Functional Analysis, Approximation and Computation 4:1 (2012), 1–7

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

$\mathcal{I}^{\mathcal{K}}\text{-}$ convergence in 2- normed spaces

Madjid Eshaghi Gordji^a, Saeed Sarabadan^b, Fatemeh Amouei Arani^c

^aDepartment of Mathematics, Semnan University, P. O. Box 35195-363, Semnan, Iran ^bDepartment of Mathematics, Islamic Azad University South Tehran Branch, Tehran, Iran ^cDepartment of Mathematics, Payame Noor University, Tehran, Iran

Abstract. In this paper, we introduce the concept of $I^{\mathcal{K}}$ -convergence of sequences in 2–normed spaces. This notion can be regard as an extension of *I*-convergence of sequences in 2–normed spaces.

1. Introduction

The idea of I-convergence was informally introduced by Kostyrko et al (2001) and also independently by Nuray and Ruckle (2000), as a generalization of statistical convergence. Ideal convergence provides a general framework to study the properties of various types of convergence.

There are several works in recent years on *I*-convergence of sequences (see [4,9,21]).

The notion of linear 2–normed spaces has been investigated by Gâhler in1960's [7,8] and has been developed extensively in different subjects by others [2,11,18,23]. It seems therefore reasonable to investigate the concepts of I and I^* –convergence in 2–normed spaces. Throughout this paper \mathbb{N} will denote the set of positive integers.

Definition 1.1. *Let* X *be a real linear space of dimension greater than 1, and* ||*, || be a non-negative real-valued function on* X × X *satisfying the following conditions:*

G1|||x, y|| = 0 if and only if x and y are linearly dependent vectors,

G2) ||x, y|| = ||y, x|| for all x,y in X,

G3) $||\alpha x, y|| = |\alpha|||x, y||$ where α is real number,

G4 $||x + y, z|| \le ||x, z|| + ||y, z||$ for all x, y, z in X.

 $\|.,\|$ is called a 2-norm on X and the pair $(X, \|., \|)$ is called a linear 2-normed space.

Every linear 2–normed space $(X, \|., .\|)$ of dimension different from one is a locally convex topological vector space. In fact, for a fixed $b \in X$, $p_b(x) = \|x, b\|$, $x \in X$, is a seminorm and the family $P = \{p_b : b \in X\}$ of seminorms generates a locally convex topology on X. In addition, we have the following properties:

1)||., .|| *is nonnegative*.

Keywords. *I*- convergence; *I**- convergence; Filter; Double sequences; 2-normed space.

Received: January 2, 2012; Accepted: January 24, 2012

Email addresses: madjid.eshaghi@gmail.com (Madjid Eshaghi Gordji), s.sarabadan@yahoo.com (Saeed Sarabadan),

f.amoee@yahoo.com (Fatemeh Amouei Arani)

²⁰¹⁰ Mathematics Subject Classification. Primary 40A05; Secondary 40C99, 40A99, 54A20.

Communicated by Dragan S. Djordjević

 $2)||x, y|| = ||x, y + \alpha x||$

3)||x - y, y - z|| = ||x - y, x - z||

for all scalars α and all $x, y, z \in X$. Some of the basic properties of 2–norms studied in [18].

As an example of a 2-normed space we may take $X = \mathbb{R}^2$ being equipped with the 2-norm ||x, y|| := the area of the parallelogram spanned by the vectors x and y, which may be given clearly by the formula

 $||x, y|| = |x_1y_2 - x_2y_1|$, $x = (x_1, x_2)$, $y = (y_1, y_2)$.

Given a 2-normed space $(X, \|., .\|)$. One can derive a topology for it via the following definition of the limit of a sequence: A sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be convergent to x in X if $\lim_{n\to\infty} ||x_n - x, z|| = 0$ for all $z \in X$. This can be written by the formula:

 $(\forall z \in Y)(\forall \epsilon > 0)(\exists n_0 \in \mathbb{N})(\forall n \ge n_0) \qquad ||x_n - x, z|| < \epsilon.$

We write it as $x_n \xrightarrow{\parallel,,\parallel_X} x$.

