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Sharp weighted inequalities for multilinear
commutators of some sublinear operators

Peng Yurong, Liu Lanzhe and Huang Chuangxia

Abstract

In this paper, we prove the sharp inequalities for some multilinear commu-
tators related to certain integral operators. The operators include Littlewood-
Paley operator, Marcinkiewicz operator and Bochner-Riesz operator. As ap-
plication, we obtain the weighted LP(p > 1) norm inequalities and LlogL
type estimate for the multilinear commutators.

1 Introduction

Let T be the Calder6n-Zygmund singular integral operator, a classical result of
Coifman, Rochberg and Weiss (see [2]) states that the commutator [b, T|(f) =
T(bf) — bT(f) (where b € BMO(R™)) is bounded on LP(R™) for 1 < p < 0.
However, it was observed that [b, T| is not bounded, in general, from L!(R™) to
LY°°(R™). In [11], the sharp estimates for some multilinear commutators of the
Calderén-Zygmund singular integral operators are obtained. The main purpose
of this paper is to prove the sharp inequalities for some multilinear commutators
related to certain integral operators. In fact, we shall establish the sharp inequal-
ities for the multilinear commutators only under certain conditions on the size of
the integral operators. The integral operators include Littlewood-Paley operator,
Marcinkiewicz operator and Bochner-Riesz operator. As the applications, we ob-
tain the weighted norm inequalities and L log L type estimate for these multilinear
commutators.

2 Notations and Results

First, let us introduce some notations(see [4][8][10][11]). Throughout this paper, @
will denote a cube of R™ with sides parallel to the axes. For any locally integrable
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function f, the sharp function of f is defined by

#(z d
7 ( :telg QI/ |f(y) — fqldy,

where, and in what follows, fo = |Q|™! fQ x)dz. Tt is well-known that(see [4])
f#(z) = sup inf / fly) —c|dy.
()= sup R 1q] Jo VW~

We say that f belongs to BMO(R") if f# belongs to L>(R") and ||f||pmo =
| f#||. For 0 < r < oo, we denote f7# by

FE (@) = [ @

Let M be the Hardy-Littlewood maximal operator, that is that M (f)(z) =
sung,EQ|Q|_1 fQ|f(y)|dy, we write that M,(f) = (M(fp))l/p. For k € N, we

denote by MP* the operator M iterated k times, i.e., M(f)(z) = M(f)(x) and
M*(f) () = M(MF=1(f))(x) for k > 2.

Let ® be a Young function and ® be the complementary associated to @, we
denote that the ®-average by, for a function f

flle = mf{A>o |Q|/ oL, dy<1}

and the maximal function associated to ® by

Mo (f)(z) = sup [[flle.q;
z€Q

The main Young function to be using in this paper is ®(t) = exp(t") — 1 and
U(t) = tlog" (t+e), the corresponding ®-average and maximal functions denoted by
| llezprr,@» Meaprr and ||-||Logr),0s MLiogr)- We have the following inequality,
for any r > 0 and m € N

M(f) < Mraogry-(f), Mpgogrym (f) ~ M™(f);

For r > 1, we denote that
1Blloscemprr = Sgp 16— bgllexprr,@;
the spaces Oscegprr is defined by
Osceaprr = {b € Ligg(R") : [[bllosce,,rr < o0}
It has been known that(see [11])

||b - kaQHexpLT,Q’“Q < CkHbHOSCeszT'
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It is obvious that Oscegpr- coincides with the BMO space if » = 1. For r; > 0

and b; € Oscoyprrs for j =1,---,m, we denote that 1/r = 1/r1 +-- -+ 1/r,, and
[|b]| = H;"’Zl HijOsch - Given a positive integer m and 1 < j < m, we denote
by C7" the family of all ﬁnlte subsets o = {o(1),---,0(j)} of {1,---,m} of j different
elements. For o € CJ", denote that o¢ = {1,---,m} \ 0. For b = (b1, - -,bm) and
O'~= {O’(l),' ( )} € C", denote b (ba(l),' . ',bg(j)), by = bg(l) ce bg(j) and
HbUHOscEIPUU Hba ||OsceTan,(1) T Hba(j)HOscprn,(]) :

We denote the Muckenhoupt weights by A, for 1 < p < co(see [4]).

