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Operator equations ABA = A2 and BAB = B?

B. P. Duggal

Abstract

If A, B € B(X) are Banach space operators (i.e., bounded linear trans-
formations) such that ABA = A% and BAB = B?, then any one of A,
AB, BA and B has the single-valued extension property, or property
(8)e, or Bishop’s property (), or the decomposition property (J), im-
plies they all have the property. Furthermore, they all have the same
left (right) spectrum, the spectrum, upper (lower) Fredholm spectrum,
essential spectrum, Browder spectrum, Weyl spectrum, Browder essential
approximate point spectrum, Weyl essential approximate point spectrum
and Drazin spectrum.

1 Introduction

Given Banach space operators A, B € B(X), or more generally A € B(X,))
and B € B(),X), the common spectral properties of the operators AB and
BA have been studied by a number of authors [3, 4, 5, 15]. It is known that
the non—zero points of the spectrum, and a number of its more distinguished
parts, are the same for AB and BA. With additional structure, in particular if
A,B € B(X), ABA = A? and BAB = B2, it is possible to relate the spectrum
of A and B, and some of its distinguished parts, to that of AB and BA. A study
to this effect has been carried out by Schmoeger [13, 14, 15]. Thus o, (A4)\{0} =
0:(AB)\ {0} = 0,(BA) \ {0} = 0,(B) \ {0}, where o, stands for either of the
point spectrum o, or the approximate point spectrum o, or the the residual
spectrum o, or the continuous spectrum o.; furthermore, the operators A, AB,
BA and B have the same spectrum and the same (Fredholm) essential spectrum
[14].

In this paper we apply techniques from local spectral theory to prove that
if ABA = A? and BAB = B? for some operators A, B € B(X), then any
one of A, AB, BA and B has the single—valued extension property (SVEP),
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or Bishop’s property (8), or the decomposition property (d), or the Eschmeier—
Putinar-Bishop property (§). at a point, implies they all have the property at
the point. Using the Sadovskii/Buoni, Harte, Wickstead construction, we prove
that 0, (A) = 0,(AB) = 0,(BA) = 0,(B),where o, is either of the upper Fred-
holm spectrum, lower Fredholm spectrum, Fredholm essential spectrum, left
spectrum, right spectrum, the spectrum, the Browder spectrum, the Weyl spec-
trum, the Browder essential approximate point spectrum and the Weyl essential
approximate point spectrum. The ascent spectrum, the descent spectrum and
the Drazin spectrum are also considered.

In the following, A and B shall denote operators in B(X) such that ABA =
A% and BAB = B?. Evidently 0 ¢ 0(A) No(B) implies A = B is the identity
operator I; hence, we shall assume in the following that 0 € o(A) No(B). Most
of our terminology is standard, and we refer the reader to [1, 9, 10, 11] for any
unexplained terminology. In the following, A and p (etc.) shall denote complex
numbers; we write T — X for T — Al.

2 Results

An operator T € B(X) has the single-valued extension property at a point A,
SVEP at Ao, if for every open disc D centered at A\g the only analytic function
f:D — X satisfying (T — X) f(A\) = 0 is the function f = 0; T has SVEP if it
has SVEP everywhere. Recall, [4], that for every S,T € B(X), ST has SVEP
at a point if and only if 'S has SVEP at the point. Let ogyvpp(T) ={N€C: T
does not have SVEP at A} denote the SVEP spectrum of 7. Observe that
osvep(T) may be empty.

Theorem 2.1. O'SVEP(A) = USVEP(AB) = O'SVEP(BA) = USVEP(B)-

Proof. The equivalence AB has SVEP at a point u <= BA has SVEP at p
holds for all A, B € B(X) [4]. We prove that A has SVEP at ;1 <= AB has
SVEP at p; the equivalence B has SVEP at 4 <= BA has SVEP at p is
similarly proved. Let U be an open neighbourhood of p and f : U4 — X an
analytic function such that (A — X\)f(A) =0 in Y. Then

(A2 = XA)f(\) =0 <= A%f(\) = MAf(\) = N2 f(N) in U,
and so
AB(A=N)f(\) =0= (A2 = AAB)f(\) =0 = (AB—\)(=Af(\)) =0 in U.