2. Preliminary Notes

We recall the following definition, where *Y* represents an arbitrary set.

Definition 2.1. A family $I \subseteq \mathcal{P}(Y)$ of subsets a nonempty set Y is said to be an ideal in Y if:

i) $\emptyset \in I$, *ii)* $A, B \in I$ implies $A \bigcup B \in I$, *iii)* $A \in I, B \subseteq A$ implies $B \in I$, I is called a proper ideal if $Y \notin I$ and I is not proper ideal if $I = \mathcal{P}(Y)$.

Definition 2.2. *The ideal of all finite subsets of a given set Y is called Fin.*

Definition 2.3. Let $Y \neq \emptyset$. A non empty family *F* of subsets of *Y* is said to be a filter in *Y* provided: *i*) $\emptyset \in F$. *ii*) $A, B \in F$ implies $A \cap B \in F$. *iii*) $A \in F, A \subseteq B$ implies $B \in F$.

If *I* is a nontrivial ideal in $Y, Y \neq \emptyset$, then the class

$$F(I) = \{M \subset Y : (\exists A \in I)M = Y - A\}$$

is a filter on Y, called the filter associated with I.

Definition 2.4. A nontrivial ideal I in Y is called admissible if $\{x\} \in I$ for each $x \in Y$.

Definition 2.5. A nontrivial ideal I in $\mathbb{N} \times \mathbb{N}$ is called strongly admissible if $\{i\} \times \mathbb{N}$ and $\mathbb{N} \times \{i\}$ belong to I for all $i \in \mathbb{N}$.

It is evident that a strongly admissible ideal is admissible also. Let

 $\mathcal{I}_0 = \{ A \subset \mathbb{N} \times \mathbb{N} : (\exists m(A) \in \mathbb{N}) (i, j \ge m(A) \Rightarrow (i, j) \in \mathbb{N} \times \mathbb{N} - A) \}.$

Then I_0 *is a nontrivial strongly admissible ideal and clearly an ideal* I *is strongly admissible if and only if* $I_0 \subseteq I$ [3].

Definition 2.6. Let $Y \neq \emptyset$ be a set and K be an ideal on Y. Let $M \subseteq Y$, $M \neq \emptyset$. $K|M := \{A \cap B : A \in K\}$ is called trace of K on M and K|M is an ideal on Y.

Definition 2.7. Let $I \subseteq \mathcal{P}(\mathbb{N})$ be a nontrivial ideal in \mathbb{N} . The sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be I-convergent to $x \in X$, if for each $\epsilon > 0$, the set $A(\epsilon) = \{n \in \mathbb{N} : ||x_n - x|| \ge \epsilon\}$ belongs to I [1,12,14].

3. $I^{\mathcal{K}}$ - convergence in 2-normed spaces

In [9,14,21], the concepts of I and I^* -convergence introduced in 2-normed space. We extend this concepts and introduce the $I^{\mathcal{K}}$ -convergence for sequences in 2-normed spaces. First, we introduce the definition of I and I^* -convergence by the other manner.

Definition 3.1. Let $(X, \|., \|)$ be a 2–normed space and I be an ideal on a set A. The function $f : A \to X$ is said to be I-convergent to $x \in X$ if for all non zero z in X and for all $\varepsilon > 0$, we have:

$$A(\epsilon) = \{a \in \mathbb{A} : ||f(a) - x, z|| \ge \epsilon\} \in I.$$

We write it as

$$\mathcal{I} - \lim f = x.$$

Remark 3.2. If A = N, we obtain the usual definition I-convergent of sequence $(x_n)_{n \in \mathbb{N}}$ to $x \in X$ in 2-normed space X [9].

