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Note on stable perturbation of bounded linear
operators on Hilbert spaces

Fapeng Du and Yifeng Xue

Abstract

In this paper, we investigate the equivalence conditions of stable pertur-
bation and characterize (I + T+δT )−1 by the range and null spaces of T and
T̄ . As applications, we give the representations of the Moore–Penrose inverse
of the perturbed operator under stable perturbation on Hilbert spaces and
certain 2× 2 operator matrices.

1 Introduction

Let H,K be Hilbert spaces and let B(H,K) denote the set of all bounded linear
operators from H to K. Put B(H) = B(H,H). For an operator T ∈ B(H, K), let
R(T ) and N(T ) denote the range and the null space of T , respectively. Denote the
adjoint operator of T by T ∗ (in B(K, H)). Let T ∈ B(H,K). Consider an operator
X ∈ B(K,H) which satisfies following equations:

(1) TXT = T (2) XTX = X

(3) (TX)∗ = TX (4) (XT )∗ = XT.

Then we call X is the Moore–Penrose inverse of T , denoted by T+. If X only
satisfies (1) and (2), we call X is the generalized inverse of T , denoted by T+

GI .
we note that T+ is unique and T+

GI is not unique. It is well–known that T has a
generalized inverse or the Moore–Penrose inverse iff R(T ) is closed. When R(T ) is
closed, we have (T+)∗ = (T ∗)+ and

R(T+) = R(T ∗), N(T+) = N(T ∗), R((T+)∗) = R(T ), N((T+)∗) = N(T )

and TT+ = PR(T ), T+T = I − PN(T ), where PR(T ) (resp. PN(T )) is an orthogonal
projection from K (resp. H) onto R(T ) (resp. N(T )) (cf. [1], [5]).

The rank–preserving perturbation of the matrix plays an important role in the
perturbation analysis of least square solution, Moore–Penrose inverses and Drazin
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inverse. There are a lot of results concerning the rank–preserving perturbation of
the matrix. Many of them can be found in [10, 11, 12].

The notation so–called the stable perturbation of an operator on Hilbert spaces
and Banach spaces is introduced by G. Chen and the second author in [2, 3]. When
Hilbert spaces or Banach spaces are of finite dimensional, the stable perturbation
and the rank–preserving perturbation are the same. Later this notation is gen-
eralized to the set of Banach algebras by second author in [16] and to the set of
Hilbert C∗–module by Xu, Wei and Gu in [13]. Using this notation, we give the
estimation of upper bounds about the perturbation of Moore–Penrose inverses and
Drazin inverses in second author’ series of work [2, 3, 4, 14, 15, 16].

In this paper, we continue to study stable perturbation of an operator on Hilbert
spaces. Our aim is to give the representation of the Moore–Penrose inverse of
the perturbed operator under stable perturbation, that is, for δT, T ∈ B(H, K)
with R(T ) closed and I + T+δT invertible in B(H), we will give the expression of
(T + δT )+ when R(T + δT ) ∩R(T )⊥ = {0} and explicit representations of Moore–
Penrose inverses of certain operator matrices on Hilbert spaces.

2 Stable perturbation

Let T̄ = T+δT, T ∈ B(H,K). Recall that T̄ is called to be the stable perturbation of
T if R(T̄ )∩R(T )⊥ = {0}. We have known that if R(T ) is closed, R(T̄ )∩R(T )⊥ = {0}
and ‖T+‖‖δT‖ < 1, then

‖T̄+‖ ≤ ‖T+‖
I − ‖T+‖‖δT‖ ,

‖T̄+ − T+‖
‖T+‖ ≤ 1 +

√
5

2
‖T+‖

I − ‖T+‖‖δT‖
(cf. [4, 15]). The above results generalize Stewart’s corresponding work on matrices.
But if we need not require the condition ‖T+‖‖δT‖ < 1. What is the result under
the hypothesis I + T+δT is invertible in B(H)? we have the following

Proposition 2.1. Let T̄ = T +δT, T ∈ B(H, K) with R(T ) closed and I+T+δT
invertible. Then following conditions are equivalent.

