Idempotents related to
the weighted Moore–Penrose inverse

Dijana Mosić and Dragan S. Djordjević

Abstract
We investigate necessary and sufficient conditions for $aa^\dagger_{e,f} = bb^\dagger_{e,f}$ to hold in rings with involution. Here, $a^\dagger_{e,f}$ denotes the weighted Moore–Penrose inverse of a, related to invertible and Hermitian elements $e, f \in R$. Thus, some recent results from [7] are extended to the weighted Moore–Penrose inverse.

1 Introduction
Let R be an associative ring with the unit 1. An involution $a \mapsto a^*$ in a ring R is an anti-isomorphism of degree 2, that is,

$$(a^*)^* = a, \quad (a + b)^* = a^* + b^*, \quad (ab)^* = b^*a^*.\$$

An element $a \in R$ is selfadjoint (or Hermitian) if $a^* = a$. An element $a \in R$ is regular if there exists some inner inverse (or 1-inverse) $a^{-} \in R$ satisfying $aa^{-}a = a$. The set of all inner inverses (or 1-inverses) is denoted by $a{\{1\}}$. Hence, a is regular if $a{\{1\}} \neq \emptyset$. A reflexive inverse a^{\dagger} of a is a 1-inverse of a such that $a^{\dagger}a^{\dagger} = a^{\dagger}$.

Definition 1.1. Let R be a ring with involution, and let e, f be invertible Hermitian elements in R. The element $a \in R$ has the weighted Moore-Penrose inverse (weighted MP-inverse) with weights e, f if there exists $b \in R$ such that

$$aba = a, \quad bab = b, \quad (eab)^* = eab, \quad (fba)^* = fba.$$

The unique weighted MP-inverse with weights e, f, will be denoted by $a^\dagger_{e,f}$ if it exists [4]. The set of all weighted MP-invertible elements of R with weights e, f, will be denoted by $R^\dagger_{e,f}$. If $e = f = 1$, then the weighted MP-inverse reduces to the ordinary MP-inverse of a, denoted by a^\dagger.

If $a \in R^\dagger_{e,f}$, then $aa^\dagger_{e,f}$ and $a^\dagger_{e,f}a$ are idempotents related to a and $a^\dagger_{e,f}$.

2010 Mathematics Subject Classifications. 16W10, 15A09, 46L05.

Key words and Phrases. Weighted Moore–Penrose inverse; ring with involution.

Received: June 5, 2011

Communicated by Dragana Cvetković Ilić

The authors are supported by the Ministry of Education and Science, Serbia, grant no. 174007.
Notice that if \(R \) is a \(C^* \)-algebra, if \(e, f \) are selfadjoint, invertible and positive elements in a \(C^* \)-algebra \(R \), and if \(a \in R \) is regular, then the following formula holds:

\[
a_{e,f}^\dagger = f^{-1/2}(a e^{1/2} a f^{-1/2})^e 1/2.
\]

Hence, the existence of an inner inverse of \(a \) implies the existence of the MP-inverse and the weighted MP-inverse of \(a \).

However, if \(R \) is a general ring with involution, then we do not have the existence of a square root of a positive element. Hence, in this case we always have to assume that the weighted MP-inverse of \(a \) exists.

Theorem 1.1. Let \(R \) be a ring with involution and let \(e, f \) be invertible Hermitian elements in \(R \). For any \(a \in R_{e,f} \), the following is satisfied:

(a) \((a_{e,f})^\dagger_{f,e} = a;\)
(b) \((a_{e,f}^* e)^\dagger = (a_{e,f}^\dagger)^* e f;\)
(c) \(a_{e,f}^* e = a_{e,f}^\dagger a a_{e,f}^* e = a_{e,f}^* e a a_{e,f}^\dagger;\)
(d) \(a_{e,f}^* e (a_{e,f}^\dagger)^* e f = a_{e,f}^\dagger e;\)
(e) \((a_{e,f}^\dagger)^* e f a_{e,f}^* e = aa_{e,f}^\dagger;\)
(f) \((a_{e,f}^* e a)_{f,f}^\dagger = a_{e,f}^\dagger (a_{e,f}^\dagger)^* e f;\)
(g) \((aa_{e,f}^* e)_{e,e}^\dagger = (a_{e,f}^\dagger)^* e f a_{e,f}^\dagger;\)
(h) \(a_{e,f}^\dagger = (a_{e,f}^* e a)_{f,f}^\dagger a_{e,f}^* e = a_{e,f}^* e (aa_{e,f}^* e)_{e,e}^\dagger;\)
(i) \((a_{e,f}^* e a)_{f,f}^\dagger = a(a_{e,f}^* e a)_{f,f}^\dagger = (aa_{e,f}^* e)_{e,e}^\dagger a.\)

For \(a \in R \) consider two annihilators

\(a^\circ = \{x \in R : ax = 0\}, \quad {^\circ}a = \{x \in R : xa = 0\} \).