Thus, if AB has SVEP at p, then Af(A\) = 0 = f(A\) = 0 for all A in U,
implies A has SVEP at p. Conversely, assume that A has SVEP at p and let
g : U — X be an analytic function such that (AB — \)g(A) =0 in U. Then

AB(AB—-)\) =0 <= (A’B—-MAB)g(\) =(A—XABg(\) =0 in U
= ABg(A\)=0=Xg(A) =0 in Y = ¢g(A) =0 in U.
This implies that A has SVEP at . O
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A part of the following theorem has been proved by Schmoeger [14, Corollary
2.11] using a different argument: we prove our result using Theorem 2.1 and
a construction of Sadovskii/Buoni, Harte and Wickstead [11, Page 159] (which
leads to a representation of the Calkin algebra B(X)/K(X) as an algebra of op-
erators on a suitable Banach space). Recall, [1, Corollary 2.24], that a surjective
operator is invertible if and only if it has SVEP at 0. In particular:

Lemma 2.2. If T € B(X) is left invertible and T* has SVEP at 0, then T is
invertible.

We shall require the following lemma.
Lemma 2.3. The implications
(A=XN)7(0) = {0} <= (AB—N)~'(0) = {0}
— (BA=X)"'(0) = {0} < (B—X)"1(0) = {0}
hold for all \.

Proof. The proof is quite elementary: we start by proving that if A # 0, then
(A=X)710) = {0} = (BA = XN)"(0) = {0} = (AB - ))7'(0) = {0} =

(B—=X2)71(0) = {0} = (A —X)"(0) = {0}.
If (A—X)~10) = {0} and (BA — Az = 0 for some (0 #)x € X, then the
following implications hold:

0=ABA-Ner=(A-NAr = Ar=0= BAzr =X =0=2=0.
If (BA—X)71(0) = {0} and (AB — \)y = 0 for some (0 #)y € X, then

0=ABAB-Ny=(A—MNABy=XA-Ny= (A-Ny=0
— 0=DB*A—-)\y=(B*A—-\BAB)y = (B*A— \*B)y = \(BA—-\)B
= By=0=—= ABy=)\y=0=y=0.
Again, if (AB — \)71(0) = {0} and (B — A)z = 0 for some (0 #)z € X, then

0 = (AB? - )\AB)z=(AB - \)ABz = ABz=0=— 0= BABz
= B%z=):=— 2=0.

Finally, if (B — A)71(0) = {0} and (A — X\)t = 0 for some (0 #)t € X, then

0 = BA(A—-MNt=(B—-\BAt = BAt=0= 0= ABAt = A%t
Nt =t=0.

Now let A = 0. Evidently, (BA)~1(0) = {0} (resp., (AB)~1(0) = {0}
plies A71(0) = {0} (resp., B~1(0) = {0}); if A=1(0) = {0} (resp., B~!
{0}), then ABA = A? (resp., BAB = B?) implies (BA)~(0) = {0} (res
(AB)=1(0) = {0}). Hence (BA)~1(0) = {0} <= A=1(0) = {0} and (AB)~1(0

) im-
(0) =

esp.,
) =
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{0} <= B71(0) = {0}. Assume now that (AB)~1(0) = {0}. Then it follows
from the implications

(AB)(AB-B) = (AB)>~AB? =0 = AB = B = AB(B-I) = AB’>~AB =0

that B =1 = AB = A = BA. A similar argument show that if (BA)~1(0) =
{0}, then (again) B=1=AB=A=DBA. O

The proof of Lemma 2.2 shows that the only way 0 can fail to be in the spectrum
of AB and BA is if 0 is not in the point spectrum of A or B. Evidently, the
operators A, B, AB and BA have the same point spectrum; an appeal to the
Berberian—Quigley extension theorem [10, Page 255] shows that they also have
the same approximate point spectrum. As we shall see later, they (also) have
the same spectrum.

The Sadovskii/Buoni, Harte, Wickstead construction [11] may be summa-
rized as follows. Let £°(X’) denote the Banach space of all bounded sequences
z = (x,)5%; of elements of X endowed with the norm ||z||s := sup, ey ||Znll,
and write Too, Toow := (Tx,)52 for all © = (x,)52 4, for the operator induced
by T on £°(X). The set m(X) of all precompact sequences of elements of X is
a closed subspace of £°°(X) which is invariant for T,. Let X, := £*°X)/m(X),
and denote by T}, the operator T, on &,;. The mapping 1" — Tj is then a unital
homomorphism from B(X') — B(X;) with kernel K£(X) (= the ideal of compact
operators) which induces a norm decreasing monomorphism from B(X)/IC(X)
to B(X,) with the following properties (see [11, Section 17] for details):

Lemma 2.4. (i) T is upper semi-Fredholm, T € ¢, if and only if T, is injec-
tive, if and only if T, is bounded below;

(#7) T is lower semi-Fredholm, T € ¢_, if and only if T, is onto, if and only
if Ty € p—;

(t4i) T is Fredholm, T € ¢, if and only if T, is invertible.