(1) R(T̄ ) is closed and T̄+
GI = T+(I + δTT+)−1 = (I + T+δT )−1T+

(2) R(T̄ ) ∩R(T )⊥ = {0}
(3) N(T̄ )⊥ ∩N(T ) = {0}
(4) T̄ (I + T+δT )−1(I − T+T ) = 0

(5) (I − TT+)(I + δTT+)−1T̄ = 0

(6) (I + δTT+)−1T̄ maps N(T ) into R(T )

(7) (I − TT+)δT (I − T+T ) = (I − TT+)δT (I + T+δT )−1T+δT (I − T+T )

(8) (I + δTT+)−1R(T̄ ) = R(T )
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(9) (I + T+δT )−1N(T ) = N(T̄ )

(10) (I − T+T )N(T̄ ) = N(T ).

Proof. Using similar methods appeared in [4, 14, 15, 16], we can obtain the equiv-
alence from (1) to (7).

(9)⇒(4) is clear for R(I − T+T ) = N(T ).
(4)⇒(9) T̄ (I+T+δT )−1(I−T+T ) = 0 implies that (I+T+δT )−1N(T ) ⊂ N(T̄ ).

Now let ξ ∈ N(T̄ ). Then

(−I + T+T )ξ + (I + T+δT )ξ = 0

and hence ξ = (I + T+δT )−1(I − T+T )ξ, that is, N(T̄ ) ⊂ (I + T+δT )−1N(T ).
(5)⇒(8) Condition (5) indicates that (I + δTT+)−1R(T̄ ) ⊂ R(T ). Since

(I + δTT+)−1T̄ T+T = (I + δTT+)−1(I + δTT+)T = T,

we have (I + δTT+)−1R(T̄ ) ⊃ R(T ). The assertion follows.
(9)⇒(10) Note that (I − T+T )(I + T+δT )−1 = I − T+T . Thus,

N(T ) = (I − T+T )N(T ) = (I − T+T )(I + T+δT )−1N(T ) = (I − T+T )N(T̄ ).

(10)⇒(4) (I − T+T )N(T̄ ) = N(T ) implies that for any ξ ∈ N(T ), there is
η ∈ N(T̄ ) such that ξ = (I − T+T )η. From η ∈ N(T̄ ), we have Tη = −δTη and
consequently, ξ = (I + T+δT )η. Therefore, T̄ (I + T+δT )−1ξ = 0.

Corollary 2.2. Let T̄ = T + δT, T ∈ B(H, K) with R(T ) closed and I + T+δT
invertible. If dim N(T̄ ) = dim N(T ) < +∞ or dim R(T̄ ) = dim R(T ) < +∞ or
dim N(T̄ ∗) = dim N(T ∗) < +∞, then T̄ is the stable perturbation of T .

Proof. Let ξ ∈ N(T̄ ). Then δTξ = −Tξ. Thus,

(I + T+δT )ξ = (I − T+T )ξ ∈ N(T ),

i.e., N(T̄ ) ⊂ (I + T+δT )−1N(T ). We conclude that N(T̄ ) = (I + T+δT )−1N(T )
when dim N(T̄ ) = dim N(T ) < +∞. So, R(T̄ ) ∩R(T )⊥ = {0} by Proposition 2.1.

We have known that (I + δTT+)−1R(T̄ ) ⊃ R(T ) in the proof of (5)⇒(8) of
Proposition 2.1. So dimR(T̄ ) = dim R(T ) < +∞ implies that (I+δTT+)−1R(T̄ ) =
R(T ) and hence R(T̄ ) ∩R(T )⊥ = {0} by Proposition 2.1.

We have R(T̄ ∗)∩R(T ∗)⊥ = {0} when dim N(T̄ ∗) = dim N(T ∗) < +∞ by above
argument. Thus, R(T̄ ∗) is closed by Proposition 2.1. Since R(T̄ ∗) = N(T̄ )⊥ and
R(T ∗) = N(T )⊥, it follows from Proposition 2.1 that R(T̄ ) ∩R(T )⊥ = {0}.

