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Commutativity to within scalars on Banach space

Muneo Chō, Robin Harte and Schôichi Ôta

Abstract

We investigate the operator equation AB = λBA for normal operators
on Banach space. In particular, if it holds non trivially on uniformly convex
Banach spaces, then |λ| = 1.

1. Introduction
Operators A and B are [8] said to λ-commute if

1.1 AB = λBA,

“non trivially” provided AB 6= 0. This [7],[9],[15] has been studied for bounded
linear operators A, B on a complex Hilbert space, and is relevant to quantum me-
chanical observables and their spectra. In particular, when the operators A and B
are Hermitian or normal, the value of λ is restricted: if A and B are normal, then
necessarily |λ| = 1. This is shown [7],[15] using the Fuglede-Putnam theorem, and
in [8] without.

In the present paper, our aim is to extend this to Banach spaces, with “Hermi-
tian” and “normal” according to Bonsall and Duncan [5],[6].

Let T ∈ B(X ) be a bounded linear operator on a complex Banach space X .
Writing X † for the dual space of X , the (spatial) numerical range W (T ) of T is
defined by

1.2 W (T ) = WX (T ) = { f(Tx) : (x, f) ∈ Π(X )},

where

1.3 Π(X ) = { (x, f) ∈ X × X † : f(x) = ‖f‖ = ‖x‖ = 1}.
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In general W (T ) is a subset of the “algebraic” numerical range V (T ) = VA(T ) where
A = B(X ). An operator T ∈ B(X ) is said to be Hermitian, written T ∈ Re B(X ),
provided it has real numerical range:

1.4 W (T ) ⊆ R.

We distinguish the “Palmer subspace” of B(X ),

1.5 Reim B(X ) = {H + iK : H, K ∈ Re B(X )},

and recall ([5] Lemma 5.7) that H and K are uniquely determined by T = H + iK.
We are therefore in a position to define an involution on the Palmer subspace,
writing

1.6 (H + iK)∗ = H − iK (H, K ∈ Re B(X )).

Evidently T ∈ Reim B(X ) is Hermitian iff T ∗ = T . We shall also refer to H and K
as the “real and imaginary parts” of T = H + iK. Now T = H + iK can be called
normal if its real and imaginary parts commute:

1.7 HK = KH ; equivalently T ∗T = TT ∗.

We remark that, in general on a Banach space, products of commuting Hermitian
operators need not [1] be Hermitian: however ([5] Lemma 5.4)

1.8 S, T ∈ Re B(X ) =⇒ i(ST − TS) ∈ Re B(X ).

This means that the Palmer subspace is also [12] a Lie algebra. By the Hahn-Banach
Theorem, it is clear that if T 6= 0, then W (T ) 6= {0}, and indeed the spectrum is
always ([5] Theorem 2.6) a subset of the closure of the numerical range. Conversely
([5] Theorem 5.14) if T is normal, then the convex hull of the spectrum coincides
with the closure of the numerical range:

1.9 cvx σ(T ) = cl W (T ),

and hence there is implication

1.10 σ(T ) = {0} =⇒ T = 0.

We also have ([13] Theorem 4.7) that if T ∈ B(X ) is normal then its spectrum and
approximate point spectrum coincide:

1.11 T bounded below =⇒ T invertible.

The “Fuglede-Putnam theorem” extends to Banach space normality: if A,B ∈
B(X ) are normal and X ∈ B(X ) is arbitrary, then there is implication

1.12 AX = XB =⇒ A∗X = XB∗.
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This is because if T ∈ B(X ) is normal then ([10] Lemma 3) T ∗−1(0) ⊆ T−1(0),
while if a, b ∈ A are normal in a Banach algebra A then so is La − Rb ∈ B(A). In
turn this guarantees that commuting sums of normal operators are normal.

2. Hermitians

The only way that Hermitian operators can non trivially λ-commute is that λ
is real:
Theorem 1. Suppose A,B ∈ B(X ) λ commute on the Banach space X , in the
sense (1.1): then there is implication

2.1 σ(AB) 6= {0} =⇒ |λ| = 1.

If either A or B is Hermitian, then

2.2 AB 6= 0 =⇒ λ ∈ R,

and if both A and B are Hermitian then

2.3 AB 6= 0 =⇒ λ ∈ {1,−1},

Proof. If the product AB is not a quasinilpotent, σ(AB) 6= {0}, then it has positive
spectral radius r(AB), so that

0 < r(BA) = r(AB) = |λ|r(BA),

giving |λ| = 1 . If for example A is Hermitian then both A and λA are normal, and
hence by Fuglede-Putnam (1.12)

A∗B = λBA∗.