Let osp, (T) ={A € C:T—X ¢ ¢} denote the upper semi-Fredholm spectrum
of T,o5r_ (T)={A€C:T — X ¢ ¢_} the lower semi-Fredholm spectrum of T’
and let 0.(T) = osp, (') Uosp_(T) denote the (Fredholm) essential spectrum
of T

Theorem 2.5. 0,(A) = 0,(AB) = 0,(BA) = 0,(B), where 0, = osp, or
OSF_ OT 0.

Proof. We prove the equality of the spectra for the case in which o, = osF,;
the proof for ogp_ follows from a duality argument and the proof for o, is then
a straightforward consequence. Apparently,

AgBgA; = A2 and ByA.B, = B].

Let T — X € ¢4, where T stands for one of the operators A, AB, BA and B.
Then, see Lemma 2.4, T;, — A, is left invertible , in particular injective. This
implies by Lemma 2.3 that the operators A, — Ay, AgBq — Ay, ByAq — A,
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and B, — A, are all injective, hence all left invertible (by Lemma 2.4). Another
application of Lemma 2.4 now proves that A — A\, AB— X, BA—Xand B — \
are all upper semi-Fredholm. [

Let ojepe(T) = {\ : T — X is not left invertible} and opign(T) = {A: T — X is
not right invertible}. Part of the following corollary appears in [14, Proposition
2.6 and Corollary 2.7

Corollary 2.6. 0,(A) = 0,(AB) = 0,(BA) = 0,(B), where 0, = 0jcpt or
Oright OT 0.

Proof. We prove the case 0, = 0yey; the proof for o,.4n; follows from a duality
argument, and the proof for ¢ is a consequence of o = e s U0pigne. If either of
A—X, AB— )\, BA— )\ and B — ) is left invertible (hence upper semi-Fredholm
and injective), then they are all upper semi-Fredholm and injective, hence left
invertible. [

An operator T' € B(X) is said to have a generalized Drazin inverse at X if X is
an accumulation point of o(T) [6, Theorem 2.2.1]. If we denote the generalized
Drazin spectrum of T' by ogp(T), then it is immediate from Corollary 2.6 that:

Corollary 2.7. ogp(A) = 0gp(AB) = ogp(BA) = ogp(B).

The ascent (resp., descent) of an operator T' € B(X'), asc(T") (resp., dsc(T)),
is the least non-negative integer n such that 7-"(0) = T~ ™1 (0) (resp., T"X =
T"HLX); if no such integer exists, then asc(T) = oo (resp., dsc(T) = o). Let
04(T') denote the approximate point spectrum of T'. The Browder, the Weyl , the
Browder essential approximate point and the Weyl essential approximate point
spectrum of an operator T' € B(X) are the sets op(T) ={A€o(T): T — X ¢ ¢
or one of asc(T'— \) and dsc(T —\) is not finite}, 0, (T) ={A € a(T) : T—A ¢ ¢
or ind(T — A) #0}, 0ap(T) ={N€0a(T): T =X ¢ ¢1 or asc(T — X £ oo} and
Oaw(T) ={A € 0ao(T) : T — X\ & ¢ or ind(T — X # 0}, respectively. Recall that
T — X is said to be Weyl (resp., a-Weyl) at X\ if A ¢ 0,(T) (resp., A & 04w (T)).

Corollary 2.8. 0,(A) = 0,(AB) = 0,(BA) = 0,(B), where o, = oy or 0y, or

Oab OT Oaw -

Proof. Let T represent either of A, AB, BA and B. Recall that asc(T — \) <
oo = T has SVEP at A, dsc(T — A\) < co = T* has SVEP at A, and if
asc(T — A) and dsc(T — \) are both finite, then (they are equal and) both T and
T* have SVEP at A ([1, Theorems 3.3 and 3.8] (see also [9])); recall also that
a Fredholm operator T'— A such that both 7" and T have SVEP at \ satisfies
asc(T — A) = dsc(T — A) < oo [1, Corollary 3.21]. Now apply Theorems 2.5
and 2.1 to prove the equality for the case in which o, = o} or g4,. To prove
the equality of the spectra for the case o, = oy, (resp., 0aw), we observe that
if A& 0)(T) (resp., A & 04 (T)) for a choice of T, then T'— X € ¢ (resp., ¢4)
for every choice of T. Recall now from [14, Corollary 2.12] that if T'— X\ € ¢ for
a choice of T, then ind(A — A\) = ind(AB — A) = ind(BA — \) = ind(B — \).
Hence if T'— X is Weyl for a choice of T', then A— X\, AB— X, BA— )X and B—\
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are all Weyl. If instead T'— A € ¢4 and ind(T — A) > 0 for a choice of T, say
T', other than the one we started with, then 7" — A € ¢ = T — X € ¢ and
ind(T — X\) > 0 for every choice of T'; hence A — A\, AB— )\, BA— Xand B — \
are all a-Weyl. O