We are going to consider some integral operators as following.

Let b;(j =1, ...,m) be the fixed locally integral functions on R".

Definition 1. Let F(z,y,t) be a function define on R" x R™ x [0, +00), we
denote that

Ft(f)(x> = Bn F(x,y,t)f(y)dy
and
@ = [ |TI0 - b)) | P00y

for every bounded and compactly supported function f.
Let H be the Banach space H = {h : ||h|| < oo}. For each fixed x € R™, we

view Fi(f)(z) and Fb(f)( ) as a mapping from [0, +0c) to H. Then, the multilinear
commutator related to F} b is defined by

Ti(f)(@) = [|[F, () (@)Il,
we also denote that
T(f) (@) = [[Fx(f)(2)]].
Definition 2. Let € > 0 and 1 be a fixed function which satisfies the following
properties:

(1) [9(z)dx =0,

(1) (= )I < C(1+ |z|)=( D)

(2) |¥(z+y) ()| < Clyl (1 + |2) () when 2Jy| < |a].
The Littlewood-Paley multilinear commutator is defined by

e = ([T "

where
H —b;(y) | ez — y)f(y)dy

and ¢ (x) =t "(x/t) for £ > 0. Set Fy(f) = ¢ * f. We also define that

wine = ([T Enert) ",
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which is the Littlewood-Paley ¢ function (see [13]).
Let H be the space H = {h: Bl = (f;~ [h(t)] 2dzf/t)1/2 }, then, for each

fixed x € R™, th(f)(:n) may be viewed as a mapping from [0,4o00) to H, and it is

clear that _ ~
9u(F)(@) = [|F.(f)(x)|| and g, (f)(z) = |[F}(f)(@)]]-

Deﬁnition 3. Let 0 < v <1 and Q be homogeneous of degree zero on R™ such
that [g,_, Q(z')do(2’) = 0. Assume that Q € Lip,(S™~1), that is there exists a
constant M > 0 such that for any z,y € S, |Q(z) — Q(y)| < M|z — y|". The
Marcinkiewicz multilinear commutator is defined by

Wb () () = ( I Ith(f)(x)IQCﬁ)l/Q,
where

we denote that

F(f)(x) = / U =Y) ) ay.

z—y|<t |SC - y|n !

We also define that

o)) = ([ 1 >|2dt) |

which is the Marcinkiewicz integral (see [14]).
Let H be the space H = { Al = (f3" |k |2dt/t3)1/2 oo}. Then, it is
clear that . .
pa(f)(z) = [|F(f)(@)]] and ug(f)(2) = [|E(F)(@)I-

Definition 4. Let B(f)(€) = (1 — t2[¢|2)%. f(€). Denote that

m

Bj (f)(x) = [1®() = b;w) | Bl (@ —y)f(v)dy,
o

j=1

where BY(z) = t "B°(z/t) for t > 0. The maximal Bochner-Riesz multilinear
commutator is defined by

B3 (1)) = sup | B3, () (@)

We also define that
Bs«(f)(x) = sup | B} (f)(x)],

t>0
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which is the Bochner-Riesz operator (see [6][7]).
Let H be the space H = {h ||hl| = sup|h(t)] < oo}, then it is clear that
>0

BY(f)(x) = ||BY(f)(@)|| and BE,(f)(x) = ||BL,(f)(@)].

Note that when by = - .- = by, T} is just the m order commutator. It is
well known that commutators are of great interest in harmonic analysis and have
been widely studied by many authors (see [1-3][5][6][8-11]). Our main purpose is to
establish the sharp inequalities for the multilinear commutator operators.

Now we state our main results as following.