Lemma 3.3. Let *X*, *Y* be two 2–normed spaces and let *A* be a non empty set and *I*, I_1 , I_2 be ideals on *A*. Then i) if *I* is not proper ideal, then every function $f : A \to X$ is *I*–convergent to each point of *X*. ii) If $I_1 \subset I_2$, then for every function $f : A \to X$, we have

$$I_1 - \lim f = x \implies I_2 - \lim f = x.$$

Proof: i) Let *x* be arbitrary element of *X*, then

$$(\forall z \in X)(\forall \varepsilon > 0)A(\varepsilon) = \{a \in \mathbb{A} : ||f(a) - x, z|| \ge \varepsilon\} \in P(S) = I.$$

ii) Let $I_1 \subset I_2$, $I_1 - \lim f = x$. Then we have

$$(\forall z \in X)(\forall \varepsilon > 0)A(\varepsilon) = \{a \in \mathbb{A} : ||f(a) - x, z|| \ge \varepsilon\} \in I_1 \subset I_2$$

Hence $I_2 - \lim f = x$.

Definition 3.4. Let $(X, \|., .\|)$ be a 2–normed space and I be an ideal on \mathbb{N} . The sequence $(x_n)_{n \in \mathbb{N}}$ in X is said to be I^* -convergent to a point $l \in X$, if there exists a set $M \in \mathcal{F}(I)$ such that

$$x_n \xrightarrow{\|\cdot,\cdot\|_X} l$$
 (on M).

We write it as

$$\mathcal{I}^* - \lim x_n = l.$$

We introduce the definition of $\mathcal{I}^{\mathcal{K}}$ -convergence, we simply replace the ideal Fin by an arbitrary ideal on the set *A*.

Definition 3.5. Let $(X, \|., \|)$ be 2–normed space and let \mathcal{K} and \mathcal{I} be ideals on \mathbb{N} , we say that a sequence $(x_n)_{n \in \mathbb{N}}$ in X is $\mathcal{I}^{\mathcal{K}}$ - convergent to $x \in X$ if:

there exists a set $M \in \mathcal{F}(I)$ and the sequence $(y_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M \\ x & \text{if } n \notin M \end{cases}$$

such that $\mathcal{K} - \lim y_n = x$. We write it as

 $\mathcal{I}^{\mathcal{K}} - \lim x_n = x.$

Remark 3.6. The definition of $I^{\mathcal{K}}$ - convergence can be reformulated in the form of decomposition. A sequence $(x_n)_{n \in \mathbb{N}}$ is $I^{\mathcal{K}}$ - convergence if and only if $(x_n)_{n \in \mathbb{N}} = (y_n)_{n \in \mathbb{N}} + (z_n)_{n \in \mathbb{N}}$, where $(y_n)_{n \in \mathbb{N}}$ is \mathcal{K} convergent and $(z_n)_{n \in \mathbb{N}}$ is non-zero only on a set from I.

Remark 3.7. Another definition of $\mathcal{I}^{\mathcal{K}}$ - convergence can be the form below: The sequence $(x_n)_{n \in \mathbb{N}}$ is $\mathcal{I}^{\mathcal{K}}$ convergent if there exists $M \in \mathcal{F}(I)$ such that the sequence $x_n|_M = (x_n)_{n \in M}$ is K|M -convergent to x. These two definitions are equivalent but definition 3.5 is simpler.

We give some examples of ideals and corresponding $\mathcal{I}^{\mathcal{K}}$ – convergence.

Example 3.8. (i) Put $\mathcal{I}_{\circ} = \mathcal{K}_{\circ} = \{\emptyset\}$. \mathcal{I}_{\circ} is the minimal ideal in \mathbb{N} .

A sequence $(x_n)_{n \in \mathbb{N}}$ is $\mathcal{I}_{\circ}^{\mathcal{K}_{\circ}}$ - convergent if and only if it is constant. (ii) Let $\emptyset \neq M \subset \mathbb{N}, M \neq \mathbb{N}$. Put $\mathcal{K} = P(M)$, i.e. \mathcal{K} is a proper ideal in \mathbb{N} . Let $\mathcal{I} = \{\emptyset\}$. A sequence $(x_n)_{n \in \mathbb{N}}$ is $I^{\mathcal{K}}$ - convergent if and only if it is constant on $\mathbb{N} \setminus M$.

