Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Functional Analysis, Approximation and Computation 3:1 (2011), 33-44

Approximating common fixed points for asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces

G. S. Saluja

Abstract

In this paper, we give necessary and sufficient condition for strong convergence of implicit iteration process with errors for approximating common fixed point for a finite family of asymptotically quasi-nonexpansive mappings in the intermediate sense in convex metric spaces. The results presented in this paper extend and improve some known results given in the literature (see, e.g., [10, 16, 17, 20, 21, 22]).

1 Introduction and Preliminaries

Throughout this paper, we assume that E is a metric space, $F(T_i) = \{x \in E : T_i x = x\}$ be the set of all fixed points of the mappings T_i (i = 1, 2, ..., N), D(T) be the domain of T and \mathbb{N} is the set of all positive integers. The set of common fixed points of T_i (i = 1, 2, ..., N) denoted by F, that is, $F = \bigcap_{i=1}^N F(T_i)$.

Definition 1.1 ([2]): Let $T: D(T) \subset E \to E$ be a mapping.

(1) The mapping T is said to be L-Lipschitzian if there exists a constant L > 0 such that

$$d(Tx, Ty) \leq Ld(x, y), \quad \forall x, y \in D(T).$$
(1.1)

²⁰¹⁰ Mathematics Subject Classifications. 47H09, 47H10.

Key words and Phrases. Asymptotically quasi-nonexpansive mapping in the intermediate sense; implicit iteration process with errors; common fixed point; strong convergence; convex metric space.

Received: June 3, 2011

Communicated by Dragan S. Djordjević

(2) The mapping T is said to be nonexpansive if

$$d(Tx, Ty) \leq d(x, y), \quad \forall x, y \in D(T).$$
(1.2)

(3) The mapping T is said to be quasi-nonexpansive if $F(T) \neq \emptyset$ and

$$d(Tx,p) \leq d(x,p), \quad \forall x \in D(T), \ \forall p \in F(T).$$
(1.3)

(4) The mapping T is said to be asymptotically nonexpansive if there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$d(T^n x, T^n y) \leq k_n d(x, y), \quad \forall x, y \in D(T), \ \forall n \in \mathbb{N}.$$
(1.4)

(5) The mapping T is said to be asymptotically quasi-nonexpansive if $F(T) \neq \emptyset$ and there exists a sequence $\{k_n\} \subset [1, \infty)$ with $\lim_{n\to\infty} k_n = 1$ such that

$$d(T^n x, p) \leq k_n d(x, p), \quad \forall x \in D(T), \ \forall p \in F(T), \ \forall n \in \mathbb{N}.$$
(1.5)

(6) T is said to be asymptotically nonexpansive type, if

$$\limsup_{n \to \infty} \left\{ \sup_{x, y \in D(T)} \left(d(T^n x, T^n y) - d(x, y) \right) \right\} \leq 0.$$
 (1.6)

(7) T is said to be asymptotically quasi-nonexpansive type, if $F(T) \neq \emptyset$ and

$$\limsup_{n \to \infty} \left\{ \sup_{x \in D(T), \ p \in F(T)} \left(d(T^n x, p) - d(x, p) \right) \right\} \le 0.$$
 (1.7)

Remark 1.1: It is easy to see that if F(T) is nonempty, then nonexpansive mapping, quasi-nonexpansive mapping, asymptotically nonexpansive mapping, asymptotically quasi-nonexpansive mapping and asymptotically nonexpansive type mapping all are the special cases of asymptotically quasi-nonexpansive type mappings.

Now, we define asymptotically quasi-nonexpansive in the intermediate sense mapping in convex metric space.

