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Stability of systems of bi-quadratic and additive-cubic
functional equations in Fréchet spaces

M. Eshaghi Gordji, A. Javadian and J. M. Rassias

Abstract

In this paper, we achieve the generalized Hyers-Ulam stability of the sys-
tem of bi-quadratic functional equations

f(wl + vay) + f(l'l - l'27y) = zf(xlvy) + Qf(any)a

f(x,y1 +ye) + f(x,y1 —y2) = 2f (2, 91) + 2f (2, y2)

and the system of additive-cubic functional equations

flzr +x2,y) = f(21,9) + fz2,9),

fz,2y1 +y2) + fz,2y1 — y2) = 2f (z, 351 + y2)
+2f(x,y1 — y2) + 12f(z, 1)

in Fréchet spaces.

1 Introduction

The stability problem of functional equations originated from the following ques-
tion of Ulam [28] in 1940, concerning the stability of group homomorphisms: Let
(G1,.) be a group and let (Ga,*) be a metric group with the metric d(.,.). Given
€ > 0, does there exist a § > 0, such that if a mapping h : G; — G- satisfies
the inequality d(h(z.y), h(x) * h(y)) < ¢ for all z,y € Gy, then there exists a ho-
momorphism H : Gy — G2 with d(h(x), H(x)) < € for all x € G;? In the other
words, under what condition does there exist a homomorphism near an approximate
homomorphism? The concept of stability for functional equation arises when we
replace the functional equation by an inequality which acts as a perturbation of the
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equation. In 1941, D. H. Hyers [8] gave the first affirmative answer to the question
of Ulam for Banach spaces. Let f : E — E’ be a mapping between Banach spaces
E and E’ such that

If(x+y) = fz) - fyl <6

for all z,y € F, and for some § > 0. Then there exists a unique additive mapping
T : E — E’ such that

1f(z) =T ()] <6
for all x € E. Moreover if t — f(tz) is continuous in real ¢ for each fixed z € E,
then T is linear. This new concept is known as Hyers-Ulam stability of functional
equations (see [1,2], [4-9], [17-19] and [26]).
The functional equation

flx+y)+ flx—y) =2f(x) +2f(y). (1.1)

is related to symmetric bi-additive function. It is natural that this equation is
called a quadratic functional equation. In particular, every solution of the quadratic
equation (1.1) is said to be a quadratic function. It is well known that a function f
between real vector spaces is quadratic if and only if there exists a unique symmetric
bi-additive function B such that f(x) = B(x,x) for all z (see [1,11]). The bi-additive
function B is given by

Bla.y) = ~(flz +y) - f(z — ) (1.2)

4

The stability problem for the quadratic functional equation (1.1) was proved by
Skof for functions f : A — B, where A is normed space and B Banach space (see
[27], [14-17] and [20-25]). Cholewa [2] noticed that the Theorem of Skof is still true
if relevant domain A is replaced by an abelian group. In the paper [3] , Czerwik
proved the stability of the equation (1.1). Grabiec [6] has generalized the above
mentioned result.

The oldest cubic functional equation, and was introduced by J. M. Rassias [12-
13] (in 2000-2001):

flz+2y) +3f(x) =3f(x+y) + flz —y) +6£(y).

Jun and Kim [10] introduced the following cubic functional equation

fRr+y)+ f2z —y)=2f(z+y) +2f(z —y) +12f(x) (1.3)

and they established the general solution and the stability for the functional equa-
tion (1.3). The function f(z) = 2® satisfies the functional equation (1.3), which
is thus called a cubic functional equation. Every solution of the cubic functional
equation is said to be a cubic function. Jun and Kim proved that a function f
between real vector spaces X and Y is a solution of (1.3) if and only if there exists
a unique function C': X x X x X — Y such that f(z) = C(z,z,z) for all z € X
and C'is symmetric for each fixed one variable and is additive for fixed two variables
(see also [12, 13]).
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Let X, Y and Z be vector spaces on R or C. We say that a mapping f : X XY —
Z is quartic if f satisfies one of the following systems of functional equations:

f(xy + x2,y) + fl2r — 22,y) = 2f(21,9) + 2f (22,9)
(1.4)

f(mvyl + y2) + f(mayl - y2) = 2f(£7y1) + 2f(x,y2),

flzr +22,y) = f(z1,9) + f(22,9),

f(x,2y1 +y2) + f(2, 201 — y2) = 2f (2,91 + y2)
+2f (@, y1 — y2) + 12f(x,y1)

for all z,z1,20 € X and y,y1,y2 € Y. It is easy to see that the functions f,g :
R x R — R defined by f(z,y) = 2%y?, g(x,y) = xy? are quartic mappings which
satisfying (1.4), (1.5), respectively. As another example, let A be a normed algebra
and let X be a normed left A—module. Define f,g : A x X — X by f(a,z) =
llall?[|x||?, g(a, z) = a3x. One can show that f, g satisfying (1.4), (1.5), respectively.

In functional analysis and related areas of mathematics, Fréchet spaces, named
after Maurice Fréchet, are special topological vector spaces. They are generaliza-
tions of Banach spaces (normed vector spaces which are complete with respect to
the metric induced by the norm).

A topological vector space X is a Fréchet space if and only if it satisfies the
following three properties:

a) it is complete as a uniform space

b) it is locally convex

¢) its topology can be induced by a translation invariant metric, i.e. a metric
d: X x X — R such that d(z,y) = d(x + a,y + a) for all a,z,y in X. This means
that a subset U of X is open if and only if for every u in U there exists an e > 0
such that {v : d(u,v) < e} is a subset of U. Note that there is no natural notion of
distance between two points of a Fréchet space: many different translation-invariant
metrics may induce the same topology.

The vector space C*°([0,1]) of all infinitely often differentiable functions f :
[0,1] — R becomes a Fréchet space with the seminorms || f||x = sup{|f*)(z)| : = €
[0,1]} for every integer k > 0. Here, f(*) denotes the k-th derivative of f, and
JO=.

More generally, if M is a compact C'°° manifold and B is a Banach space, then
the set of all infinitely-often differentiable functions f : M — B can be turned into
a Fréchet space; the seminorms are given by the suprema of the norms of all partial
derivatives.

The space w of real valued sequences becomes a Fréchet space if we define
the k-th semi-norm of a sequence to be the absolute value of the k-th element
of the sequence. Convergence in this Fréchet space is equivalent to element-wise
convergence.
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Not all vector spaces with complete translation-variant metrics are Fréchet
spaces. An example is L, with p < 1. Of course, such spaces fail to be locally
convex.

Fréchet spaces are studied because even though their topological structure is
more complicated due to the lack of a norm, many important results in functional
analysis, like the open mapping theorem and the Banach-Steinhaus theorem, still
hold.

2  Stability of system (1.4)

In this section, we investigate the generalized Hyers—Ulam stability problem for
system of functional equations (1.4).

Throughout this section, X and Y will be a real vector space and a real Fréchet
space by metric d, respectively. Let f : X x X — Y be a function then we define
Af,DfSXXXXX—)Rby

Dy (w1, 220,y) = d(f (21 + 22,y) + f(21 — 22,¥), 2f (21,9) + 2f (22,9)),

Ap(z,y1,92) = d(f(z,y1 +y2) + f(w,y1 —y2), 2f (2, 51) + 2f (7, y2))
for all x,x1,x2,y,y1,y2 € X.

Theorem 2.1. Let s € {—1,1} be fizred. Let ¢, : X x X x X — [0,00) be mappings
satisfying
i ¢(2S(i+s)1}7 25iy’ 2szy) 4 ¢(2Si(£, 25i$7 2szy)

16 =%

i=0
forallz,y € X, and

w(QSn.’L', 2sny, 2snz) + ¢(2snm7 2sny7 anz)

li =0
e 1650
forallz,y,ze€ X. If f: X x X =Y is a mapping such that
Dy(z1,22,y) < ¢(21,22,9), (2.1)
Af(xvyla yZ) S w(x7y1ay2) (22)

for all z,y,x1,x2,y2,y2 € X, then there exists a unique quartic mapping T : X X
X =Y satisfying (1.4) and