Notice that,

\[(a^*)^\circ = a^\circ \Leftrightarrow {^\circ}(a^*) = {^\circ}a, \quad aR = a^* R \Rightarrow Ra = Ra^*.\]

Lemma 1.1. Let \(a \in A^* \), and let \(e, f \) be invertible positive elements in \(A \). Then

\[
a_{e,f}^\dagger = (a_{e,f}^* e a + 1 - a_{e,f}^\dagger a)^{-1} a_{e,f}^* e = a_{e,f}^* e (aa_{e,f}^* e + 1 - a_{e,f}^\dagger a)^{-1}, \tag{1}
\]

\[
a_{e,f}^* e A^{-1} = a_{e,f}^\dagger A^{-1} \text{ and } A^{-1} a_{e,f}^* e = A^{-1} a_{e,f}^\dagger, \tag{2}
\]

\[
(a_{e,f}^* e)^\circ = (a_{e,f}^\dagger)^\circ \text{ and } {^\circ}(a_{e,f}^* e) = {^\circ}(a_{e,f}^\dagger). \tag{3}
\]
Proof. By Theorem 1.1, we can verify
\[
(a^{*,f,e}a + 1 - a^\perp_{e,f}a)a^\perp_{e,f} = a^\perp_{e,f}(aa^{*,f,e} + 1 - aa^\perp_{e,f}),
\]
and
\[
(a^{*,f,e}a + 1 - a^\perp_{e,f}a)^{-1} = a^\perp_{e,f}(a^\perp_{e,f})^{*,f,e} + 1 - a^\perp_{e,f}a
\]
Thus, the part (1) holds and it implies the equalities (2) and (3).

Now, we state an useful result from [7].

Lemma 1.2. [7, Lemma 2.1] Let \(a, b \in \mathcal{R} \) be regular elements.

1. There exist \(a^- \in a[1], b^- \in b[1] \) for which \((1 - bb^-)aa^- = 0 \) if and only if \((1 - bb^-)aa^- = 0 \) for all \(a^- \in a[1], b^- \in b[1] \).

2. There exist \(a^- \in a[1], b^- \in b[1] \) for which \((1 - bb^-)(1 - a^-a) = 0 \) if and only if \((1 - bb^-)(1 - a^-a) = 0 \) for all \(a^- \in a[1], b^- \in b[1] \).

In [7], necessary and sufficient conditions for \(aa^\perp = bb^\perp \) in ring with involution are investigated. In this paper we generalized this results to the weighted Moore-Penrose in rings with involution.

2 Results

A semigroup is a regular, if every elements of that semigroup has an inner generalized inverse. The notion extends to rings also.

In a regular semigroup, the natural partial order is defined by ([2], [5], [6])

\[
a \leq_- b \text{ if } aa^- = ba^- \text{ and } a^-a = a^-b \text{ for some inner inverse } a^- \text{ of } a.
\]

See also [3] for intuitionistic fuzzy matrices. Notice that \(\leq_- \) is a partial order in regular rings.

A semigroup with involution \(x \mapsto x^* \) is proper, if the following implication holds:

\[
a^*a = a^*b = b^*a = b^*b \implies a = b.
\]

Notice that if the semigroup has the zero element 0, then a semigroup is a proper with respect to the involution \(x \mapsto x^* \), if and only if \(a^*a = 0 \implies a = 0 \). The last implication is called \(* \)-cancellability. For example, every element of a \(C^* \)-algebra is \(* \)-cancellable, so every \(C^* \)-algebra is proper (with respect to multiplication).