Proposition 2.3. Let T̄ = T +δT, T ∈ B(H,K) with R(T ) closed and I+T+δT
invertible. Suppose that R(T̄ ) ∩R(T )⊥ = {0}, then T̄+ exist and

‖T̄+‖ ≤ ‖(I +T+δT )−1‖‖T+‖, ‖T̄+−T+‖ ≤ 1 +
√

5
2

‖(I +T+δT )−1‖‖T+‖2‖δT‖



50 Fapeng Du and Yifeng Xue

Proof. Since I + T+δT is invertible in B(H) and R(T̄ ) ∩ R(T )⊥ = {0}, it follows
from Proposition 2.1 that R(T̄ ) is closed and (I − T+T )N(T̄ ) = N(T ). Note that
I + T+δT is invertible in B(H) implies that N(T )⊥ ∩N(T̄ ) = {0} by Proposition
2.4. So (I − T+T )|N(T̄ ) : N(T̄ ) → N(T ) is a bijective bounded linear operator. By
the proof of [7] (I-theorem 6.34)

‖(I − T+T )− (I − T̄+T̄ )‖ = ‖(I − (I − T+T ))(I − T̄+T̄ )‖
= ‖(I − (I − T̄+T̄ ))(I − T+T )‖
≤ δ(N(T̄ ), N(T )) ≤ ‖T+‖‖δT‖

or
‖T+T − T̄+T̄‖ ≤ δ(N(T ), N(T̄ ) ≤ ‖T̄+‖‖δT‖

Thus
‖T̄+T̄ − T+T‖ ≤ min{‖T+‖‖δT‖, ‖T̄+‖‖δT‖}.

Similarly, we also have

‖T̄ T̄+ − TT+‖ ≤ min{‖T+‖‖δT‖, ‖T̄+‖‖δT‖}
Then using the proof of Proposition 7 in [15],we have

‖T̄+ − T+‖ ≤ 1 +
√

5
2

‖T̄+‖‖T+‖‖δT‖

≤ 1 +
√

5
2

‖(I + T+δT )−1‖‖T+‖2‖δT‖

From Proposition 2.1 and 2.3 we see that the invertibility of I + T+δT is very
important. How to characterize it? We have the following propositions:

Proposition 2.4. Let T̄ = T + δT, T ∈ B(H, K) with R(T ) closed.

(1) If I + T+δT is invertible in B(H). Then N(T )⊥ ∩N(T̄ ) = {0} and R(T̄ )⊥ ∩
R(T ) = {0}

(2) If R(T̄ )∩R(T )⊥ = {0} and N(T )⊥ ∩N(T̄ ) = {0}, then N(I + T+δT ) = {0};
(3) If R(T̄ )⊥ ∩R(T ) = {0} and N(T ) ∩N(T̄ )⊥ = {0}, then R(I + T+δT ) = H.

Proof. (1) Let x ∈ N(T )⊥ ∩N(T̄ ), then T̄ x = 0, and T+Tx = x. Since

0 = T+T̄ x = (T+T + T+δT )x = (T+T − I + I + T+δT )x = (I + T+δT )x

we have x = 0.
I + T+δT is invertible implies that I + (δT )∗(T ∗)+ is invertible. So by above

argument, we get that N(T ∗)⊥∩N(T̄ ∗) = {0}. Consequently, R(T̄ )⊥∩R(T ) = {0}
for R(T ) = N(T ∗)⊥, R(T̄ )⊥ = N(T̄ ∗).
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(2) Let x ∈ N(I + T+δT ), i.e., x + T+δTx = 0. Thus

0 = T+Tx + T+δTx + (I − T+T )x = T+T̄ x + (I − T+T )x.

This indicates that T+T̄ x = 0 and (I − T+T )x = 0 since R(T̄ ) ∩ R(T )⊥ = {0}
and T̄ x ∈ N(T+) = R(T )⊥ . We have T̄ x = 0, i.e. x ∈ N(T̄ ). It follows from
x = T+Tx and N(T )⊥ ∩N(T̄ ) = {0} that x = 0.

Let x ∈ N(I + δTT+) and put x1 = TT+x, x2 = (I − TT+)x ∈ R(T )⊥, then

(T + δT )T+x1 + x2 = x1 + x2 + δTT+x1 = 0

and hence T̄ T+x1 = x2 = 0 for R(T̄ )⊥ ∩ R(T ) = {0}. Then from T+x1 ∈ N(T̄ ) ∩
N(T )⊥ = {0} and x1 = TT+x1, we have x = 0.