1 [e%S) 1/)(2s(i+s).%‘, ZSiy, 2sz‘y) 1 00 ¢(23i1‘, 2$ix7 2siy)
d T < : — .
(f($7y)7 (m,y)) = 165451 ; 165¢ + 48 ; 16s% ’

(2.3)
forall x,y € X.
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Proof. Putting 1 = 22 = z in (2.1), we get

d(f(2z,y),4f(z,y)) < é(z,2,y). (2.4)
Replacing y1,y2 by y in (2.2), we obtain
d(f(z,2y),4f(z,y)) < ¥(z,y,y). (2.5)
Replacing z by 2z in (2.5), yields
d(f(2x,2y),4f (2, y)) < ¥(2z,y,y). (2.6)

Combining (2.4) and (2.6), we lead to

(=

16f(2x 2y), f(z,y)) <

B,2,9) + (20, 1.0). (27

N

From inequality (2.7), we use iterative methods and induction on n to prove our
next relation:

n—1

- =N R
d( 165"f(28 ’x,2‘"y) f(;[; y)) - Z o (252,25 %, 2%%y)
1 = 1 S
+ s+1 Z 16Si1/)(21+51x3231y7251y)' (28)
2 =0

Divide (2.8) by 16°™ and replace & by 2°™x to obtain that

1 s(m+n s(m4-n 1 om o
d(wf(?( ! )x’2 (mt )y)v 16sm f(25 M2, 2°y))
1 nol 1 ‘ _ |
< E Z W¢(25(m+z)x, 28(m+z)z’ 25(m+1)y)
6°( z+m>¢ (21 st g gslmtily gslmtiy). (2.9)

=0

This shows that { g f(2°"x,2°"y)} is a Cauchy sequence in Y by taking the limit
m — oo. Since Y is a Fréchet space, it follows that the sequence { g f (25", 25"y) }
converges. We define T': X x X — Y by T(z,y) = limp o0 15 f(2°"2,2°"y) for
all z,y € X. It follows from (2.1) that

1 1
DT(xlv X2, y) = hm ﬁDf(2snx1, 2577,3327 QSny) S hm W¢(2snxla 28nx2’ any) = 0

for all z1, 22,y € X. Also it follows from (2.2) that

Ar(z,y1,92) = lim FAf(Z“’" 271,27 yp) < lim Faﬁ(?s” ;271,27 y2) = 0
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for all z,y1,y2> € X. This means that T is bi-quadratic. It remains to show that
T is unique. Suppose that there exists another bi-quadratic mapping 7" : X X
X — Y which satisfies (1.4) and (2.3). Since 7=7T(2°"2,2""y) = T(z,y), and

wlm T (252, 25"y) = T'(x,y) for all z,y € X, we conclude that

1

1657
1

AT, 27y, (27, 27))
+d(f(25nl' 2877, ) T/(2snx 2sn ))

1 1/} 25 n+i+s) T 23(n+1)y 2s(n+z) )
Z 16s(n+14)

d(T(Z‘, y)’ T/(x’ y)) = d(T(2sn'rv 25ny)7 T,(anl'? zsny))

<

1

1 oo (b 2s(n+z)x,23(n+z)m723(n+i)y)
45 2 16(nti)

=0

for all z,y € X. By letting n — oo in this inequality, it follows that T'(z,y) =
T'(z,y) for all 2,y € X, which gives the conclusion. O

Corollary 2.2. Let s € {—1,1} be fired. Let X be a vector space and Y be a
Banach space. Suppose the mappings ¢, : X x X x X — [0,00) satisfying

Z (), 20y, 2%7y) 4 g(2%, 2%, 2°7y)

165 <0

forallz,y € X, and

lim w(QGHx’ 28ny, 23nz) + ¢(2$nx, 23ny7 2@712,) _0
s 00 1657
forallz,y,ze X. If f: X x X =Y is a mapping such that
[f(z1 +22,y) + (21 — 22,y) — 2f(21,y) + 2 (22, y)|| < D21, 22,9),