Drazin [1] presented a partial order on a proper \(* \)-semigroup in the following way

\[
a \leq_\ast b \text{ if } aa^\ast = ba^\ast \text{ and } a^\ast a = a^\ast b.
\]

If \(a \in \mathcal{R} \) is MP invertible, then \(\leq_\ast \) implies \(\leq_- \). Indeed, \(aa^\ast = ba^\ast \Rightarrow aa^\dagger = aa^\ast(a^\dagger)^*a^\dagger = ba^\ast(a^\dagger)^*a^\dagger = ba^\dagger \) and similarly \(a^\ast a = a^\ast b \Rightarrow a^\dagger a = a^\dagger b \).
In this paper we introduce the \(\preceq_{*,e,f} \) as follows:

\[
a \preceq_{*,e,f} b \text{ if } aa^{*,e,f} = ba^{*,e,f} \text{ and } a^{*,e,f} a = a^{*,e,f} b.
\]

Here \(e, f \) are Hermitian invertible elements in a ring \(R \) with involution \(x \mapsto x^* \). We like to see that \(\preceq_{*,e,f} \) is a partial ordering in \(R \).

If \(a \in R_{e,f}^+ \), then \(\preceq_{*,e,f} \) implies \(\preceq_{-} \). Indeed, from \(aa^{*,e,f} = ba^{*,e,f} \) we get

\[
aa^* = aa^{*,e,f}(a_e^{*})^{*,e,f}a_e^* = ba^{*,e,f}(a_e^{*})^{*,e,f}a_e^* = ba^{*,e,f}.
\]

Similarly, \(a^{*,e,f} a = a^{*,e,f} b \) gives \(a_{e,f}^* a = a_{e,f}^* b \).

In the rest of the paper we assume that \(e, f \in R \) are Hermitian end invertible.

The ring \(R \) is \((*, e, f) \)-proper if the following implication holds:

\[
a^{*,e,f} a = a^{*,e,f} b = b^{*,e,f} a = b^{*,e,f} b \implies a = b.
\]

If \(R \) is a \(C^* \)-algebra and \(e, f \) are positive Hermitian elements in \(R \), then \(R \) is \((*, e, f) \)-proper. Indeed, \(a^{*,e,f} a = a^{*,e,f} b = b^{*,e,f} a \) gives \((a-b)^{*,e,f} (a-b) = 0 \) which gives that \(\langle f^1/2 (a-b) \rangle \parallel f^1/2 (a-b) = 0 \). Since every element in \(C^* \)-algebra is \(\cap \)-cancellable, then \(f^1/2 (a-b) = 0 \), that is \(a = b \).

Theorem 2.1. Let \(R \) be: \((*, e, f) \)-proper, \((*, e, f) \)-proper and \((*, f, e) \)-proper. Then \(\preceq_{*,e,f} \) is a partial ordering in \(R \).

Proof. Since \(a \preceq_{*,e,f} a \), then \(\preceq_{*,e,f} \) is reflexive.

From \(a \preceq_{*,e,f} b \) and \(b \preceq_{*,e,f} a \) we get \(a^{*,e,f} a = a^{*,e,f} b \) and \(b^{*,e,f} a = b^{*,e,f} b \). Observe that

\[
a^{*,e,f} a = (a^{*,e,f} b)^{*,e,f} = (a^{*,e,f} b)^{*,e,f} = b^{*,e,f} a
\]

So, we deduce \(a^{*,e,f} a = a^{*,e,f} b = b^{*,e,f} a = b^{*,e,f} b \) which gives \(a = b \).

If \(a \preceq_{*,e,f} b \) and \(b \preceq_{*,e,f} c \), we obtain (4) and, applying (4) for \(b \) and \(c \) instead of \(a \) and \(b \), we have \(b^{*,e,f} b = c^{*,e,f} b \). Further,

\[
c^{*,e,f} (a^{*,e,f} c) = (c^{*,e,f} b) a^{*,e,f} c = b^{*,e,f} (b^{*,e,f} c) = (b^{*,e,f} a) a^{*,e,f} c = a^{*,e,f} a a^{*,e,f} c,
\]

\[
(a^{*,e,f} a) a^{*,e,f} a = b^{*,e,f} (a^{*,e,f} b) a^{*,e,f} a = c^{*,e,f} (b^{*,e,f} a) a^{*,e,f} a = a^{*,e,f} a c^{*,e,f} a a^{*,e,f} a
\]

and

\[
a^{*,e,f} a a^{*,e,f} a = (a^{*,e,f} a a^{*,e,f} a)^{*,e,f} = (a^{*,e,f} a a^{*,e,f} a)^{*,e,f} = a^{*,e,f} a a^{*,e,f} c.
\]