T is said be asymptotically quasi-nonexpansive in the intermediate sense mapping provided that T is uniformly continuous and

$$\lim_{n \to \infty} \sup_{x \in D(T), \ p \in F(T)} \left(d(T^n x, p) - d(x, p) \right) \right\} \leq 0.$$
(1.8)

In 2001, Xu and Ori [21] have introduced the following implicit iteration process for common fixed points of a finite family of nonexpansive mappings $\{T_i\}_{i=1}^N$ in Hilbert spaces:

$$x_n = t_n x_{n-1} + (1 - t_n) T_n x_n, \quad n \ge 1$$
(1.9)

where $T_n = T_{n(modN)}$. (Here the mod N function takes values in the set $\{1, 2, ..., N\}$). And they proved the weak convergence of the process (1.9).

In 2003, Sun [17] modified the implicit iteration process of Xu and Ori [21] and applied the modified averaging iteration process for the approximation of fixed points of asymptotically quasi-nonexpansive mappings. Sun introduced the following implicit iteration process for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings $\{T_i\}_{i=1}^N$ in Banach spaces:

$$x_n = \alpha_n x_{n-1} + (1 - \alpha_n) T_i^k x_n, \quad n \ge 1$$
(1.10)

where n = (k - 1)N + i, $i \in \{1, 2, \dots, N\}$.

Sun [17] proved the strong convergence of the process (1.10) to a common fixed point in real uniformly convex Banach spaces, requiring only one member T in the family $\{T_i : i = 1, 2, ..., N\}$ to be semi-compact. The result of Sun [17] generalized and extended the corresponding main results of Wittmann [20] and Xu and Ori [21].

Very recently, Saluja and Nashine [16] study the following implicit iteration process for common fixed points of a finite family of asymptotically quasi-nonexpansive mappings $\{T_i\}_{i=1}^N$ in the setting of convex metric spaces:

$$x_n = W(x_{n-1}, T^n_{n(mod \ N)} x_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 1$$
 (1.11)

where $\{u_n\}$ is a bounded sequence and $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are three sequences in [0,1] such that $\alpha_n + \beta_n + \gamma_n = 1$ for $n = 1, 2, \ldots$. They gave the necessary and sufficient condition for strong convergence of said iteration scheme and mappings. The result of [16] extends and improves the corresponding result of [17, 20, 21, 22].

The purpose of this paper to extends the results of Saluja and Nashine [16] for a finite family of asymptotically quasi-nonexpansive in the intermediate sense mappings.

For the sake of convenience, we first recall some definitions and notations.

In 1970, Takahashi [18] introduced the concept of convexity in a metric space and the properties of the space.

Definition 1.2([18]): Let (E, D) be a metric space and I = [0, 1]. A mapping $W: E \times E \times I \to E$ is said to be a convex structure on E if for each $(x, y, \lambda) \in E \times E \times I$ and $u \in E$,

$$d(u, W(x, y, \lambda)) \le \lambda d(u, x) + (1 - \lambda)d(u, y).$$

E together with a convex structure W is called a *convex metric space*, denoted it by (E, d, W). A nonempty subset K of E is said to be *convex* if $W(x, y, \lambda) \in K$ for all $(x, y, \lambda) \in K \times K \times I$.

Remark 1.2: Every normed space is a convex metric space, where a convex structure $W(x, y, z; \alpha, \beta, \gamma) = \alpha x + \beta y + \gamma z$, for all $x, y, z \in E$ and $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$. In fact,

$$d(u, W(x, y, z; \alpha, \beta, \gamma)) = \|u - (\alpha x + \beta y + \gamma z)\|$$

$$\leq \alpha \|u - x\| + \beta \|u - y\| + \gamma \|u - z\|$$

$$= \alpha d(u, x) + \beta d(u, y) + \gamma d(u, z), \qquad (1.12)$$

for all $u \in E$. But there exists some convex metric spaces which can not be embedded into normed space.