Theorem 1. Let ¢ > 0, 7; > 1 and b; € Osceyyprs for j = 1,-- - m. Denote
that 1/r =1/r + -+ 1/rp.

(1). Then for any 0 < p < ¢ < 1, there exists a constant C' > 0 such that for
any f € C§°(R") and any & € R",

(G5 (MNE @) < C [ 1bIMLogrys (D@ + > D Mylgly (@) |
j:laGC]m

(2). If 1 <p <ooand we Ay, then

l96(Olzewy < CIBIIAlLr (s

(3). If w € A;. Denote that ®(t) = tlog"/"(t + €). Then there exists a constant
C' > 0 such that for all A > 0,

w({z € R": ¢%(f)(x) > \}) < C e (W) w(z)dz.

Theorem 2. Let 0 <~ <1, r; > 1 and b; € Osceyy,prs for j =1,---;m. Denote
that 1/r =1/r1+ -+ 1/rp.

(1). Then for any 0 < p < ¢ < 1, there exists a constant C' > 0 such that for
any f € C§°(R") and any & € R",

o (MF @) < C{ 1IIMyogryr-(H@) + 3 D My (£)(@) |
j=1o0eCm
(2). If 1 <p<ooand we Ay, then

1@ () oy < ClBIIF I 2o ()

(3). If w € A;. Denote that ®(t) = tlog*/"(t + e). Then there exists a constant
C > 0 such that for all A > 0,

w({z e R": ug’l(f)(x) >\ <C - o (W) w(x)d.
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Theorem 3. Let § > (n—1)/2, r; > 1 and b; € Osceyprri for j =1,---,m.
Denote that 1/r =1/ry + -+ 1/rp,.

(1). Then for any 0 < p < ¢ < 1, there exists a constant C' > 0 such that for
any f € C§°(R") and any & € R",

(BE.(FDF @) < C [ blIMpgogryr (N@) + D" D" My(BY: (£)(@) |

j=1 UGC;"
(2). f 1 < p<ooand we A, then

B3 () Lo qwy < ClHBIIFI Lo ()

(3). If w € A;. Denote that ®(t) = tlog'/"(t + ¢). Then there exists a constant
C > 0 such that for all A > 0,

wifre BB (N@ > <c [ @ (W) w(z)ds.

3 Proofs of Theorems

We first prove a general theorem.

Main Theorem. Let r; > 1 and b; € Osceypprs for j = 1,- -, m. Denote
that 1/r = 1/ry + - -+ 1/ry,. Suppose that T' is the same as in Definition 1 such
that T is bounded on L*(w) for all w € A; with 1 < s < co and weak bounded of
(L' (w), LY (w)) for all w € A;. If T satisfies the following size condition:

(b1 = (51)20) (b — (bm)2) (@) = Ful(br = (b1)2@) -+ (bm — (bm)20) f) (o)
< CMpogryr (f)(E)

for any cube @ = Q(z,d) with supp f C (2Q)¢ and z,% € @ = Q(zo,d). Then for
any 0 < p < ¢ < 1, there exists a constant C' > 0 such that for any f € C§°(R")
and any = € R",

m

(T (MF @) < C | IBIMpogrys- ())@) +D Y My(T; (f)(3))

j=1oecy

To prove the theorem, we need the following lemmas.
Lemma 1.(Kolmogorov,[4, p.485]) Let 0 < p < ¢ < oo and for any function
f > 0. We define that, for 1/r=1/p—1/q

I llwee = iupox\\{x € R": f(a) > MY, Ny (f) = S%plleEHLP/IIXEIILm
>

where the sup is taken for all measurable sets E with 0 < |E| < co. Then

1 fllwze < Npg(£) < (a/ (@ =)Vl fllwee.
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Lemma 2.([11]) Let r; > 1 for j = 1,---,m, we denote that 1/r =1/ry +---+
1/7pm. Then

|Q|/ |fi(x Jg(@)ldz < |[flleaprrr,q - - - | fllexprrm QlI9l|L(t0gry1/m -

Proof of Main Theorem. It suffices to prove for f € C§°(R"™) and some
constant Cy, the following inequality holds:

1/p
(|@| / (s O“pdx)

< C (HbHML (logL)1/™ )+ Z Z Mqy( 55)) .

j=1 UGC’"

Fix a cube @ = Q(zg,d) and & € Q. We first consider the case m = 1. We write,
for fi = fx2q and f2 = fxrn\20,

FPH(f)() = (b ()= (b1)20) Fr (£) (@)= Fy((b1—(b1)20) f1) (2) = Fi((b1—(b1)2q) f2) (),
then

Ty, (f

)(@) = T(((b1)2q — b1) f2) (o)
1F7

N @) = [[F(((b1)2q = b1) f2) (o)
1E () (@) = Fo((b1)2g — b1) fo) (zo) |
[1(01(y) = (b1)2@) Ex () (@)I] + [|F2((br — (b1)2@) f1) ()]

FF((br = (b1)2) f2) () — Fi((br — (b1)2q) f2) (20)|
A(z) + B(z) + C(z).

IAIA

For A(z), by Holder’s inequality for the exponent 1/14+ 1/I' =1 with 1 <1 < ¢/p
and q = pl, we get

(Klﬂ/(A(x) Pdm) (|Q / 1b1(2) — (b1)aa P IT() (& )|de>1/p
(|2Q|/ Ib1(x) — (b1)20|? )”Pl (|Q|/ " |pldm>1/pl

Clb1l|oseewper Mpi(T(f))()
Cllbrllosceryrr Mg(T(f))(Z)-

INIA
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For B(z), by Lemma 1 and the weak type (1,1) of T, we have

(|612/Q<B( pd””) :<IQ|/ 71 = (br)2a) fl”pdx)l/p

T b P
crag T |QC§|;)§Q1)f1)"L < CRQIIT((bs ~ (1)sa) e e

Cl2q| / 1b1(2) — (b2 17 (@)ldz < Cllbr — (0120 lexs £ 2011l Ltogzy/e-20

< COlb1lloseeprr MLogry(£)(Z)-

A

IN

N

For C(z), using the size condition of T, we have

(& Licwra) " < OMy g (1)(3)

Now, we consider the case m > 2. We write, for b = (by, ..., bim),

= > (—1)m_j(b($)—(b)2cz)a/ (b(y) = (b)2@)oF(z,y, 1) f (y)dy

R'IL

j=0oceCT
= (@) — (01)20)  (bn() — (bn)20)F (/) (@)
HEDE(b = (0a0) (b = (B )0) )0
+ (1) (b(x) — (b)2@)s / (b(y) — (B)o0)oe Fla,y, £)f (y)dy
j=1 ceCy R
= (51(@) = (b1)ag) - (bm(@) — (Bm)o@) Fi(£) ()
HAE( (B1)20)+ On — Gn)2)) @

+ )" (b() = (b)2g)o FL* (f) (@),
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thus

IT;(f)(x) = T((br — (b1)2@) - -+ (b — (bm)2q)) f2)(w0)]
[[F5(f) (@) — Fe((b1 = (b1)2q) = - - (b — (bm)2q)) f2) (o)
[[(01(2) = (b1)2q) - - (b () — (b )2@) Fi(f)(@)]|

£33 ) — B)aa)oFE (H @)

IAIA

j=1 UEC;”
H[Fe((br = (b1)2@) - -+ (b — (bin)2q) f1) ()]
+\|Ft(H(bj — (bj)2@) f2)(x) — Ft(H(bj = (bj)2q) f2)(wo)l|

= L(x)+ Iy(z) + I3(x) + I4(z).