I f(z,y1 +y2) + flo,y1 —y2) — 2f (2, y1) — 2f (2, 92) || < ¥(z,y1,92)

for all x,y,x1,x9,y2,y2 € X, then there exists a unique bi-quadratic mapping T :
X x X =Y satisfying (1.4) and

Z 1/) 2S(i+s)(E, 2siy7 2siy) N 1 00 ¢(25i(E, 231'1.7 QSiy)

— < - — -
||f($,y) (IE y || 1651 45 : 1651

forall x,y € X.
Proof. Tt follows from theorem 2.1. by putting d(a,b) = |ja—b| foralla,b €Y. O
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We are going to investigate the following stability problem for system of func-
tional equations (1.4).

Corollary 2.3. Let € > 0,p < 4, and let X,Y be a normed space a Banach space,
respectively. If f: X x X —Y is a mapping such that

Mazx{||f(z,y1 +vy2) + f(z, 91 —y2) — 2f (@, 91) — 2f (2, y2)||
(@ 4+ 22, y) + flor —22,y) = 2f (21, y) + 2f (z2,y)[}
< e(Min{||lz1[|? + [lz2l|? + 1", 21" + [lya[|” + [ly=2]"})

for all z,y,x1,x2,Yy2,y2 € X, then there exists a unique quartic mapping T : X X
X =Y satisfying (1.4) and

€ 14 2r-3
_ <
1 (,y) = T )| € 15 (—

forall x,y € X.

3
1"+ < liyll*)

Proof. Tt follows from corollary 2.2. by putting ¢(a,b,c) = ¢ (a,b,c) = ||a||P+||b||” +
|lc||P for all a,b,c € X. O

By Corollary 2.3, we solve the following Hyers-Ulam stability problem for system
of functional equations (1.4).

Corollary 2.4. Let e > 0, and let X,Y be a normed space a Banach space, respec-
tively. If f : X x X — Y is a mapping such that

Maz{|| f(z,y1 +y2) + f(z,y1 —y2) — 2f(z,y1) — 2f (z,92) ||
f (@ +22,y) — flrr,y) + flz,y)|} <e

for all x,y,x1,x9,y2,y2 € X, then there exists a unique bi-quadratic mapping T :
X x X =Y satisfying (1.4) and

w| m

forallz,y € X.

3  Stability of system (1.5)

Now, we investigate the generalized Hyers—Ulam stability problem for system of
functional equations (1.5). From now on, let X be a real vector space and Y be a
real Fréchet space by metric d. Let f: X x X — Y be a function then we define
Af,DfZXXXXX—)Rby

Df(zlax%y) = d(f(xl +I27y)a f(‘rlvy) + f(x%y))a
Af(xaylayQ) = d(f(fﬂ, 2y1+y2)+f(xa 2y17y2)7f(x7y1+y2)7f(x3 y17y2)712f(x7y1))
for all T,T1,%2,Y,Y1,Y2 € X.
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Theorem 3.1. Let s € {—1,1} be fixed. Let ¢, : X x X x X — [0,00) be mappings
satisfying

< 0

i ¢(2(1+Si)$, 2Si:l/, 0) + ¢(25i.’1,', 2six7 281y)
— 16s%

forall x,y € X, and
Y2, 27y, 272 + G(2, 2y, 2 2)

li =
forallx,y,z€ X. If f : X x X =Y is a mapping such that
Df(thQ?y) §¢($1,$2,y)7 (31>
Ap(z,y1,92) < ¥(z,91,92) (3.2)

for all x,y,x1,29,y2,y2 € X, then there exists a unique quartic mapping T : X X
X =Y satisfying (1.5) and

1 1 . . . 1 1 . .
< s s1 s o 1+s1 s
W) Tay) <5 3, qauo@ 22y 4g |Z e (2 27, 0)
(3.3)
forall x,y € X.
Proof. Putting 1 = x5 = x in (3.1), we get
d(f(2z,y),2f(x,y)) < ¢z, z,y). (34)
Replacing y1,y2 by y, 0, respectively, in (3.2), we obtain
1
Replacing x by 2z in (3.5), yields
1
Combining (3.4) and (3.6), we lead to
1 1 1