Example 1.1: Let $X = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1 > 0, x_2 > 0, x_3 > 0\}$. For $x = (x_1, x_2, x_3), y = (y_1, y_2, y_3) \in X$ and $\alpha, \beta, \gamma \in I$ with $\alpha + \beta + \gamma = 1$, we define a mapping $W \colon X^3 \times I^3 \to X$ by

$$W(x, y, z; \alpha, \beta, \gamma) = (\alpha x_1 + \beta y_1 + \gamma z_1, \alpha x_2 + \beta y_2 + \gamma z_2, \alpha x_3 + \beta y_3 + \gamma z_3)$$

and define a metric $d: X \times X \to [0, \infty)$ by

$$d(x,y) = |x_1y_1 + x_2y_2 + x_3y_3|.$$

Then we can show that (X, d, W) is a convex metric space, but it is not a normed space.

Definition 1.3: Let (E, d, W) be a convex metric space with a convex structure W and let $T_1, T_2, \ldots, T_N \colon X \to X$ be N asymptotically quasi-nonexpansive in the intermediate sense mappings. For any given $x_0 \in E$, the iteration process $\{x_n\}$ defined by

which can be written in the following compact form:

$$x_n = W(x_{n-1}, T^n_{n(modN)} x_n, u_n; \alpha_n, \beta_n, \gamma_n), \quad n \ge 1$$
 (1.13)

where $\{u_n\}$ is a bounded sequence in E, $\{\alpha_n\}$, $\{\beta_n\}$, $\{\gamma_n\}$ are three sequences in [0,1] such that $\alpha_n + \beta_n + \gamma_n = 1$ for $n = 1, 2, \ldots$. Iteration process (1.13) is called the implicit iteration process with errors for a finite family of mappings $\{T_i\}_{i=1}^N$.

If $u_n = 0$ in (1.13) then,

$$x_n = W(x_{n-1}, T^n_{n(modN)}x_n; \alpha_n, \beta_n), \quad n \ge 1$$

$$(1.14)$$

where $\{\alpha_n\}, \{\beta_n\}$ be two sequences in in [0, 1] such that $\alpha_n + \beta_n = 1$ for n = 1, 2, ...

Iteration process (1.14) is called the implicit iteration process a finite family of mappings $\{T_i\}_{i=1}^N$.

In order to prove our main result of this paper, we need the following lemma.

Lemma 1.1(see [13]): Let $\{p_n\}, \{q_n\}, \{r_n\}$ be three nonnegative sequences of real numbers satisfying the following conditions:

$$p_{n+1} \le (1+q_n)p_n + r_n, \quad n \ge 0, \quad \sum_{n=0}^{\infty} q_n < \infty, \quad \sum_{n=0}^{\infty} r_n < \infty.$$
 (1.15)

Then

(1) $\lim_{n\to\infty} p_n$ exists.

(2) In addition, if $\liminf_{n\to\infty} p_n = 0$, then $\lim_{n\to\infty} p_n = 0$.

2 Main Results

Now we state and prove our main results of this paper.

Theorem 2.1: Let (E, d, W) be a complete convex metric space. Let $T_i: E \to E$ be a finite family of asymptotically quasi-nonexpansive in the intermediate sense mappings for i = 1, 2, ..., N such that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Put

$$G_n = \max\left\{0, \sup_{p \in F, n \ge 1} \left(d(T^n_{n(modN)}x_n, p) - d(x_n, p)\right)\right\}.$$
 (2.1)

Assume that $\sum_{n=1}^{\infty} G_n < \infty$, $\sum_{n=1}^{\infty} \gamma_n < \infty$ and $\{\alpha_n\} \subset (s, 1-s)$ for some $s \in (0, 1)$. Then the sequence $\{x_n\}$ defined by (1.13) has the following conclusions:

(1) $\lim_{n\to\infty} d(x_n, F)$ exists;

(2) the sequence $\{x_n\}$ converges strongly to a common fixed point p of the mappings $\{T_i\}_{i=1}^N$ if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0,$$

where $d(x, F) = \inf_{p \in F} d(x, p)$.

Proof: We divide the proof of Theorem 2.1 into two steps.

(I) First, we prove the conclusion (1).