For a Banach space X and open subset U of C, let £(U, X) (resp., OU, X))
denote the Fréchet space of all infinitely differentiable X—valued functions on U
endowed with the topology of uniform convergence of all derivatives on compact
subsets of U (resp., of all analytic X—valued functions on U endowed with the
topology of uniform convergence on compact subsets of U). We say that T €
B(X) satisfies (Eschmeier—Putinar-Bishop) property (5). at A if there exists a
neighbourhood A of A such that, for each open subset U of N and sequence
{fn} of X—valued functions in (U, X),

(T —2)fn(z) — 0 in EU,X) = fu(2) — 0 in EU,X)

[7]); T satisfies (Bishop’s) property (3) at A € C if there exists an r > 0 such
that, for every open subset U of the open disc D(\;r) of radius r centered at A
and sequence {f,} of X—valued functions in O(U, X),

(T —2)fn(2) — 0 in OU,X) = fn(z) — 0 in OU,X)

[10, Page 11]. Property (3). implies property (3) [7]. It is well known that
property () implies SVEP, and that T satisfies property (8) if and only if T*
satisfies property (6) [10]. (We shall have no more than a passing interest in the
(decomposition) property (6): the interested reader is invited to consult [10],
in particular Definitions 1.2.28.) Let o) (T) = {A € C : T' does not satisfy
property (3)c at A}, o¢g)(T) = {\ € C: T does not satisfy property (5) at A}
and o5(T) = {\ € C: T does not satisfy property () at A}.

Theorem 2.9. 0,(A) = 0,(AB) = 0,(BA) = 0,(B), where 0, = 0(g). or o)
or gs)-

Proof. 1t is known [4] that o(g) (AB) = o). (BA) for all A,B € B(X). We
prove: A ¢ U(B)e(A) = A §é G(g)E(AB) = A ¢ U(B)E(BA) = A ¢ 0(8). (B) -
A ¢ o). (A).
Thus suppose that A — X € (8)c (i.e., A ¢ 0(g).(A)) and that {f,} is a
sequence in £(U, X) such that
(AB — 2)fn(2) — 0 in E(U,X).
Then

AB(AB — 2)fn(2) = (A—=2)ABf,(2) — 0 in EU,X)
= ABfn.(z) — 0 in E(U,X).

Hence zf,(z) in EU,X), and so f,(z), — 0 in EU,X). Suppose now that
BA — z € (0). and that {g,} is a sequence in (U, X) such that

(B—2)gn(z) — 0 in EU,X).
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Then
BA(B - z)gn(2) = (BA—2)Bgy(z) — 0 in EU,X)
= Bgn(z) — 0 in EU,X).

Hence zg,(z), so also g,(z), — 0 in £U,X). Finally suppose that B — z €
(8)e and that {F,} is a sequence in (U, X) such that

(A—2)F,(2) — 0in E(U, X).
Then

BA(A—2)F,(2) = B(AB—2)AF,(2) = (B —2)BAF,(z) — 0 in E(U,X)
= BAF,(z) — 0 in EU,X).

But then ABAF,(z) = A%*F,(z) — 0 in U, X). Since (A — 2)F,(2) —
0 in EU,X) also implies (A% — 2A)F,(z) — 0 in EU, X), it follows that
zAF,(z) — 0 = AF,(2) — 0in E(U,X). Hence zF,(z), so also F,(z),
— 0 in EU,X).

The proof for gy follows from a similar argument, and then the proof for
os follows from a duality argument. [

Let 0a5¢(T) = {X : asc(T — A\) = oo} and 04sc(T) = {A : dsc(T — \) = oo}
denote the ascent spectrum and the descent spectrum of T, respectively. (We
remark here that this definition of the ascent spectrum and the descent spectrum
differs from the usual topological definition, wherein one assumes also that (7' —
N)ase(T=NF1x respectively (T — N\)3T=Y X is closed; see, for example [8].)
The following theorem shows that A, B, AB and BA have the same non-zero
ascent and descent spectrum.