Since \((a^{*,e,f} a)^{*,e,f} = a^{*,e,f} a \) and \((a^{*,e,f} c)^{*,e,f} = c^{*,e,f} a \), by the previous tree equalities, we conclude

\[
(a^{*,e,f} a)^{*,e,f} = (a^{*,e,f} a)^{*,e,f} = (a^{*,e,f} a)^{*,e,f} = (a^{*,e,f} a)^{*,e,f} = a^{*,e,f} a a^{*,e,f} a\]

which implies \(a^{*,e,f} a = a^{*,e,f} c \), because ring \(R \) is \(*, e, f \)-proper. Similarly, by \(*, f, e \)-proper of \(R \), we can verify that \(a a^{*,e,f} = (a a^{*,e,f} f)^{*,f} \) which yields \(a a^{*,e,f} = (a a^{*,e,f} f)^{*,f} = ((a a^{*,e,f})^{*,f})^{*,f} = a c^{*,e,f} \). Thus, \(a^{*,e,f} a = a^{*,e,f} c \) and \(a a^{*,e,f} = c a^{*,e,f} a \) give that \(a \preceq_{*,e,f} c \).

\(\square \)
In the following theorem, we present some equivalent conditions for \(a a_{e,f}^\dagger = b b_{e,f}^\dagger a a_{e,f}^\dagger \) to hold.

Theorem 2.2. Let \(\mathcal{R} \) be a ring with involution, and let \(e, f \) be invertible Hermitian elements in \(\mathcal{R} \). If \(a, b \in \mathcal{R}_{e,f}^\dagger \), then the following conditions are equivalent:

1. \(a a_{e,f}^\dagger = b b_{e,f}^\dagger a a_{e,f}^\dagger \);
2. \(a a_{e,f}^\dagger = a a_{e,f}^\dagger b b_{e,f}^\dagger \);
3. \(a = b b_{e,f}^\dagger a \);
4. \(a_{e,f}^\dagger = a_{e,f}^\dagger b b_{e,f}^\dagger \);
5. \(a^* a_{e,f} = b b_{e,f}^\dagger a^* a_{e,f} \);
6. \(a^* a_{e,f} = a^* a_{e,f} b b_{e,f}^\dagger \);
7. \(a^* a_{e,f} = a^* a_{e,f} b b_{e,f}^\dagger \);
8. \(a a^\dagger = b b^\dagger a a^\dagger \) for all choices \(a^\dagger \in a\{1\}, b^\dagger \in b\{1\} \);
9. \(a a^\dagger = b b^\dagger a a^\dagger \) for some \(a^\dagger \in a\{1\}, b^\dagger \in b\{1\} \);
10. \(a = b b^\dagger a \) for all \(b^\dagger \in b\{1\} \);
11. \(a = b b^\dagger a \) for some \(b^\dagger \in b\{1\} \);
12. \(a a^* a_{e,f} = b b^\dagger a a^* a_{e,f} \) for all \(b^\dagger \in b\{1\} \);
13. \(a a^* a_{e,f} = b b^\dagger a a^* a_{e,f} \) for some \(b^\dagger \in b\{1\} \);
14. \(a a_{e,f}^\dagger \leq b b_{e,f}^\dagger \);
15. \(a a_{e,f}^\dagger \leq_{*,e,e} b b_{e,f}^\dagger \);
16. \(a \leq b b^\dagger a \) for all \(b^\dagger \in b\{1\} \);
17. \(a \leq b b^\dagger a \) for some \(b^\dagger \in b\{1\} \);
18. \(a R \subseteq b b_{e,f}^\dagger a R \);
19. \(a R \subseteq b R \);
20. \(R a_{e,f}^\dagger \subseteq R a_{e,f}^\dagger b b_{e,f}^\dagger \);
21. \(R a_{e,f}^\dagger \subseteq R b_{e,f}^\dagger \).
Proof. (1) ⇔ (2): Applying the involution, the equality $aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ is equivalent to $(e^{-1}eaa^\dagger_{e,f})^* = (e^{-1}e bb^\dagger_{e,f}e^{-1}eaa^\dagger_{e,f})^*$ which is $eaa^\dagger_{e,f}e^{-1} = eaa^\dagger_{e,f}e^{-1} e bb^\dagger_{e,f}e^{-1}$, i.e. $aa^\dagger_{e,f} = aa^\dagger_{e,f}bb^\dagger_{e,f}$.