Since A∗ = A, we have
λBA = AB = λBA 6= 0,

giving λ = λ. The argument is the same if B is Hermitian. If in addition σ(AB) 6=
{0} then both (2.1) and (2.2) hold, forcing λ = ±1. Suppose finally A and B are
both Hermitian, with σ(AB) = {0}; then, recalling (1.8) and (1.10),

2.4 i(λ− 1)BA = i(AB −BA) = 0,

since i(AB −BA) is both Hermitian and quasinilpotent. Box
From (2.4) it also follows that AB = BA: thus if A and B are both Hermitian

there is implication

2.5 AB = −BA 6= 0 =⇒ σ(AB) 6= {0}.
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3. Uniformly convex spaces

We would like to extend the essence of Theorem 1 to normal operators; we can
succeed if the Banach space X is uniformly convex in the sense that for each ε > 0
there exists δ > 0 such that

3.1 ‖x‖ = ‖y‖ = 1 and ‖x− y‖ ≥ ε =⇒ ‖(x + y)/2‖ ≤ 1− δ.

We need ([11] Definition 1.9.2) a process of enlargement, X 7→ Q(X ), in which X
is isometrically embedded in a larger space

3.2 Q(X ) = `∞(X )/c0(X ).

A description in terms of “Banach limits” is given by de Barra [3] and Mattila [13].
If T : X → Y is bounded then there is induced in an obvious way Q(T ) : Q(X ) →
Q(Y), and the mapping T 7→ Q(T ) is linear, multiplicative and isometric. The
most important feature of the functor Q is ([11] Theorem 3.3.5) implication

3.3 Q(T ) one one =⇒ T bounded below =⇒ Q(T ) bounded below.

It is also true that the spectrum is preserved: when Y = X

3.4 σQ(T ) = σ(T ),

as is [2],[13] the closed convex hull of the numerical range:

3.5 WQ(T ) = cl cvx W (T ).

It follows that

3.6 T Hermitian, or normal =⇒ Q(T ) Hermitian, or normal .

Combined with (3.3) and (1.11), this shows that if T ∈ B(X ) is normal then

3.7 Q(T ) one one ⇐⇒ T invertible.

Uniformly convexity in the sense (3.1) is ([3] Theorem 4) preserved under enlarge-
ment:

3.8 X uniformly convex =⇒ Q(X ) uniformly convex.

We shall describe an operator T ∈ B(X ) as almost simply polar if

3.9 X = R(T )⊕N(T ),

where R(T ) and N(T ) are the range and kernel of T , and R(T ) the closure of the
range. If T ∈ B(X ) is almost simply polar and also has closed range then it is
“simply polar” or “group invertible”. Mattila ([13] Theorem 4.4) has shown that if
X is uniformly convex and if T ∈ B(X ) is normal then (3.9) holds.
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Theorem 2. If A,B ∈ B(X ) are both normal, and λ-commute, and if A is almost
simply polar on X , then R(A) and N(A) are invariant under B and B∗, and the
restrictions of B to the null space and the closure of the range of A are also normal.
Proof. We may write P = P 2 ∈ B(X ) for the projection for which

3.10 P (X ) = R(A) , P−1(0) = N(A).

Obviously P commutes with A, and hence, if A and B λ-commute, also with B.
By Fuglede-Putnam (1.12) it follows that P commutes with B∗. Hence R(A) is
invariant for B and B∗. 4

We reach our main result:
Theorem 3. Suppose that either X or its dual X † is uniformly convex: then if
A,B ∈ B(X ) are both normal, and λ-commute, there is implication

3.11 AB 6= 0 =⇒ |λ| = 1.

Proof. If X is uniformly convex we consider two cases: either A ∈ B(X ) is invertible,
or not. If A is invertible then we can argue B = λA−1BA and hence, remembering
(1.10),

0 < r(B) = |λ|r(A−1BA) = |λ|r(B).

If A is not invertible then 0 ∈ C is in its spectrum, which coincides with its ap-
proximate point spectrum, and also A is almost simply polar in the sense of (3.9).
The same is true of the enlargement Q(A), which is also normal, and by uniform
convexity almost simply polar: but now 0 ∈ C is (3.7) actually an eigenvalue of
Q(A). Restricted to RQ(A), both Q(A) and Q(B) are normal and λ-commute.
Since in addition the restriction of Q(A) is one one it is (3.7) invertible. We are
therefore back in the first case, giving |λ| = 1.