For I;(z) and Iz(x), similar to the proof of the Case m = 1, we get

<«clz| /Q (L (x))pdx> " CM,(T())(F)

and

(1/(1 (:U))de>1/p <C mz S M (f)(&).
|Q| o 2 = = 5 L(logL)/r

For I3, by the weak type (1,1) of T and Lemma 2, we obtain

1/p
(i >>’”dx>
< g @)~ Bl o) — (el S

C||b1 (b1)2Q||eXPU1 2Q " Hbm - (bm)2Q|‘eXpLTm’2Q||f||L(logL)1/",2Q
ClOlMLogryr/m(f)(Z).

VANVAN

For I, using the size condition of T', we have

<|é2| / e ))pdmy/p < OMpogry/r(F)(Z).

This completes the proof of the main theorem.

To prove Theorem 1, 2 and 3, it suffices to verify that g;bw ,ug and BE,* satisfy
the size condition in Main Theorem.

Suppose suppf C (2Q)¢ and = € Q = Q(xo,d). Note that |xg — y| = |z — y| for
y € (2Q)°.
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For gﬁ,, by the condition of v, we obtain

[1Fe((01 = (br)2@) - - - (bm — (bin)2@) f) (%)
—F (b1 = (b1)2@) - - - (b = (bm)2@).f)(o)|

: /ooo (/( 161(6) = 1)zl o)~ G2l S )
1/2

a0 — y)|dy)’ ‘ﬂ

<o ) - bl bu) — Gu)llf ()]

(2Q)¢
/Oo lvo — x|*tdt 1/2 i
o (t+ e —yPoreiE )

< C/ [01(y) = (b1)2] - - - [bm(y) = (bm)2|lf (¥)]
(2Q)°

<C) / 2o — afF |z — y| =+
k=172

FHQ\2KQ

|z — |
lzo — y|nte

m

[15) = (b5)20)

Jj=1

£ (y)ldy

m

[1®iw) = (0)20)

j=1

£ (y)|dy

S CZ 27k€‘2k+1Q|71 /
k=1 2

k+1Q

oo m
< CZ 27k H ||bj - (bj)2Q||eszW ,2k+1Q‘|f||L(logL)1/T,2k+1Q
k=1 j=1

<Y k2 I bsllose, e Migogry(£)(@)

k=1 j=1
<C H ||bj||OSprLTj ML(logL)l/T (f)(‘i)
j=1

For b, we write
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m

||Ft(H(b — (bj)20) ) () — Ft(H(bj — (bj)20)f) (o)l

- /.xym ey f_nl ]dy

_/ Q(“ﬁcoi— [ﬁ ]dy|2dt)1/2
| .

zo—y|<t |x0_y|n !

165 — (b)20)

/Oo / 126 =yllf Wl |7
0 |z—y|<t,|lzo—y|>t |.’E - y|n—l

IN

j=1

Sfar——
+(/°° / O —y)  Owo—y)
0 |lz—y|<t,|mo—y| <t

P I R P
dt\ ?
F@)ldyl? )
J1+J2+J3

H(bj(y) — (bj)20)

then
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m 1/2
|f(v)| dt
Ji < C (05(y) = (bj)2@)| 10T = dy
(2Q)¢ ]1;[1 ’ ! ‘.I‘ _y‘n ! |z—y|<t<|zo—Y| t3
. 1f @)l 1 1|
< C b;i(y) — (b; — dy
(2Q)¢ Jl;[l( W)= O T [y T =P
s IfW)|  |wo — x|/
< C bi(y) — (b d
(2Q)° Jl;[l( 58) ~ (a)aa) [z —y|" =t o —y[3/2
N . QI f(y)l
<oy (b5(y) — (b)) | LWL g,
kzzl 21Q\25Q J[[l ’ 72 g — |12
< oy rteptigrt [ [0 - G| 17wy
k=1 2M1Q |55
< Y 27T by — (02 lleaprrs 21l f | Litogryr/m 2r1g
k=1 j=1
o0 m
< CZ km2_k/2 H ||ijOscemerj ML(logL)l/“" (f)(j)
k=1 j=1
m
< C H billose,, s MLogryr/m (F)(E).
j=1

Similarly, we have Jo < C L, [[bjllosc,, » MLogry/-(f)(Z).

esz"‘

We now estimate Js. By the following inequality (see [14]):

Qz—y)  Azo—y)

lz —y["t [xo —y|m !