(1) ⇔ (3): Multiplying (1) by a from the right side we get (3), and multiplying (3) by $a^\dagger_{e,f}$ from the right side we obtain (1).

(2) ⇔ (4): This part can be verified in the same way as (1) ⇔ (3).

(3) ⇔ (5): If we multiply (3) by $a^{\ast,f,e}$ from the right side we obtain (5), and if we multiply (5) by $(a^\dagger_{e,f})^{\ast,e,f}$ from the right side, by Theorem 1.1(d), we have (3).

(2) ⇔ (6): By Theorem 1.1, multiplying (2) by $a^{\ast,f,e}$ from the left side, we obtain (6). Conversely, multiplying (6) by $(a^\dagger_{e,f})^{\ast,e,f}a^\dagger_{e,f}$ from the left side, we get (2).

(6) ⇔ (7): Multiplying (6) by $a^\dagger_{e,f}$ from the left side, we obtain (7) and multiplying (7) by a from the left side, we get (6).

(1) ⇔ (8): The assumption $aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ is equivalent to $1 = bb^\dagger_{e,f}aa^\dagger_{e,f} = 0$. Applying Lemma 1.2, we obtain this equivalence.

(8) ⇔ (9): By Lemma 1.2.

(8) ⇔ (10), (9) ⇔ (11): Obviously.

(10) ⇔ (12): Multiplying (10) by $a^{\ast,f,e}$ from the right side, we obtain (12). On the other hand, multiplying (12) from the right side by $(a^\dagger_{e,f})^{\ast,e,f}$, we get (10).

(11) ⇔ (13): See the previous part.

(1) ⇔ (14): We can easy verify that $(aa^\dagger_{e,f})^\dagger_{e,f} = aa^\dagger_{e,f}$. Now, for $(aa^\dagger_{e,f})^\dagger_{e,f} = (aa^\dagger_{e,f})^\dagger_{e,f}$, we have $aa^\dagger_{e,f} \leq bb^\dagger_{e,f}$ if and only if $aa^\dagger_{e,f}(aa^\dagger_{e,f})^\dagger_{e,f} = bb^\dagger_{e,f}(aa^\dagger_{e,f})^\dagger_{e,f}$ and $(aa^\dagger_{e,f})^\dagger_{e,f}aa^\dagger_{e,f} = (aa^\dagger_{e,f})^\dagger_{e,f}bb^\dagger_{e,f}$, which is equivalent to $aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ and $aa^\dagger_{e,f} = aa^\dagger_{e,f}bb^\dagger_{e,f}$.

(1) ⇔ (15): Since $(aa^\dagger_{e,f})^{\ast,e,f} = e^{-1}(e^{-1}eaa^\dagger_{e,f})^*, e = aa^\dagger_{e,f}$, we show this equivalence in the same way as (1) ⇔ (14).

(10) ⇒ (16): For $a^\dagger = a^\dagger_{e,f}$, we already proved this part.

(16) ⇒ (17): Obviously.

(17) ⇒ (11): Suppose that $a \leq b^\dagger$ for some $b^\dagger \in b\{1\}$. Then, for some a^\dagger, we have $aa^\dagger = bb^\dagger a$, so $a = bb^\dagger a$.

(3) ⇒ (18) ⇒ (19): Obviously.

(19) ⇒ (3): The hypothesis $a\mathcal{R} \subseteq b\mathcal{R}$ gives $a = bx$, for some $x \in \mathcal{R}$. Therefore, $a = bb^\dagger_{e,f}(bx) = bb^\dagger_{e,f}a$.