(iii) Let \mathcal{K} be an admissible ideal in \mathbb{N} and \mathcal{I} be a arbitrary ideal.

A sequence $(x_n)_{n \in \mathbb{N}}$ is $\mathcal{I}^{\mathcal{K}}$ – convergent if there exists a set $M \in \mathcal{F}(\mathcal{I})$ and the sequence $(y_n)_{n \in \mathbb{N}}$ given by definition such that the sequence y_n is the usual converges.

Corollary 3.9. Let $(X, \|., .\|)$ be a 2–normed space, and let $(x_n)_{n \in \mathbb{N}}$ be a convergent sequence in X and $l_1, l_2 \in X$. If $\mathcal{I}^{\mathcal{K}} - \lim x_n = l_1$ and $\mathcal{I}^{\mathcal{K}} - \lim x_n = l_2$ then $l_1 = l_2$.

Proof: Suppose $l_1 \neq l_2$. Hence there exists $z \in X$ such that $l_1 - l_2 \neq 0$ and z are linearly independent. Put

$$||l_1 - l_2, z|| = 2\varepsilon, \quad with \quad \varepsilon > 0.$$

Since $\mathcal{I}^{\mathcal{K}} - \lim x_n = l_1$. By the definition, there exists $M_1, M_2 \in \mathcal{F}(\mathcal{I})$ such that the sequences $(y_n)_{n \in \mathbb{N}}, (z_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M_1 \\ l_1 & \text{if } n \notin M_1 \end{cases} \qquad z_n = \begin{cases} x_n & \text{if } n \in M_2 \\ l_2 & \text{if } n \notin M_2 \end{cases}$$

have the following properties

 $(\forall \varepsilon > 0)(\forall z \in X)$ $\{n \in \mathbb{N} : ||y_n - l_1, z|| \ge \varepsilon\} \in \mathcal{K}$ $(\forall \varepsilon > 0)(\forall z \in X)$ $\{n \in \mathbb{N} : ||z_n - l_2, z|| \ge \varepsilon\} \in \mathcal{K}.$

Put $M = M_1 \cap M_2$. We have

 $2\varepsilon = ||l_1 - x_n + x_n - l_2, z|| \le ||x_n - l_1, z|| + ||x_n - l_2, z|| = ||y_n - l_1, z|| + ||z_n - l_2, z||$

Therefor $\{n \in M : ||z_n - l_2, z|| < \varepsilon\} \subseteq \{n \in M : ||y_n - l_1, z|| \ge \varepsilon\} \in \mathcal{K}$. Hence $\{n \in M : ||z_n - l_2, z|| < \varepsilon\} \in \mathcal{K}$ that is contradict with $I \neq \phi$.

Corollary 3.10. If $(x_n)_{n \in \mathbb{N}}$, $(y_n)_{n \in \mathbb{N}}$ be sequences in 2-normed space $(X_n \parallel ... \parallel)$ and $\mathcal{I}^{\mathcal{K}} - \lim x_n = a$, $\mathcal{I}^{\mathcal{K}} - \lim y_n = a$. *b*. then i) $\mathcal{I}^{\mathcal{K}} - \lim x_n + y_n = a + b$, ii) $\mathcal{I}^{\mathcal{K}} - \lim \alpha x_n = \alpha a$.

Proof: (i) Let $\mathcal{I}^{\mathcal{K}} - \lim x_n = a$, $\mathcal{I}^{\mathcal{K}} - \lim y_n = b$. By the definition, there exist $M_1, M_2 \in \mathcal{F}(\mathcal{I})$ such that the sequences $(z_n)_{n \in \mathbb{N}}$, $(t_n)_{n \in \mathbb{N}}$ given by

$$z_n = \begin{cases} x_n & \text{if } n \in M_1 \\ a & \text{if } n \notin M_1 \end{cases} \qquad t_n = \begin{cases} y_n & \text{if } n \in M_2 \\ b & \text{if } n \notin M_2 \end{cases}$$

