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Exactness and the Jordan form

Robin Harte, Carlos Hernández and Cora Stack

Abstract

The Jordan classification of nilpotent matrices is described in terms of
exactness.

1 Introduction

There is an unexpected intervention of exactness in the process of diagonalizing
a matrix: if a linear operator T : X → X satisfies a nontrivial polynomial
identity

p(T ) = 0 ,

then the spectrum
σ(T ) = πleft(T ) ⊆ p−1(0) (1)

will consist entirely of eigenvalues, zeroes of the polynomial p. In finite dimen-
sional linear algebra, after solving the equation p(z) = 0, there is a second stage
problem to identify the eigenspaces (T −λI)−1(0) for each point λ ∈ p−1(0). At
this point [5] exactness says that it is not necessary to solve any more equations:
the Euclidean algorithm for polynomials says

p = q r , hcf(q, r) = 1 =⇒ 1 = q′ q + r r′ , (2)

and hence
q(T )−1(0) ⊆ r(T )(X) . (3)

This applies in particular if one factor q takes up all the occurrences of a par-
ticular eigenvalue λ of T :

q = (z − λ)k , hcf(z − λ, r) = 1 . (4)

In words, all the eigenvectors of a matrix T corresponding to λ, and more, will
be found among the columns of the matrix r(T ).
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In practice it will be numerically more sensible to solve the usual equations
for eigenvectors rather than go to the trouble of computing the matrices r(T )
corresponding to q(T ) = (T − λI)k, but theoretically this is a beguiling obser-
vation. Of course not every matrix will have enough eigenvectors to enable the
process of “diagonalization”; this opens the door to the discussion of “Jordan
form”.

Suppose T : X → X is a linear operator on a real or complex vector space:
then an “invariant subspace” for T satisfies T (Y ) ⊆ Y ⊆ X. The trivial invari-
ant subspaces are O = {0} and X. Among the invariant subspaces of T we shall
identify [8] its “platforms”:

1. Definition A subplatform for the linear operator T : X → X is a linear
subspace X ′ ⊆ X for which

T−1(0)∩X ′ ⊆ T (X ′) ⊆ X ′ , (5)

and a platform is a maximal subplatform. A coplatform for the subplatform X ′

is a linear subspace X ′′ ⊆ X for which

T (X ′′) ⊆ X ′′ ; X ′
∩X ′′ = O ; X ′ + X ′′ = X , (6)

compatible provided also
X ′′ ⊆ T−1(0) . (7)

Zorn’s condition is easily checked for subplatforms, and O is a subplatform, so
that platforms always exist. Necessary and sufficient for the null space T−1(0)
to be a subplatform for T is that T be one-one; necessary and sufficient for the
range T (X) to be a subplatform is the interesting condition

T−1(0)∩T (X) ⊆ T 2(X) . (8)

We shall describe T as strictly nilpotent provided

T 2 = 0 . (9)

2. Theorem If T is strictly nilpotent and X ′ is a subplatform for T then, for
arbitrary z ∈ X \X ′, there is implication

Tz 6∈ X ′ =⇒ X ′+Kz+KTz is a subplatform for T =⇒ z 6∈ X ′+T−1(0) . (10)

Proof. If Tz 6∈ X ′ then if x ∈ X ′ and λ, µ ∈ K there is implication

Tx− λTz = T (x− λz − µTz) = 0 =⇒ Tx = 0 = λTz ,

so that λ = 0 and x ∈ X ′
∩T−1(0) ⊆ T (X ′), giving x′ ∈ X ′ for which

x− λz − µTz = T (x′ − µz) ∈ T (X ′ + Kz + KTz) .
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Conversely if x ∈ X ′ and z ∈ x+T−1(0) then, if X ′+Kz+KTz is a subplatform,

z − x ∈ T−1(0)∩(X ′ + Kz + KTz) ⊆ X ′ + KTz ⊆ X ′ + X ′ ,

contradicting z ∈ X \X ′ •
In particular if O is a platform for strictly nilpotent T then T = 0.
The whole space X is a platform for T iff T is self-exact, in the sense that

(T, T ) is exact, where (S, T ) is exact (whether or not ST = 0) iff

S−1(0) ⊆ T (X) ; (11)

generally a subplatform is just an invariant subspace supporting a self-exact
restriction.

