_a(T + F) = \sigma_a(T) \) and \(E_a(T + F) = E_a(T) \) (see Lemma 3.1). Moreover, since \(F \) is of finite rank, it follows that \(\sigma_{SBF}^-(T + F) = \sigma_{SBF}^-(T) \). As \(T \) satisfies generalized a-Weyl’s theorem then \(\Delta_a^g(T) = E_a(T) \). So \(\Delta_a^g(T + F) = E_a(T + F) \) and \(T + F \) satisfies generalized a-Weyl’s theorem.

If \(T \) is not injective, then \(\text{iso} \sigma_a(T) = E_a(T) = \{0\} \) and \(T \) is an a-isoloid operator. Therefore by Theorem 2.2, we conclude that \(T + F \) satisfies generalized a-Weyl’s theorem.

Remark 2.6. The hypothesis of commutativity in Corollary 2.5 is crucial. Indeed, if we consider the Hilbert space \(H = \ell^2(\mathbb{N}) \), and the operators \(T \) and \(F \) defined on \(H \) by:

\[
T(x_1, x_2, x_3, ...) = (0, x_1/2, x_2/3, ...), \quad F(x_1, x_2, x_3, ...) = (0, -x_1/2, 0, 0, ...).
\]
Then \(T \) is quasi-nilpotent, \(F \) is a finite rank operator which do not commutes with \(T \). Moreover, we have \(\sigma_a(T) = \sigma_{SBF^-}(T) = \{0\} \) and \(E_a(T) = \emptyset \). Hence \(T \) satisfies generalized a-Weyl's theorem. But \(T + N \) does not satisfy generalized a-Weyl's theorem because \(\sigma_a(T + N) = \sigma_{SBF^-}(T + F) = \{0\} \) and \(E_a(T + N) = \{0\} \).

Theorem 2.7. Let \(X \) be a Banach space and let \(T \in L(X) \) and \(F \in L(X) \) be a finite rank operator commuting with \(T \). If \(T \) satisfies generalized Weyl's theorem, then the following properties are equivalent.

(i) \(T + F \) satisfies generalized Weyl's theorem;

(ii) \(E(T + F) = \Pi(T + F) \);

(iii) \(E(T + F) \cap \sigma(T) \subset E(T) \).

Proof. The equivalence of the two first properties is well known in [9, Theorem 3.2]. Let us show that (ii) is equivalent to (iii). Assume that \(E(T + F) \cap \sigma(T) \subset E(T) \). Let \(\lambda \in E(T + F) \), then \(\lambda \in \text{iso}(T + F) \). If \(\lambda \not\in \sigma(T) \), then \(\lambda \not\in \sigma_D(T) \). Since \(F \) commutes with \(T \), from [10, Theorem 2.7] we have \(\sigma_D(T) = \sigma_D(T + F) \). As \(\lambda \in \sigma(T + F) \), then \(\lambda \in \Pi(T + F) \). If \(\lambda \in \sigma(T) \), then \(\lambda \in E(T + F) \cap \sigma(T) \) and by hypothesis we have \(\lambda \in E(T) \). As \(T \) satisfies generalized Weyl's theorem, it follows that \(\lambda \in \Pi(T) \). As \(\sigma_D(T) = \sigma_D(T + F) \) and \(\lambda \in \sigma(T + F) \), then \(\lambda \in \Pi(T + F) \). Finally we have \(E(T + F) \subset \Pi(T + F) \). As we have always \(E(T + F) \cap \Pi(T + F) \), then \(E(T + F) = \Pi(T + F) \).

Conversely, suppose that \(E(T + F) = \Pi(T + F) \). If \(\lambda \in E(T + F) \cap \sigma(T) \), then \(\lambda \in \Pi(T + F) \cap \sigma(T) \). Therefore \(\lambda \not\in \sigma_D(T + F) \). As \(\sigma_D(T) = \sigma_D(T + F) \) and \(\lambda \in \sigma(T) \), then \(\lambda \in \Pi(T) = E(T) \). Hence \(E(T + F) \cap \sigma(T) \subset E(T) \). \(\square \)

Similarly to Theorem 2.7, we have the following characterization in the case of Weyl's theorem. We give this result without proof.

Theorem 2.8. Let \(X \) be a Banach and let \(T \in L(X) \) and \(K \in L(X) \) be a compact operator commuting with \(T \). If \(T \) satisfies Weyl's theorem, then the following properties are equivalent.

(i) \(T + K \) satisfies Weyl's theorem;

(ii) \(E^0(T + K) = \Pi^0(T + K) \);

(iii) \(E^0(T + K) \cap \sigma(T) \subset E^0(T) \).