(3) To prove R(I + T+δT ) = H, it need only to show that N(I +(δT )∗(T ∗)+) =
{0}. By the above argument, we need check that

R(T̄ ∗) ∩R(T ∗)⊥ = {0}, N(T ∗)⊥ ∩N(T̄ ∗) = {0}.

But this can be deduced from R(T̄ ∗) ⊂ N(T̄ )⊥, R(T ∗)⊥ = N(T ), N(T ∗)⊥ = R(T )
and N(T̄ ∗) = R(T̄ )⊥.

Let V be a subspace in H and PV be the orthogonal projection from H onto V .

Proposition 2.5. Let T̄ , T ∈ B(H, K). Set n(T, T̄ ) = I−PN(T )−PN(T̄ ), r(T, T̄ )
= I − PR(T ) − PR(T̄ ). Then

(1) N(n(T, T̄ )) = {0} iff N(T̄ )⊥ ∩N(T ) = {0} and N(T )⊥ ∩N(T̄ ) = {0};
(2) N(r(T, T̄ )) = {0} iff R(T̄ )⊥ ∩R(T ) = {0} and R(T )⊥ ∩R(T̄ ) = {0}.

Proof. We only prove (1) since the proof of (2) is the same as of (1).
If N(n(T, T̄ )) = {0}, then ∀x ∈ N(T̄ )⊥ ∩N(T ),

(I − PN(T ) − PN(T̄ ))x = PN(T )x− PN(T̄ )⊥x = 0 ⇒ x = 0

∀y ∈ N(T )⊥ ∩N(T̄ ),

(I − PN(T ) − PN(T̄ ))y = PN(T )⊥y − PN(T̄ )y = 0 ⇒ y = 0

Thus we have N(T̄ )⊥ ∩N(T ) = {0}, N(T )⊥ ∩N(T̄ ) = {0}.
Conversely, if N(T̄ )⊥ ∩N(T ) = {0}, N(T )⊥ ∩N(T̄ ) = {0}, then

(I − PN(T ) − PN(T̄ ))x = 0 ⇒ PN(T̄ )⊥x = PN(T )x ∈ N(T̄ )⊥ ∩N(T ) = {0}

hence
PN(T̄ )⊥x = PN(T )x = 0 ⇒ x ∈ N(T )⊥ ∩N(T̄ ) = {0}.

So N(n(T, T̄ )) = {0}.
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Remark 2.6. If H, K are finite dimensional Hilbert spaces, then

N(T̄ )⊥ ∩N(T ) = {0}, N(T )⊥ ∩N(T̄ ) = {0}
if and only if I − PN(T ) − PN(T̄ ) is invertible.

Corollary 2.7. Let T̄ = T + δT, T ∈ B(H, K) with R(T ) closed. Assume that
δT is a compact operator. If both n(T, T̄ ) and r(T, T̄ ) are injective, then I + T+δT
is invertible in B(H).

Proof. By proposition 2.4 and proposition 2.5, N(n(T, T̄ )) = {0} and N(r(T, T̄ )) =
{0} imply that N(I + T+δT ) = {0} and R(I + T+δT ) = H. Since δT is a compact
operator, it follows from [8, Theorem 4.23] that R(I + T+δT ) is closed. Thus,
I + T+δT is invertible in B(H).

Corollary 2.8. Let H, K be finite dimensional Hilbert spaces and let T̄ =
T + δT, T ∈ B(H,K). Then I + T+δT is invertible and rank (T̄ ) = rank (T ) iff

R(T̄ ) ∩R(T )⊥ = {0}, N(T )⊥ ∩N(T̄ ) = {0}.
Proof. If I +T+δT is invertible and rank (T̄ ) = rank (T ), then R(T̄ )∩R(T )⊥ = {0}
by Corollary 2.2. By Proposition 2.4 (1), that I + T+δT is invertible means that
N(T )⊥ ∩N(T̄ ) = {0}.

Conversely, assume that

R(T̄ ) ∩R(T )⊥ = {0}, N(T )⊥ ∩N(T̄ ) = {0}.
Then by Proposition 2.4 (2), N(I +T+δT ) = {0} and so that I +T+δT is invertible
since H is finite dimensional. Thus, (I +T+δT )−1N(T ) = N(T̄ ) by Proposition 2.1
and consequently, rank (T̄ ) = rank (T ).