More generally we shall say that X ′ ⊆ X is an n-subplatform for T provided

T−n(0)∩X ′ ⊆ T (X ′) ⊆ X ′ ⊆ X , (12)

and that a coplatform X ′′ for X ′ is n-compatible provided

X ′′ ⊆ T−n(0) . (13)

Thus the whole space X is an n-subplatform for T if and only if T is n-exact,
in the sense that

(Tn, T ) is exact, equivalently (T, Tn) is exact . (14)

The equivalence is ([2] Theorem 10.9.2;[6]) very simple: if U : W → X, T :
X → Y and V : Y → Z then

V −1(0) ⊆ TU(W ) , T−1(0) ⊆ U(W ) =⇒ (V T )−1(0) ⊆ U(W ) (15)

and

(V T )−1(0) ⊆ U(W ) , V −1(0) ⊆ T (X) =⇒ V −1(0) ⊆ TU(W ) . (16)

An n-subplatform in turn is an invariant subspace on which the restricted op-
erator is n-exact. If Tn+1 = 0 and X ′ is an n-subplatform for T then we have
an extension of (2.1): if z ∈ X \X ′ there is implication

Tnz 6∈ X ′ =⇒ X ′+Kz+
n∑

j=1

KT jz is an n-subplatform for T =⇒ z 6∈ X ′+T−n(0) .

(17)

Platforms of nilpotent operators have compatible coplatforms:

3. Theorem If T : X → X is strictly nilpotent then all its subplatforms
X ′ ⊆ X have coplatforms. Necessary and sufficient for a subplatform to be a
platform is that it has a compatible coplatform.
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Proof. The first part of this is given by Herstein ([9] Lemma 6.5.4): look at
X ′′ ⊆ X which is maximal with respect to the first two conditions of (1.2) and
claim that there is inclusion

T−1(X ′ + X ′′) ⊆ X ′ + X ′′ . (18)

Indeed it is clear that, if x ∈ X is arbitrary,

Tx = y + z ∈ X ′ + X ′′ =⇒ 0 = T 2x = Ty + Tz =⇒ Tz = −Ty ∈ X ′
∩X ′′ = O

giving y = Ty′ with y′ ∈ X ′ by the subplatform property (1.1): now consider
the subspace

W = X ′′ + K(x− y′) .

We note that TW ⊆ W , since T (x− y′) = z ∈ X ′′, and claim that

x 6∈ X ′ + X ′′ =⇒ X ′
∩W = O .

To see this argue

z + λ(x− y′) ∈ W∩X ′ =⇒ λx ∈ X ′ + λX ′ −X ′′ ⊆ X ′ + X ′′ ,

and if x 6∈ X ′+X ′′ this forces λ = 0 and hence z ∈ X ′
∩X ′′ = O. The maximality

of X ′′ thus forces x ∈ X ′ + X ′′, as required by (3.1). Now if for a contradiction
X ′+X ′′ 6= X then there is z ∈ X for which z 6∈ X ′+X ′′, in which case by (3.1)
also Tz 6∈ X ′ + X ′′; but then

X ′′ + Kz + KTz 6= X ′′

satisfies the first two conditions of (1.2), contradicting the maximality of X ′′.
For the second part suppose X ′ is a subplatform, with a coplatform X ′′, and

that there is z ∈ X ′′ for which Tz 6= 0: then by (2.1) X ′ + Kz + KTz would
also be a subplatform, with necessarily Tz 6∈ X ′: thus X ′ cannot be maximal.
Conversely if X ′ ⊆ Y ⊆ X is contained in a subplatform Y , and also has a
compatible coplatform X ′′, then T (X) ⊆ X ′, and hence

Y ⊆ X ′ + X ′′ ⊆ Y∩(X ′ + T−1(0)) ⊆ X ′ + TY ⊆ X ′ •

Theorem 3 extends to n-subplatforms when Tn+1 = 0, as indeed is proved
by Herstein [9]:
4. Corollary If Tn+1 = O then

T ∼
(

T ′ O
rO T ′′

)
with (T ′)−n(0) ⊆ T ′(X ′) ; (T ′′)n = O′′ . (19)