For any $p \in F = \bigcap_{i=1}^{N} F(T_i)$, using (1.13) and (2.1), we have

$$d(x_{n}, p) = d(W(x_{n-1}, T_{n(modN)}^{n}x_{n}, u_{n}; \alpha_{n}, \beta_{n}, \gamma_{n}), p)$$

$$\leq \alpha_{n}d(x_{n-1}, p) + \beta_{n}d(T_{n(modN)}^{n}x_{n}, p) + \gamma_{n}d(u_{n}, p)$$

$$\leq \alpha_{n}d(x_{n-1}, p) + \beta_{n}[d(x_{n}, p) + G_{n}] + \gamma_{n}d(u_{n}, p)$$

$$\leq \alpha_{n}d(x_{n-1}, p) + \beta_{n}d(x_{n}, p) + \beta_{n}G_{n} + \gamma_{n}d(u_{n}, p)$$

$$= \alpha_{n}d(x_{n-1}, p) + (1 - \alpha_{n} - \gamma_{n})d(x_{n}, p) + \beta_{n}G_{n} + \gamma_{n}d(u_{n}, p)$$

$$\leq \alpha_{n}d(x_{n-1}, p) + (1 - \alpha_{n})d(x_{n}, p) + G_{n} + \gamma_{n}d(u_{n}, p), \quad (2.2)$$

which on simplifying, we have

$$d(x_n, p) \leq d(x_{n-1}, p) + \frac{1}{\alpha_n} G_n + \frac{\gamma_n}{\alpha_n} d(u_n, p)$$

$$\leq d(x_{n-1}, p) + \frac{1}{\alpha_n} G_n + \frac{M}{\alpha_n} \gamma_n, \qquad (2.3)$$

where $M = \sup_{n \ge 1} d(u_n, p)$, since $\{u_n\}$ is bounded sequence in E.

Since $0 < s < \alpha_n < 1 - s < 1$, it follows from (2.3) that

$$d(x_n, p) \leq d(x_{n-1}, p) + \left\{ \frac{1}{s} G_n + \frac{M}{s} \gamma_n \right\}.$$
(2.4)

Since, by hypothesis,

$$\sum_{n=1}^{\infty} G_n < \infty \quad \text{and} \quad \sum_{n=1}^{\infty} \gamma_n < \infty,$$

we have

$$\left\{\frac{1}{s}\sum_{n=1}^{\infty}G_n + \frac{M}{s}\sum_{n=1}^{\infty}\gamma_n\right\} < \infty.$$

In (2.4) taking infimum over all $p \in F$, we have

$$d(x_n, F) \leq d(x_{n-1}, F) + \left\{\frac{1}{s}G_n + \frac{M}{s}\gamma_n\right\}.$$
(2.5)

It follows from Lemma 1.1 that

$$\lim_{n \to \infty} d(x_n, F) \quad \text{exists.} \tag{2.6}$$

The conclusion (1) is proved.

(II) The proof of conclusion (2).

Necessity

If $\{x_n\}$ converges strongly to some common fixed point $p \in F$, then, we have

$$\liminf_{n \to \infty} d(x_n, F) = 0. \tag{2.7}$$

Sufficiency

If $\liminf_{n\to\infty} d(x_n, F) = 0$, then from Lemma 1.1(2), we have $\lim_{n\to\infty} d(x_n, F) = 0$.

Thus for any $\varepsilon > 0$ there exists a positive integer N_1 such that for $n \ge N_1$,

$$d(x_n, F) < \frac{\varepsilon}{6}.$$
(2.8)

Again since $\sum_{n=1}^{\infty} G_n < \infty$ and $\sum_{n=1}^{\infty} \gamma_n < \infty$ imply that there exist positive integers N_2 and N_3 such that

$$\sum_{j=n}^{\infty} G_j < \frac{s\varepsilon}{6}, \quad \forall n \ge N_2 \tag{2.9}$$

and

$$\sum_{j=n}^{\infty} \gamma_j < \frac{s\varepsilon}{6M}, \quad \forall n \ge N_3 \tag{2.10}$$