From inequality (3.7) we use iterative methods and induction on n to prove our
next relation:

1 T
d QSN 4. QST < Z i 25i 25i 251’
(Tgon /(27"2,2°"y), f(2,y)) < 5 e 0272, 2%, 2%y)
i:‘szl
1n71+\551 1
7 i 21+Si 231' . .
b Y @M 2y 0) (3.8)
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We divide (3.8) by 16°™, and replace x by 2°™x, we obtain that

oy T, 2205y, (o)
L } _ |
< 3 Z ) QS(ZS(Zer):U, 25(Z+m)z, 25(z+m)y)
et
1 n—1+]251 1 _ .
to D TP 220y 0), (3.9)

This shows that { g f(2°"x,2°"y)} is a Cauchy sequence in Y by taking the limit
m — oo. Since Y is a Banach space, it follows that sequence {w%f(?"a:, 257y)}
converges. We define T : X x X — Y by T(z,y) = lim, m%f(?"x, 25™y) for
all z,y € X. The rest of proof is similar to the proof of theorem 2.1. O

Corollary 3.2. Let s € {—1,1} be fized. Let X be a vector space and Y be a
Banach space. Suppose the mappings ¢,9 : X x X x X — [0,00) satisfy

< 0

i ,(/}(2(1-"-%)%.7 Qsiy7 0) + ¢<23il‘, 231'3:’ 23iy)
P 165t

forallz,y € X, and

=0

11m w(2snm7 2sny’ 2STLZ) + ¢(257’Lx’ 2sny’ 28712,)

00 1657

forallz,y,ze X. If f: X x X — Y is a mapping such that
[f(z1 +22,y) = f(z1,y) = f(z2,9)]| < d(21,22,9),

I f(x, 2y1+y2)+ (2, 251 —y2) — f(z, y1+y2) — f(@, 1 —y2) —12f (x, y1) || < ¥(z, 91, 2)

for all x,y,x1,x2,y2,y2 € X, then there exists a unique additive-cubic mapping

T:X xX =Y satisfying (1.5) and

1 S 1 s st s 1 S 1 s st
||f($,y)—T(1'7y)|| S 5 E 16Si ¢(2 JU,2 ‘T72 y)+§ E 16Si¢(21+ 1’72 y,O)
i:‘571| i:‘571|
2 2

forallz,y € X.

Proof. Tt follows from theorem 3.1. by putting d(a,b) = |ja—b| for alla,b € Y. O

We are going to investigate the following stability problem for system of func-
tional equations (1.4).
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Corollary 3.3. Let € > 0,p < 4, and let X,Y be a normed space a Banach space,
respectively. If f: X x X —Y is a mapping such that

Moax{| f(x1 + x2,y) — f(z1,y) — fl@2, )|, | f(z,2y1 + y2) + f(, 251 — y2)
— flx, 1 +y2) — fla, g —y2) — 12f(z,y1)||}
<e(Min{[[z1]|P + llz2/” + lylI?, [|2]|” + [y [P + lly211})

for all z,y,x1,x2,Yy2,y2 € X, then there exists a unique quartic mapping T : X X
X =Y satisfying (1.5) and

1f(z,y) = T2, 9)ll < 5 [(1+2772) J||” + %Hyllp]

€
— 9op—4
forallz,y € X.

Proof. Tt follows from corollary 3.2. by putting ¢(a,b,c) = ¥(a,b,c) = ||a||?+||b||” +
|lc||P for all a,b,c € X. O

By Corollary 3.3, we solve the following Hyers-Ulam stability problem for system
of functional equations (1.5).

Corollary 3.4. Let € > 0, and let X,Y be a normed space a Banach space, respec-
tively. If f : X x X — Y is a mapping such that

Mazx{||f(z,y1 +vy2) + f(2,y1 — y2) — 2f (z,91) — 2f (2, y2) |
N f(z1+ 22, y) = f@1,y) + flo2,9)||} <€

for all z,y,x1,29,y2,y2 € X, then there exists a unique additive-cubic mapping
T:X xX —Y satisfying (1.5) and

I7() - T )l < o

forallz,y e X.
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