(4) ⇒ (20) ⇒ (21) ⇒ (4): Similarly as (3) ⇒ (18) ⇒ (19) ⇒ (3).
(4) $aa^\dagger_{e,f} = aa^\dagger_{e,f}bb^\dagger_{e,f}$ and $\forall b^- \in b\{1\} \ w = aa^*,f,e + 1 - bb^- \in R^{-1}$;

(5) $aa^\dagger_{e,f} = aa^\dagger_{e,f}bb^\dagger_{e,f}$ and $\exists b^- \in b\{1\} \ w = aa^*,f,e + 1 - bb^- \in R^{-1}$;

(6) $aa^\dagger_{e,f}bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$, $u = aa^\dagger_{e,f} + 1 - bb^\dagger_{e,f} \in R^{-1}$ and $l = bb^\dagger_{e,f} + 1 - aa^\dagger_{e,f} \in R^{-1}$;

(7) $aa^\dagger_{e,f}bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$, $v = aa^*,f,e + 1 - bb^\dagger_{e,f} \in R^{-1}$ and $k = bb^*,f,e + 1 - aa^\dagger_{e,f} \in R^{-1}$.

Proof. (1) \Rightarrow (2): It is easy to check.

(2) \Leftrightarrow (3): Using Theorem 2.2, $(aa^\dagger_{e,f} + 1 - bb^\dagger_{e,f})(aa^*,f,e + 1 - aa^\dagger_{e,f}) = aa^*,f,e + 1 - bb^\dagger_{e,f}$. By Lemma 1.1, $aa^*,f,e + 1 - aa^\dagger_{e,f} \in R^{-1}$ and then $u \in R^{-1} \Leftrightarrow v \in R^{-1}$.

(3) \Rightarrow (1): Observe that, by Theorem 2.2, $vaa^\dagger_{e,f} = aa^*,f,e = vbb^\dagger_{e,f}$. Since $v \in R^{-1}$, we have $aa^\dagger_{e,f} = bb^\dagger_{e,f}$.

(3) \Rightarrow (4): By Theorem 2.2, we have $aa^*,f,e = bb^\dagger_{e,f}aa^*,f,e = bb^\dagger_{e,f}aa^*,f,e bb^\dagger_{e,f}$. Now, by [8, Proposition 3], $v = aa^*,f,e + 1 - bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^*,f,e bb^\dagger_{e,f} + 1 - bb^\dagger_{e,f} \in R^{-1}$, if and only if $bb^\dagger_{e,f}aa^*,f,e bb^- + 1 - bb^- \in R^{-1}$, $\forall b^- \in b\{1\}$, i.e. $1 - (bb^-)(aa^*,f,e + 1) \in R^{-1}$ for all $b^- \in b\{1\}$, which is equivalent to $1 - bb^- (bb^-aa^*,f,e + 1) = w \in R^{-1}$, $\forall b^- \in b\{1\}$.

(4) \Rightarrow (3) and (5): Obvioulsy.

(5) \Rightarrow (4): From $w = aa^*,f,e + 1 - bb^- = 1 - bb^- (-aa^*,f,e + 1) \in R^{-1}$, we deduce that $1 - (-aa^*,f,e + 1)bb^- = bb^- aa^*,f,e bb^- + 1 - bb^- \in R^{-1}$. Then, by [8, Proposition 3], $bb^- aa^*,f,e bb^- + 1 - bb^- = 1 - (-aa^*,f,e + 1)bb^- \in R^{-1}$, for all $b^- \in \{1\}$, which gives $1 - bb^- (-aa^*,f,e + 1) = bb^- aa^*,f,e + 1 - bb^- = aa^*,f,e + 1 - bb^- \in R^{-1}$.

(1) \Rightarrow (6): Obvioulsy.

(6) \Rightarrow (1): Since, by $aa^\dagger_{e,f}bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$, $bb^\dagger_{e,f}u = bb^\dagger_{e,f}aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}u$ and $u \in R^{-1}$, then $bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ and $l \in R^{-1}$ give $aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$. Thus, $aa^\dagger_{e,f} = bb^\dagger_{e,f}$.

(7) \Rightarrow (3): The equality $aa^\dagger_{e,f}bb^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ implies $aa^\dagger_{e,f}k = aa^\dagger_{e,f}bb^*,f,e = bb^\dagger_{e,f}aa^\dagger_{e,f}k$. Because $k \in R^{-1}$, then $aa^\dagger_{e,f} = bb^\dagger_{e,f}aa^\dagger_{e,f}$ and the condition (3) holds.

References

Address:

Faculty of Sciences and Mathematics, University of Niš, Višegradska 33, P.O. Box 224, 18000 Niš, Serbia

E-mail:

Dijana Mosić: dijana@pmf.ni.ac.rs
Dragan S. Djordjević: dragan@pmf.ni.ac.rs