has the following properties $\mathcal{K} - \lim z_n = a$, and $\mathcal{K} - \lim t_n = b$. Now, we put $M = M_1 \cap M_2 \in \mathcal{F}(\mathcal{I})$ and define the sequence $\{p_n\}$ by

$$p_n = \begin{cases} x_n + y_n & \text{if } n \in M \\ a + b & \text{if } n \notin M, \end{cases}$$

we have $\mathcal{K} - \lim z_n + t_n = \mathcal{K} - \lim z_n + \mathcal{K} - \lim t_n = a + b$ (see [21]). By the definition, $\mathcal{I}^{\mathcal{K}} - \lim x_n + y_n = a + b$. The proof of (ii) is similar to (i).

In the next lemma, we show easily from the definitions that \mathcal{K} - convergence implies the $\mathcal{I}^{\mathcal{K}}$ - convergence.

Lemma 3.11. Let \mathcal{K} and \mathcal{I} be ideals on a set \mathbb{N} . If $(X, \|., .\|)$ be a 2-normed space and $(x_n)_{n \in \mathbb{N}}$ be a sequence in X such that $\mathcal{K} - \lim x_n = x$, then $\mathcal{I}^{\mathcal{K}} - \lim x_n = x$.

Lemma 3.12. Let $(X, \|., \|)$ be a 2–normed space and let $I, I_1, I_2, \mathcal{K}, \mathcal{K}_1$ and \mathcal{K}_2 be ideals on a set \mathbb{N} such that $I_1 \subset I_2$ and $\mathcal{K}_1 \subset \mathcal{K}_2$. Then for every sequence $(x_n)_{n \in \mathbb{N}}$ in X, we have:

i)
$$I_1^{\mathcal{K}} - \lim x_n = x$$
 implies $I_2^{\mathcal{K}} - \lim x_n = x$,
ii) $I^{\mathcal{K}_1} - \lim x_n = x$ implies $I^{\mathcal{K}_2} - \lim x_n = x$.

Proof: i) Suppose $I_1^{\mathcal{K}} - \lim x_n = x$, by definition, there exists $M \in \mathcal{F}(I_1)$ such that the sequence $(y_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M \\ x & \text{if } n \notin M \end{cases}$$

has the following condition

$$(\forall \varepsilon > 0)(\forall z \in X)A(\varepsilon) = \{n \in \mathbb{N} : ||y_n - x, z|| \ge \varepsilon\} \in \mathcal{K}.$$

On the other hand since $I_1 \subset I_2$, then $M \in \mathcal{F}(I_1) \subset \mathcal{F}(I_2)$ and by the definition (3.5), $I_2^{\mathcal{K}} - \lim x_n = x$. ii) Let $I^{\mathcal{K}_1} - \lim x_n = x$. By definition, there exists $M \in \mathcal{F}(I)$ such that the sequence $(y_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M \\ x & \text{if } n \notin M \end{cases}$$

has the following property

$$(\forall \varepsilon > 0)(\forall z \in X)A(\varepsilon) = \{n \in \mathbb{N} : ||y_n - x, z|| \ge \varepsilon\} \in \mathcal{K}_1 \subset \mathcal{K}_2.$$

Hence $A(\epsilon) \in \mathcal{K}_2$ and the proof is complete.

In the next theorem, we prove the relationship between the *I*-convergence and $I^{\mathcal{K}}$ - convergence.

Theorem 3.1: Let $(X, \|., .\|)$ be a 2-normed space and let \mathcal{K} and let \mathcal{I} be two ideals in \mathbb{N} . Let $(x_n)_{n \in \mathbb{N}}$ be a sequence in X. i) If $\mathcal{I}^{\mathcal{K}} - \lim x_n = x$ *implies* $\mathcal{I} - \lim x_n = x$ holds for some $x \in X$, which has at least one neighborhood different from X, then $\mathcal{K} \subseteq \mathcal{I}$. ii) If $\mathcal{K} \subseteq \mathcal{I}$ then $(\mathcal{I}^{\mathcal{K}} - \lim x_n = x \text{ implies } \mathcal{I} - \lim x_n = x)$.