Theorem 2.10. o,(A)\ {0} = 0,(B) \ {0} = 0,(AB) \ {0} = 0.(BA) \ {0},

where 0, = Tgse OT Ogsc-

Proof. In view of the fact that asc(AB — \) = asc(BA — \) and dsc(AB — \) =
dsc(BA — )) for all A, B € B(X) [5, Theorem 1], it will suffice to prove: ()
asc(A — A) = asc(AB — \) = asc(B — A, and (ii) dsc(A — \) = dsc(AB — \) =
dsc(B — A) for all A # 0. Let A # 0.

(i) Suppose that (B — A)"z = 0 and (B — \)""!x # 0 for some (0 #) v € X
and some integer n > 1. Then
0=B(B — A"z = (BA— \)"Bz = Bz € (BA — \)~"(0).
If (BA—X)""'Bz =0, then B(B — \)""'z =0, and hence
0=B-N"z=BB-N"lr-AXB-\N"'s= B-N"'z=0

This is a contradiction; hence asc(AB — \) = asc(BA — \) < asc(B — \).
Conversely, assume that (AB —\)"z = 0 and (AB — \)" "1z # 0 for some (0 #)
z € X and some integer n > 1. Then

0=B(AB — \)" = (B — \)"Bz = Bz € (B — \)""(0).



16 B. P. Duggal

If (B—\)""!'Bz =0, then B(AB — \)" "'z = 0, and hence
0= (AB—\)"z=AB(AB - \)""' = XNAB - \)""'z = (AB-\)""'z =0.

This contradiction implies that asc(BA — ) < asc(B— ). The proof of asc(A —
A) = asc(AB — \) follows from a similar argument.

(#7) Suppose that y = (B — A\)"z for some (0 #) € X and integer n > 1,
but y is not in the range of (B — A\)"*!. Then By = (BA — \)"Bz, and so
By € (BA-)\)"X. If By € (BA—\)""1X, then there exists a w € X such that

(BAB — M)y = BA((BA — \)""'w) — \?y.
But then

Ny = BA(BA-\""'w— (BAB - \)y
= BA(BA—-\N""'w— (BAB - AB)y— \(B - \)y
= (B=N"""BAw — B(B - Ay — AB - \)y
= (B-\N""YBAw — Bz — \z},

ie., y € (B—A)""1X — a contradiction. Hence dsc(BA — \) = dsc(AB — \) <
dsc(B — A). Conversely, suppose that y = (BA — )"z for some (0 #) z € X
and integer n > 1, but y is not in the range of (BA — \)"*1. Then

BAy = (B — \)"BAx = BAz € (B - \)".

If BAr € (B—\)""1X, then (upon arguing as above) there exists a w € X such
that

My = B(B-\""'w— (B*A—-\BA)y — \BA—-)\)y
= (BA—-\)"""{Bw— BAz — \z},

ie.,y € (BA—)\)""X — a contradiction. Hence dsc(B — \) < dsc(BA —\) =
dsc(AB — \). A similar argument proves dsc(A — A) =dsc(AB — ). O

The Drazin spectrum of T € B(X) is the set op(T) = {A € C: X €
Oasc(T) Uogse(T)}. Theorem 2.10 shows that the operators A, B, AB and BA
have the same non-zero Drazin spectrum. Recall, [12, Theorem 1], however that
op(ST) = op(TS) for every S,T € B(X); the following theorem shows that
this equality extends to our operators A, B, AB and BA.

Theorem 2.11. op(A) = op(AB) = op(BA) = op(B).

Proof. Evidently, 0 is in the spectrum of the operators A, B, AB and BA. The
equations ABA = A? and BAB = B? imply that (AB)? = A?2B = AB?. Recall
that the Drazin spectrum is a regularity [11, Theorem 10, Page 195], and so satis-
fies the spectral mapping theorem for every function which is analytic on an open
neighbourhood of, and non-constant on connected components of, the spectrum
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of the operator [11, Theorem 7, Page 52]. Thus, if 0 € op(AB) (equivalently,
0 € op(BA)), then 0 € op(A?B) and op(AB?). Since op(ST) = op(TS)
for every S, T € B(X), {op(AB)}? = o0p((AB)?) = 0p(A%B) = op(ABA) =
op(A?%) = {op(A)}? = op(AB?) = op(BAB) = op(B?) = {op(B)}?. But
then 0 € O’D(A) —0€ O'D(B) <~ 0e€ UD(AB) [l

We note here that unlike the case of A # 0 (when A — X\, B— )\, AB — X\ and
BA — X have the same Drazin index whenever A ¢ op(A)), 0 = A ¢ op(A) does
not imply that the operators A, B, AB and BA have the same Drazin index
[15].
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