For example if

T =




0 1 0
0 0 1
0 0 0


 (20)
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then

T (X) = T−2(0) =




K
K
O


 ; T 2(X) = T−1(0) =




K
O
O


 , (21)

and hence, in this case, X = X ′ and X ′′ = {0}. If instead

T =




0 1 0
0 0 0
0 0 0


 or T =




0 0 0
0 0 1
0 0 0


 (22)

then T 2 = 0 and hence X = X ′′ and X ′ = {0}. More generally for an n+1×n+1
nilpotent matrix an n-platform is either all or nothing. However in (4.4) T 2 = 0
and in the first option the platform is nontrivial:

X ′ =




K
K
O


 , X ′′ =




O
O
K


 . (23)

We leave it to the reader to determine the platform in the second option.
In a sense however we are able to reduce the general nilpotent to the strictly

nilpotent:

5. Example If T : X → Y and S : Y → Z satisfy

ST = 0 : X → Z , (24)

and

T =




0 0 0
T 0 0
0 S 0


 :




X
Y
Z


 = X → X, (25)

then

T(X) =




O
TX
SY


 ⊆




T−1(0)
S−1(0)

Z


 = T−1(O) . (26)

For X′ ⊆ X to be a subplatform for T we require

X′ =




X ′

Y ′

Z ′


 =⇒ T−1(O)∩X′ =




T−1(0)∩X ′

S−1(0)∩Y ′

Z ′


 ⊆




O
TX ′

SY ′


 = T(X′) . (27)

While not every subplatform X′ for T need respect the direct sum decom-
position here, Theorem 3 enables us to recognise when such a subplatform is
maximal. If for example

X = Y = Z , S = Tn (28)

then the analysis of the strictly nilpotent case T 2 = 0 extends to the generally
nilpotent. If instead Y = X2, Z = X and the chain (0, S, T, 0) is derived from
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the Koszul complex [2],[3],[4] of a commuting pair of operators (T1, T2) on X
then the analysis offers a reduction of the Taylor singular case into the direct
sum of a zero and a nonsingular component. If in particular

T ′T = I = SS′ , with T ′S′ = O (29)

then the range of a projection P will give a platform for T, where

P =




I 0 0
0 Q 0
0 0 I


 with Q = TT ′ + S′S . (30)

For a specific example take T = v = (v1, v2) to be the shifts of [1].
More complicated but still strictly nilpotent matrices represent commuting

n-tuples of operators. Inductively if a commuting n-tuple of operators T =
(T1, T2, . . . , Tn) is represented by the strictly nilpotent matrix T, and if an
operator U commutes with each of the operators Tj , then the n+1 tuple (T, U)
will be represented by a matrix of the form

(
T O
U T

)
, (31)

where U is diagonal with entries ±U . We claim ([3] Theorem 10.9.5, Theorem
10.9.6) that platforms for the matrix (5.8) can be derived from those for T:

6. Theorem Suppose T : X → Y , S : Y → Z, R : Z → W , U : Y → Y and
V : Z → Z satisfy

RS = ST = O = V S + SU ; (32)

then if

R−1(0)∩Z ′ ⊆ S(Y ′) ⊆ Z ′ and S−1(0)∩Y ′ ⊆ T (X ′) ⊆ Y ′ , (33)

it follows (
R O
V S

)−1 (
O
O

)
∩

(
Z ′

Y ′

)
⊆

(
S O
U T

)(
Y ′

X ′

)
, (34)

which in turn implies

(
R
V

)−1 (
O
O

)
∩ Z ′ ⊆ S(Y ′) and S−1(0)∩Y ′ ⊆ (

U T
) (

Y ′

X ′

)
. (35)

Proof. If (
z′

y′

)
∈

(
R O
V S

)−1 (
O
O

)

then since Rz′ = 0 there is y′ ∈ Y ′ for which z′ = Sy′, giving Sy = −V z =
−V Sy′ = SUy′, so that S(y − Uy′) = 0 and hence there is x′ ∈ X ′ for which
y − Uy′ = Tx′. as required by (6.3). Conversely if (6.3) holds then

R−1(0)∩V −1(0)∩Z ′ ⊆ S(U−1(TX ′)) ⊆ S(Y ′)
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and
S−1(0)∩Y ′ ⊆ T (X ′) + U(S−1(0)∩Y ′) ⊆ T (X ′) + U(Y ′) •
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