Let $N = \max\{N_1, N_2, N_3\}$. It follows from (2.4), that

$$d(x_n, p) \leq d(x_{n-1}, p) + \frac{1}{s}G_n + \frac{M}{s}\gamma_n.$$
 (2.11)

Now, for each $m, n \ge N$, we have

$$d(x_n, x_m) \leq d(x_n, p) + d(x_m, p)$$

$$\leq d(x_N, p) + \frac{1}{s} \sum_{j=N+1}^n G_j + \frac{M}{s} \sum_{j=N+1}^n \gamma_j$$

$$+ d(x_N, p) + \frac{1}{s} \sum_{j=N+1}^n G_j + \frac{M}{s} \sum_{j=N+1}^n \gamma_j$$

$$\leq 2d(x_N, p) + \frac{2}{s} \sum_{j=N+1}^n G_j + \frac{2M}{s} \sum_{j=N+1}^n \gamma_j$$

$$< 2.\frac{\varepsilon}{6} + \frac{2}{s} \cdot \frac{s\varepsilon}{6} + \frac{2M}{s} \cdot \frac{s\varepsilon}{6M}$$

$$< \varepsilon. \qquad (2.12)$$

This implies that $\{x_n\}$ is a Cauchy sequence in E. Thus, the completeness of E implies that $\{x_n\}$ must be convergent. Assume that $\lim_{n\to\infty} x_n = p^*$. Now, we have to show that p^* is a common fixed point of the mappings $\{T_i\}_{i=1}^N$. Indeed, we know that the set $F = \bigcap_{i=1}^N F(T_i)$ is closed. From the continuity of d(x, F) = 0 with $\lim_{n\to\infty} d(x_n, F) = 0$ and $\lim_{n\to\infty} x_n = p^*$, we get

$$d(p^*, F) = 0, (2.13)$$

and so $p^* \in F$, that is, p^* is a common fixed point of the mappings $\{T_i\}_{i=1}^N$. This completes the proof.

If $u_n = 0$, in Theorem 2.1, we can easily obtain the following theorem.

Theorem 2.2: Let (E, d, W) be a complete convex metric space. Let $T_i: E \to E$ be a finite family of asymptotically quasi-nonexpansive in the intermediate sense mappings for i = 1, 2, ..., N such that $F = \bigcap_{i=1}^{N} F(T_i) \neq \emptyset$. Put

$$G_n = \max\left\{0, \sup_{p \in F, n \ge 1} \left(d(T_{n(modN)}^n x_n, p) - d(x_n, p)\right)\right\}.$$

Assume that $\sum_{n=1}^{\infty} G_n < \infty$ and $\{\alpha_n\} \subset (s, 1-s)$ for some $s \in (0, 1)$. Then the sequence $\{x_n\}$ defined by (1.14) converges strongly to a common fixed point p of the mappings $\{T_i\}_{i=1}^N$ if and only if

$$\liminf_{n \to \infty} d(x_n, F) = 0.$$

Remark 2.1: Our results extend and improve the corresponding results of Sun [17], Wittmann [20] and Xu and Ori [21] to the case of more general class of non-expansive and asymptotically quasi-nonexpansive mappings and implicit iteration process with errors considered in this paper.

Remark 2.2: Our results also extend the corresponding results of Kim et. al. [10] and Saluja and Nashine [16] to the case of more general class of asymptotically quasi-nonexpansive mappings considered in this paper.

Remark 2.3: Our results also extend the corresponding results of Zhou and Chang [22] to the case of more general class of asymptotically nonexpansive mappings considered in this paper.

Remark 2.4: The main result of this paper is also an extension and improvement of the well-known corresponding results in [1]-[9] and [12]-[15].