Remark 2.9. (1) It is proved in [5, Theorem 2.6] that generalized Weyl's theorem for isoloid operators is preserved under perturbations by commuting finite rank operators. This result becomes as an immediate consequence of Theorem 2.7. As \(\text{acc} \sigma(T) = \text{acc} \sigma(T + F) \) (see [18, Lemma 2.1]), we observe that if \(T \) is isoloid, then \(E(T + F) \cap \sigma(T) \subset E(T) \).

(2) Since \(\alpha(T) < \infty \) if and only if \(\alpha(T + F) < \infty \), we observe that if \(T \) is isoloid then \(E^0(T + F) \cap \sigma(T) \subset E^0(T) \). Therefore Theorem 2.8 extends a result of W. Y. Lee and S. H. Lee in [18], where Weyl's theorem was proved for \(T + F \) when \(T \) is an isoloid operator satisfying Weyl's theorem, and \(F \) is a finite rank operator commuting with \(T \).
Examples 2.10. (a)– In general generalized a-Weyl’s theorem, a-Weyl’s theorem, generalized Weyl’s theorem and Weyl’s theorem are not transmitted from an operator to a commuting finite rank perturbation as the following example shows.

Let \(S : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N}) \) be an injective quasinilpotent operator which is not nilpotent. We define \(T \) on the Banach space \(X = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N}) \) by \(T = I \oplus S \) where \(I \) is the identity operator on \(\ell^2(\mathbb{N}) \). Then \(\sigma(T) = \sigma_a(T) = \{0,1\} \) and \(E_a(T) = \{1\} \). It follows from [9, Example 2] that \(\sigma_{BW}(T) = \{0\} \) and \(\sigma_{SBF}(T) = \{0\} \). Hence \(\sigma_a(T) \setminus \sigma_{SBF}(T) = E_a(T) = \{1\} \) and \(T \) satisfies generalized a-Weyl’s theorem, so it satisfies a-Weyl’s theorem, generalized Weyl’s theorem and Weyl’s theorem.

We define the operator \(U \) on \(\ell^2(\mathbb{N}) \) by \(U(\xi_1, \xi_2, ..., \xi_n, ...) = (-\xi_1, 0, 0, ...) \) and \(F = U \oplus 0 \) on the Banach space \(X = \ell^2(\mathbb{N}) \oplus \ell^2(\mathbb{N}) \). Then \(F \) is a finite rank operator commuting with \(T \). On the other hand, \(\sigma(T + F) = \sigma(T) = \{0,1\} \) and \(E_a(T + F) = \{0,1\} \). As \(\sigma_{SBF}(T + F) = \sigma_{SBF}(T) = \{0\} \), then \(\sigma_a(T + F) \setminus \sigma_{SBF}(T + F) = \{1\} \neq \sigma_{a}(T + F) \) and \(T + F \) does not satisfy generalized a-Weyl’s theorem. Not that \(E_a(T + F) \cap \sigma_a(T) \not\subset E_a(T) \). Moreover, \(E(T + F) = \{0,1\} \), and as by [4, Theorem 4.3] we have \(\sigma_{BW}(T + F) = \sigma_{BW}(T) = \{0\} \), then \(T + F \) does not satisfy generalized Weyl’s theorem. Observe that \(E(T + F) \cap \sigma(T) \not\subset E(T) = \{1\} \).

Moreover we have \(\sigma_a(T + F) = \{0,1\} \) and \(\sigma^0(T + F) = \{0\} \). As \(\sigma(T + F) = \{0,1\} \) then \(\Delta(T + F) \neq \sigma^0(T + F) \) and \(T + F \) does not satisfy Weyl’s theorem. So \(T + F \) does not satisfy a-Weyl’s theorem. Note that \(\sigma_a(T) \not\subset \sigma^0(T) \), \(E_a(T + F) \cap \sigma_a(T) = \{0\} \cap \{0,1\} \not\subset E^0_a(T) = \emptyset \).