3 Some representations of the Moore–Penrose in-
verses of operators

Lemma 3.1. Let A ∈ B(H, K). Suppose that there is B ∈ B(K, H) such that
ABA = B and BAB = B. Then A+ = −(I − P − P ∗)−1B(I −Q−Q∗)−1, where
P = I −BA and Q = AB.

Proof. It is easy to check that P and Q are idempotent operators with R(P ) = N(A)
and R(Q) = R(A). By [4, Lemma 3], the orthogonal projections from H onto N(A)
and K onto R(A) are

O(P ) = −P (I − P − P ∗)−1, O(Q) = −Q(I −Q−Q∗)−1

respectively. Moreover, by [4, Lemma 4],

A+ = (I −O(P ))BO(Q) =− (I + P (I − P − P ∗)−1)BQ(I −Q−Q∗)−1

=− (I − P ∗)(I − P − P ∗)−1B(I −Q−Q∗)−1

=(P + P ∗ − I)−1(I − P )B(I −Q−Q∗)−1

=(P + P ∗ − I)−1B(I −Q−Q∗)−1.
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Let T ∈ B(H, K) with R(T ) closed. Put

K1 = (TT+)K, K2 = (I − TT+)K,

H1 = (T+T )H, H2 = (I − T+T )H,

δ1 = TT+δT T+T, δ2 = TT+δT (I − T+T ),

δ3 = (I − TT+)δT T+T, δ4 = (I − TT+)δT (I − T+T ).

Then δ1, δ2, δ3, δ4 can be regarded as operators in B(H1,K1), B(H2,K1), B(H1,K2)

and B(H2,K2) respectively, and δT can be expressed as δT =
(

δ1 δ2

δ3 δ4

)
. Put

T1 = T |H1 . Then T1 ∈ B(H1,K1) with T−1
1 ∈ B(K1,H1). Moreover,

T =
(

T1 0
0 0

)
, T+ =

(
T−1

1 0
0 0

)
.

For convenience, let I1 (resp. I2) denote the identity operator on H1 and K1

(resp. H2 and K2). Thus, from

I + T+δT =
(

I1 + T−1
1 δ1 0

0 I2

)
,

we get that I + T+δT is invertible in B(H) iff I1 + T−1
1 δ1 is invertible in B(H1).

Theorem 3.2. Let T̄ = T + δT, T ∈ B(H, K) with R(T ) closed and I + T+δT
invertible in B(H). Suppose that R(T̄ ) ∩ R(T )⊥ = {0}. Then R(T̄ ) is closed

and T̄+ has the form T̄+ =
(

T̄1 T̄2

T̄3 T̄4

)
, where ∆1 = δ3(I1 + T−1

1 δ1)−1T−1
1 , ∆2 =

(I1 + T−1
1 δ1)−1T−1

1 δ2 and

T̄1 =(I1 + ∆2∆∗
2)
−1(I1 + T−1

1 δ1)−1T−1
1 (I1 + ∆∗

1∆1)−1

T̄2 =(I1 + ∆2∆∗
2)
−1(I1 + T−1

1 δ1)−1T−1
1 ∆∗

1(I2 + ∆1∆∗
1)
−1

T̄3 =(I2 + ∆∗
2∆2)−1∆∗

2(I1 + T−1
1 δ1)−1T−1

1 (I1 + ∆∗
1∆1)−1

T̄4 =(I2 + ∆∗
2∆2)−1∆∗

2(I1 + T−1
1 δ1)−1T−1

1 ∆∗
1(I2 + ∆1∆∗

1)
−1.

Proof. By Proposition 2.1, R(T̄ ) ∩R(T )⊥ = {0} implies that R(T̄ ) is closed and

T̄+
GI = (I + T+δT )−1T+ =

(
(I1 + T−1

1 δ1)−1T−1
1 0

0 0

)
.