References

- S.S. Chang and J.K. Kim, Convergence theorems of the Ishikawa type iterative sequences with errors for generalized quasi-contractive mappings in convex metric spaces, Applied Mathematics Letters 16(4)(2003), 535-542.
- [2] S.S. Chang, J.K. Kim and D.S. Jin, Iterative sequences with errors for asymptotically quasi-nonexpansive type mappings in convex metric spaces, Archives of Inequality and Applications 2(2004), 365-374.
- [3] Y.J. Cho, H. Zhou and G. Guo, Weak and strong convergence theorems for three step iterations with errors for asymptotically nonexpansive mappings, Computers and Math. with Appl. 47(2004), 707-717.
- [4] H. Fukhar-ud-din and S.H. Khan, Convergence of iterates with errors of asymptotically quasi-nonexpansive mappings and applications, J. Math. Anal. Appl. 328(2) (2007), 821-829.
- [5] M.K. Ghosh and L. Debnath, Convergence of Ishikawa iterates of quasinonexpansive mappings, J. Math. Anal. Appl. 207(1997), 96-103.
- [6] K. Goebel and W.A. Kirk, A fixed point theorem for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 35(1972), 171-174.
- J.U. Jeong and S.H. Kim, Weak and strong convergence of the Ishikawa iteration process with errors for two asymptotically nonexpansive mappings, Appl. Math. Comput. 181(2) (2006), 1394-1401.

Approximating common fixed points for asymptotically quasi-nonexpansive 43

- [8] J.K. Kim, K.H. Kim and K.S. Kim, Convergence theorems of modified threestep iterative sequences with mixed errors for asymptotically quasi-nonexpansive mappings in Banach spaces, PanAmerican Math. Jour. 14(1)(2004), 45-54.
- [9] J.K. Kim, K.H. Kim and K.S. Kim, Three-step iterative sequences with errors for asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. Convex Anal. RIMS Vol. 1365(2004), pp. 156-165.
- [10] J.K. Kim, K.S. Kim and S.M. Kim, Convergence theorems of implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Nonlinear Anal. Convex Anal. RIMS 1484(2006), 40-51.
- [11] W.A. Kirk, Fixed point theorems for non-lipschitzian mappings of asymptotically nonexpansive type, Israel J. Math. 17(1974), 339-346.
- Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 259(2001), 1-7.
- [13] Q.H. Liu, Iterative sequences for asymptotically quasi-nonexpansive mappings with error member, J. Math. Anal. Appl. 259(2001), 18-24.
- [14] W.V. Petryshyn and T.E. Williamson, Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings, J. Math. Anal. Appl. 43(1973), 459-497.
- [15] G.S. Saluja, Convergence of fixed point of asymptotically quasi-nonexpansive type mappings in convex metric spaces, J. Nonlinear Sci. Appl. 1(3) (2008), 132-144.
- [16] G.S. Saluja and H.K. Nashine, Convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings in convex metric spaces, Opuscula Mathematica 30(3) (2010), 331-340.
- [17] Z.H. Sun, Strong convergence of an implicit iteration process for a finite family of asymptotically quasi-nonexpansive mappings, J. Math. Anal. Appl. 286(2003), 351-358.
- [18] W. Takahashi, A convexity in metric space and nonexpansive mappings I, Kodai Math. Sem. Rep. 22(1970), 142-149.
- [19] K.K. Tan and H.K. Xu, Fixed point iteration processes for asymptotically nonexpansive mappings, Proc. Amer. Math. Soc. 122(1994), 733-739.
- [20] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58(1992), 486-491.
- [21] H.K. Xu and R.G. Ori, An implicit iteration process for nonexpansive mappings, Numer. Funct. Anal. Optim. 22(2001), 767-773.

[22] Y. Zhou and S.S. Chang, Convergence of implicit iteration process for a finite family of asymptotically nonexpansive mappings in Banach spaces, Numer. Funct. Anal. Optim. 23(7 and 8)(2002), 911-921.

Adress

G. S. Saluja

Department of Mathematics & Information Technology, Govt. Nagarjuna P.G. College of Science, Raipur - 492010 (C.G.), India $E\text{-mail: saluja_1963@gmail.com}$

44