(b)– Theorem 2.2 and Theorem 2.7 do not extend to a commuting compact perturbation. Indeed, if we consider on the Hilbert space \(\ell^2(\mathbb{N}) \) the operators \(T = 0 \) and \(Q \) defined by \(Q(x_1, x_2, x_3, ...) = (x_2/2, x_3/3, x_4/4, ...) \). Then \(Q \) is a compact operator commuting with \(T \). Moreover, we have \(\sigma_a(T) = \{0\} \), \(\sigma_{SBF}(T) = \emptyset \), \(E_a(T) = \{0\} \). Hence \(T \) satisfies generalized a-Weyl’s theorem. So it satisfies generalized Weyl’s theorem. But generalized a-Weyl’s theorem and generalized Weyl’s fail for \(T + Q = Q \). Indeed \(\sigma_{SBF}(T + Q) = \emptyset \), \(E_a(T + Q) = \{0\} \) and \(\sigma(T + Q) = \{0\} \), \(\sigma_{BW}(T + Q) = \{0\} \), \(E(T + Q) = E(T) = \{0\} \). Thought we have \(E_a(T + Q) \cap \sigma_a(T) \subset E_a(T) \) and \(E(T + Q) \cap \sigma(T) \subset E(T) \).

3 Nilpotent perturbations

Let \(T \in L(X) \) and let \(N \) be a nilpotent operator commuting with \(T \). In a first step we prove that \(T \) and \(T + N \) have the same isolated eigenvalues in the approximate spectrum.

Lemma 3.1. Let \(X \) be a Banach space and let \(T \in L(X) \). If \(N \in L(X) \) is a nilpotent operator commuting with \(T \), then \(E_a(T + N) = E_a(T) \).

Proof. Let \(\lambda \in E_a(T) \) be arbitrary. There is no loss of generality if we assume
that $\lambda = 0$. As N is nilpotent we know that $\sigma_a(T + N) = \sigma_a(T)$, thus $0 \in \text{iso}_a(T + N)$. Let $m \in \mathbb{N}$ be such that $N^m = 0$. If $x \in N(T)$, then $(T + N)^m(x) = \sum_{k=0}^{m} c_k T^k N^{m-k}(x) = 0$. So $N(T) \subset N(T + N)^m$. As $\alpha(T) > 0$, it follows that $\alpha((T + N)^m) > 0$ and this implies that $\alpha(T + N) > 0$. Hence $0 \in E_a(T + N)$. So $E_a(T) \subset E_a(T + N)$. By symmetry we have $E_a(T) = E_a(T + N)$.

In the next theorem, we consider an operator $T \in L(X)$ satisfying generalized a-Weyl’s theorem, a nilpotent operator commuting with T, and we give necessary and sufficient conditions for $T + N$ to satisfy generalized a-Weyl’s theorem.

Theorem 3.2. Let X be a Banach space and $T \in L(X)$ and $N \in L(X)$ be a nilpotent operator commuting with T. If T satisfies generalized a-Weyl’s theorem, then the following statements are equivalent.

(i) $T + N$ satisfies generalized a-Weyl’s theorem;
(ii) $\sigma_{SBF^-}(T + N) = \sigma_{SBF^-}(T)$;
(iii) $E_a(T) = \Pi_a(T + N)$.

Proof. (i) \iff (ii) Assume that $T + N$ satisfies generalized a-Weyl’s theorem, then

$$\sigma_a(T + N) \setminus \sigma_{SBF^-}(T + N) = E_a(T + N).$$

As $\sigma_a(T + N) = \sigma_a(T)$ and $E_a(T + N) = E_a(T)$ then $\sigma_a(T) \setminus \sigma_{SBF^-}(T + N) = E_a(T)$. Since T satisfies generalized a-Weyl’s theorem, then

$$\sigma_a(T) \setminus \sigma_{SBF^-}(T) = E_a(T).$$

Hence $\sigma_{SBF^-}(T + N) = \sigma_{SBF^-}(T)$. Conversely, assume that $\sigma_{SBF^-}(T + N) = \sigma_{SBF^-}(T)$, then T satisfies generalized a-Weyl’s theorem it follows that $T + N$ satisfies also generalized a-Weyl’s theorem.

(i) \iff (iii) Assume that $T + N$ satisfies generalized a-Weyl’s theorem, then from [3, Corollary 3.2], we have $E_a(T + N) = \Pi_a(T + N)$. Therefore $E_a(T) = \Pi_a(T + N)$. Conversely, assume that $E_a(T) = \Pi_a(T + N)$. Since T satisfies generalized a-Weyl’s theorem, then T satisfies generalized a-Browder’s theorem. As we know from [2, Theorem 2.2] that a-Browder’s theorem is equivalent to generalized a-Browder’s theorem, then T satisfies a-Browder’s theorem. So $\sigma_{SBF^-}(T) = \sigma_{ab}(T)$. From [12, Theorem 2.13], we know that $\sigma_{SF^-}(T) = \sigma_{SF^-}(T + N)$. By [1, Theorem 3.65], we know that $\sigma_{ab}(T) = \sigma_{SF^-}(T) \cup \text{aco}_a(T)$. Hence $\sigma_{ab}(T) = \sigma_{ab}(T + N)$. Therefore $\sigma_{SF^-}(T + N) = \sigma_{ab}(T + N)$ and $T + N$ satisfies a-Browder’s theorem. So it satisfies generalized a-Browder’s that is $\sigma_a(T + N) \setminus \sigma_{SBF^-}(T + N) = \Pi_a(T + N)$. As by assumption $E_a(T) = \Pi_a(T + N)$, it follows that $\sigma_a(T + N) \setminus \sigma_{SBF^-}(T + N) = E_a(T + N)$ and so $T + N$ satisfies generalized a-Weyl’s theorem.