C<|$—170+ |2 — 2o|? )
— \lwo—y["  |wo—ylm )7
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we gain
m 1/2
W)z — ol "
nec [ (by(y) — (by)2q)| L= 20l %) ay
’ (2Q)* E ’ PPN o =yl leo—yl<t,[a—y|<t T
m 1/2
FW)llz — ol "
i [ I0,0) - t)ao) )
(2Q)¢ E ’ 7290 Jao =y \ Jsgmpi<tfamyizr £
& i QI Qi )
< C b; — (b; + d
< 16, - @ (P2 9 ) il
< oy eteaptigrt | g | T1050) = @20 7l
k=1 j=1

IN

IA

IA

02(2_k +27) H 1bj = (b5)2@leaprms 210 Il L(togry/m 26410
k=1 j=1

¢ Z K278 4 270) H 1bjllose,,, v Mraogryr/-(F)(E)

k=1 j=1
C H ||bj||OSCeszTj ML(logL)l/'r(f)(j)'
j=1

For Bf;’,*, we consider the following two cases:

Case 1. 0 <t <d. In this case, notice that (see [7])

|B(2)] < e(1+[z])~ D2,
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we have, for x € Q,

[1E3((br = (b1)2@) - - - (b = (bm)20) f) (@)
—Fi((b1 = (b1)2Q) - - - (bm = (bm)2@) f) (o)l

=C sup t™" / (b;( f
0<t§d k; 2k+1Q\2k ]H1 ) | ( )|

(1t o=yl 7050y

< C sup (t/d) nl/QZan 1)/2-9)
0<t<d 1

m

(M g |LLs0) = 0z0) f(y)ldy>

< CZZI“((" 1)/2-9) H [|b; — 2Q||ea:pL i 2k+1Q\|f||L (logL)1/7 2k+1Q
< CkaQk n=1)/2=9) H bsllose,, s Mr(iogryr/-(£)(E)
Jj=1

<C H billose,, s MLogryr/ (F)(E);
j=1

Case 2. t > d. In this case, we choose dy such that (n —1)/2 < §y <
min(d, (n 4+ 1)/2), notice that (see [7])
1(8/02)B°(2)] < C(1 + |o)~CHHD/),

similar to the proof of Case 1, we obtain
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[[FL((b1 — (b1)2q) -+ (b — (bim)2@) f)(2)
—Fi((b1 — (b1)2@) * + (b — (bm)2@) f) (o)

< Csupt ™"
t>d

m

/(QQ)F [1®iw) = ®)20) | LFIB (= — y)/t) = B’ (w0 — v)/t)|dy
T =1

< Csupt "}
t>d

m

L LG = G120 iz =211+ 1/~ + /22y

< Csupt "t
t>d

Z/ TT®sw) = @)20)| 1f W)lwo — @[(1+ g — y| /)~ Cot D2y
2k+1Q\2kQ

j=1

< C'sup(d/t)+V/2- 5022k((n 1)/2-60)

t>d =1
1 m
— bi(y) — (b; d
|2k+1Q) 2410 ]1;[( i(y) — (bj)20) | 1f(¥)]dy
< CZ 2k((n=1)/2=%0) H ‘b - 2Q||eTpLTJ 2’“+1Q||f‘|L(logL)1/T 2k+1Q
k=1 j=1
< CZ kmk((n=1)/2=00) H billose,, ,r Mrogryr/+(f)(Z)
k=1 j=1
< CTLIbsllose. ..,y Migogry (£)(@):
j=1

These yields the desired results.
By (1) and the boundedness of gy, pq, Bs« and Mp,41)1/», We may obtain the
conclusions (2)(3) of Theorem 1, 2 and 3.
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