Set Q̄ = T̄ T̄+
GI =

(
I1 0
∆1 0

)
, P̄ = I − T̄+

GI T̄ =
(

0 −∆2

0 0

)
. Then

(I − Q̄− Q̄∗)−1 =−
(

I1 ∆∗
1

∆2 −I2

)−1

= −
(

(I1 + ∆∗
1∆1)−1 ∆∗

1(I2 + ∆1∆∗
1)
−1

(I2 + ∆1∆∗
1)
−1∆1 −(I2 + ∆1∆∗

1)
−1

)
,

(P̄ + P̄ ∗ − I)−1 =−
(

I1 ∆2

∆∗
2 −I2

)−1

= −
(

(I1 + ∆2∆∗
2)
−1 ∆2(I2 + ∆∗

2∆2)−1

(I2 + ∆∗
2∆2)−1∆∗

2 −(I2 + ∆∗
2∆2)−1

)
.
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Thus, Using the expression T̄+ = (P̄ +P̄ ∗−I)−1T̄+
GI(I−Q̄−Q̄∗)−1 given in Lemma

3.1, we can get the result.

Theorem 3.3. Let T̄ =
(

A B
C D

)
be operator matrix from H = H1⊕H2 to K =

K1 ⊕K2 with R(A) and R(D) closed, where A ∈ B(H1,K1), B ∈ B(H2, K1), C ∈
B(H1,K2), D ∈ B(H2,K2). If I − D+CA+B is invertible and (I − AA+)B =

0, (I −DD+)C = 0, then T̄+ =
(

T11 T12

T21 T22

)
, here

∆ = (I −D+CA+B)−1

Θ = (P11 − P12P
−1
22 P21)−1

P11 = I − (I + A+B∆D+C)(I −A+A)− (I −A+A)(I + A+B∆D+C)∗

P12 = A+B∆(I −D+D) + (I −A+A)(∆D+C)∗

P21 = ∆D+C(I −A+A) + (I −D+D)(A+B∆)∗

P22 = I −∆(I −D+D)− (I −D+D)∆∗

T11 = Θ(A+ + A+B∆D+CA+) + ΘP12P
−1
22 ∆D+CA+

T12 = −ΘA+B∆D+ −ΘP12P
−1
22 ∆D+

T21 = −P−1
22 P21Θ(A+ + A+B∆D+CA+)− (P−1

22 + P−1
22 P21ΘP12P

−1
22 )∆D+CA+

T22 = P−1
22 P21ΘA+B∆D+ + (P−1

22 + P−1
22 P21ΘP12P

−1
22 )∆D+

Proof. Let

T =
(

A 0
0 D

)
, δT =

(
0 B
C 0

)

then T̄ = T + δT . Clearly,

T+ =
(

A+ 0
0 D+

)
, I + T+δT =

(
I A+B

D+C I

)

Since
(

I 0
−D+C I

)(
I A+B

D+C I

)
=

(
I A+B
0 I −D+CA+B

)

then I +T+δT is invertible when I−D+CA+B is invertible. It is easy to check that
R(T̄ ) ∩R(T )⊥ = R(T̄ ) ∩N(T+) = {0} when (I −AA+)B = 0, (I −DD+)C = 0.

So, by Proposition 2.1,

T̄+
GI = (I + T+δT )−1T+ =

(
A+ + A+B∆D+CA+ −A+B∆D+

−∆D+CA+ ∆D+

)
,
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where ∆ = (I −D+CA+B)−1. Let Q̄ = T̄ T̄+
GI and P̄ = I − T̄+

GI T̄ . Then

(I −Q−Q∗)−1 =
(

I − 2AA+ 0
0 I − 2DD+

)

P =
(

(I + A+B∆D+C)(I −A+A) A+B∆(D+D − I)
∆D+C(A+A− I) ∆(I −D+D)

)

(I − P − P ∗)−1 =
(

P11 P12

P21 P22

)−1

=
(

I 0
−P−1

22 P21 I

)(
(P11 − P12P

−1
22 P21)−1 0

0 P−1
22

)(
I −P12P

−1
22

0 I

)

=
(

Θ −ΘP12P
−1
22

−P−1
22 P21Θ P−1

22 + P−1
22 P21ΘP12P

−1
22

)
,

where

Θ = (P11 − P12P
−1
22 P21)−1

P11 = I − (I + A+B∆D+C)(I −A+A)− (I −A+A)(I + A+B∆D+C)∗

P12 = A+B∆(I −D+D) + (I −A+A)(∆D+C)∗

P21 = ∆D+C(I −A+A) + (I −D+D)(A+B∆)∗

P22 = I −∆(I −D+D)− (I −D+D)∆∗.

Thus, by using Lemma 3.1, we can obtain the assertion.
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