If instead the dual space X † is uniformly convex and if A, B ∈ B(X ) are normal
and λ-commute then the same is true of A†, B† ∈ B(X †) 4

4. A converse

We conclude with a sort of converse, valid for arbitrary Banach spaces X . Begin
with the remark that if A = H + iK and B = E + iF can be expressed as linear
combinations of Hermitian operators then

4.1 {AB, B∗A∗} ⊆ Reim B(X ) ⇐⇒ {AB + B∗A∗, i(AB −B∗A∗)} ⊆ Reim B(X ),

and

4.2 {AB, B∗A∗} ⊆ Re B(X ) ⇐⇒ {AB + B∗A∗, i(AB −B∗A∗)} ⊆ Re B(X ),

If in addition AB and B∗A∗ commute,

4.3 (AB)(B∗A∗) = (B∗A∗)(AB),
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then also

4.4 AB, B∗A∗ normal ⇐⇒ AB + B∗A∗, i(AB −B∗A∗) normal .

If (A,B) = (H + iK, E + iF ) with Hermitian H, K, E, F then these conditions can
be expressed in terms of real and imaginary parts: AB +B∗A∗ and AB−B∗A∗ will
be in Reim B(X ), or Hermitian, or normal, iff the same is true of all four operators
(HK + KH) − (EF + FE), i(HF − FH) + i(KE − EK), (HF + FH) + (KE +
EK),−i(HE − EH) + i(KF − FK). Now by (1.8) two of these are automatically
Hermitian: thus

4.5 (H + iK)(E + iF ), (E − iF )(H − iK) Hermitian ⇐⇒
(HK + KH)− (EF + FE), (HF + FH) + (KE + EK) Hermitian,

and, in the presence of (4.3),

4.6 (H + iK)(E + iF ), (E − iF )(H − iK) normal ⇐⇒
(HK + KH)− (EF + FE), (HF + FH) + (KE + EK) normal .

Theorem 4. If A, B are normal, and non trivially λ-commute, and if λ 6= 1, then
the following are equivalent:

4.7 AB is normal ;

4.8 σ(AB) 6= {0} ;

4.9 |λ| = 1.

Proof. With no restriction on λ, implication (4.7)=⇒(4.8)=⇒(4.9) is (1.10) and
(2.1) respectively; we prove that if λ 6= 1 then (4.9)=⇒(4.7). By normality and
Fuglede-Putnam

A∗B = λBA∗ , AB∗ = λB∗A and A∗B∗ = λB∗A∗,

and hence

ABB∗A∗ = AB∗BA∗ = λB∗AA∗B/λ = B∗AA∗B = B∗A∗AB.

Thus we have commutativity (4.3), and it will be sufficient, for (4.6), to show that
(HK + KH) − (EF + FE) and (HF + FH) + (KE + EK) are Hermitian. Since
AB = λBA,

HE −KF + i(HF + KE) = λ
(
EH − FK + i(EK + FH)

)
,

and since A∗B∗ = λB∗A∗

HE −KF − i(HF + KE) = λ
(
EH − FK − i(EK + FH)

)
.
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Adding and subtracting,

HE −KF = λ(EH − FK) , HF + KE = λ(EK + FH).

It follows

i(λ− 1)(EH − FK) = i(HE − EH)− i(KF − FK) ∈ Re B(X )

and
i(λ− 1)(EK + FH) = i(HF − FH)− i(KE − EK) ∈ Re B(X )

are both Hermitian. But now

4.10 |λ| = 1 6= λ =⇒ (λ + 1)/i(λ− 1) ∈ R ,

and hence indeed

AB + B∗A∗ = (HE + EH)− (KF + FK) = (λ + 1)(EH − FK) ∈ Re B(X )

and

i(AB −B∗A∗) = (HF + FH) + (KE + EK) = (λ + 1)(EK + FH) ∈ Re B(X )

are both Hermitian 4

The example of Anderson and Foias ([5] Example 5.8), together with a theorem
of Palmer, shows that implication (3.12)=⇒(3.10) will fail with λ = 1. Indeed if
0 6= P = P 2 6= I ∈ B(Y) for a Hilbert space Y then ([5] Example 5.9)

4.11 A = B = LP −RP is Hermitian in B(X ) = B(B(Y)) but AB is not.

While we have been unable to settle whether or not the product LP RP , and the
square (LP − RP )2, are normal, or even in the space Reim B(X ), the implication
(ii)=⇒(iii) of Theorem 6.3 of [5] guarantees the existence of Hermitian C for which
C2 is not in the Palmer space.

Acknowledgment. The authors would like to express their thanks to Prof. T.
Yamazaki for useful discussion of Theorem 4.
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