Theorem 3.3. Let X be a Banach space and let $T \in L(X)$ be an operator satisfying generalized a-Weyl’s theorem. If $E_a(T) \subset \text{iso}(T)$ and if $N \in L(X)$ is a nilpotent operator commuting with T, then $T + N$ satisfies generalized a-Weyl’s theorem.
Proof. Let $\lambda \in E_a(T)$, since $E_a(T) \subset iso\sigma(T)$, then $\lambda \in E(T)$.

As T satisfies generalized a-Weyl’s theorem, from [3, Theorem 3.7] T satisfies generalized Weyl’s theorem. Hence $\lambda \in \Pi(T)$. As we know that $\sigma_D(T) = \sigma_D(T + N)$, then $\lambda \in \Pi(T + N)$. Hence $\lambda \in \Pi_a(T + N)$. Consequently we have $E_a(T) = \Pi_a(T + N)$. Conversely if $\lambda \in \Pi_a(T + N)$, then $\lambda \in E_a(T + N)$. As we know that $E_a(T) = E_a(T + N)$, (see Lemma 3.1), then $\lambda \in E_a(T + N)$. So $E_a(T) = \Pi_a(T + N)$. From Theorem 3.2, $T + N$ satisfies generalized a-Weyl’s theorem. \square

Remark 3.4. 1- The hypothesis of commutativity in the Theorem 3.2 corollary is crucial. The following example shows that if we do not assume that N commutes with T, then the result may fails. Let $H = \ell^2(\mathbb{N})$, and let T and N defined by:

$$T(x_1, x_2, x_3, \ldots) = (0, x_1/2, x_2/3, \ldots), \quad N(x_1, x_2, x_3, \ldots) = (0, -x_1/2, 0, 0, \ldots).$$

Clearly N is a nilpotent operator which does not commute with T. Moreover, we have $\sigma_a(T) = \sigma_{SBF^{-}}(T) = \{0\}$ and $E_a(T) = \emptyset$. Therefore T satisfies generalized a-Weyl’s theorem. But $T + N$ does not satisfy generalized a-Weyl’s theorem because $\sigma_a(T + N) = \sigma_{SBF^{+}}(T + N) = \{0\}$ and $E_a(T + N) = \{0\}$.

(2) Generally, generalized a-Weyl’s theorem does not extend to a quasinilpotent perturbation: Define on the Banach space $\ell^2(\mathbb{N})$ the operator $T = 0$ and the quasinilpotent operator Q defined by $Q(x_1, x_2, x_3, ...) = (x_2/2, x_3/3, x_4/4, ...)$. Then $\sigma_a(T) = \{0\}$ and $\sigma_{SBF^{-}}(T) = \emptyset$. Moreover we have $E_a(T) = \{0\}$. Hence T satisfies generalized a-Weyl’s theorem. But generalized a-Weyl’s theorem does not hold for $T + Q = Q$, since $\sigma_{SBF^{-}}(T + Q) = \sigma_a(T + Q) = \{0\}$ and $E_a(T + Q) = \{0\}$.

Open questions: The proof of Theorem 3.2 suggests the following questions:

1. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $a(T + N)$ is finite if $a(T)$ is finite?

2. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $R((T + N)^m)$ is closed for m large enough if $R(T^m)$ is closed for m large enough?

3. let $T \in L(X)$ and let $N \in L(X)$ be a nilpotent operator commuting with T. Under which conditions $\Pi_a(T + N) = \Pi_a(T)$?

References

Address:

Mohammed Berkani
Department of mathematics, Science faculty of Oujda, University Mohammed I, Morocco
E-mail: berkani@fso.ump.ma

Hassan Zariouh
Department of mathematics, Science faculty of Meknes, University Moulay Ismail, Morocco
E-mail: h.zariouh@yahoo.fr