Proof:

i) Suppose that \mathcal{K} is not subset of I. Then there exists a set $A \in \mathcal{K}$ such that $A \notin I$. Let $x \in X$ has a

neighborhood $U \subset X$ such that $U \neq X$ and $y \in X \setminus U$. We define a sequence $\{y_n\}$ on X by

$$y_n = \begin{cases} y & \text{if } n \in A \\ x & \text{if } n \notin A. \end{cases}$$

Clearly, $\mathcal{K} - \lim x_n = x$. Thus by Lemma 3.11, we obtain $I^{\mathcal{K}} - \lim x_n = x$. By the definition, $\{n \in \mathbb{N} : \|y_n - x, z\| \ge \epsilon\} = A \notin I$. Hence the sequence $(x_n)_{n \in \mathbb{N}}$ is not I-convergent to x. ii) Let $(X, \|., \|)$ be a 2-normed space and $x \in X$ and let $(x_n)_{n \in \mathbb{N}}$ be a sequence on X. Let $\mathcal{K} \subseteq I$, $I^{\mathcal{K}} - \lim x_n = x$. By the definition of $I^{\mathcal{K}}$ - convergence, there exists $M \in \mathcal{F}(I)$ such that the sequence $(y_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M \\ x & \text{if } n \notin M \end{cases}$$

has the condition

$$(\forall \varepsilon > 0)(\forall z \in X)A(\varepsilon) = \{n \in \mathbb{N} : ||y_n - x, z|| \ge \varepsilon\}$$

 $=\{n\in M: ||x_n-x,z||\geq\epsilon\}.$

Hence $A(\epsilon) \cap M \in \mathcal{K} \subseteq I$. Consequently,

$$\{n \in \mathbb{N} : ||x_n - x, z|| \ge \epsilon\} \subseteq (X \setminus M) \cup (A(\epsilon) \cap M) \in I$$

and thus $I - \lim x_n = x$.

Example 3.13. Let $\mathbb{N} = \bigcup_{i=1}^{\infty} D_i$ be a decomposition of \mathbb{N} (i.e. $D_i \cap D_j \neq \emptyset$). Assume that D_i $(i = 1, 2, \cdots)$ are infinite sets (we can choose $D_i = \{3^{i-1}(2t) : t \in \mathbb{N}\}$ for $i = 1, 2, \cdots$). Denote by I the class of all $A \subseteq \mathbb{N}$ such that A intersects only a finite numbers of D_i . Let \mathcal{K} be the family of all finite subsets of \mathbb{N} . Define $(x_n)_{n \in \mathbb{N}}$ as follows: For $n \in D_i$, we put $x_n = \frac{1}{i}$ $(i = 1, 2, \cdots)$. Obviously that $I - \lim x_n = 0$. Now we show that $I^{\mathcal{K}} - \lim x_n \neq 0$. Assume that $I^{\mathcal{K}} - \lim x_n = 0$. Then there exists $M \in \mathcal{F}(I)$ such that the sequence $(y_n)_{n \in \mathbb{N}}$ given by

$$y_n = \begin{cases} x_n & \text{if } n \in M \\ 0 & \text{if } n \notin M, \end{cases}$$

satisfying $\mathcal{K} - \lim y_n = 0$, i.e. $\lim y_n = 0$. Since $M \in \mathcal{F}(I)$, then there exists $A \in I$ such that $M = \mathbb{N} \setminus A$. By the definition of I, there exists an $l \in \mathbb{N}$ such that

$$A \subset D_1 \cup \cdots \cup D_l.$$

Then *M* contains the set D_{l+1} and $x_n = \frac{1}{l+1}$ for infinitely many *n*'s in *M*. This contradicts

$$\lim_{\substack{n\to\infty\\(n\in M)}} y_n = \lim_{n\to\infty} x_n = 0.$$

The concept of I_2 and I_2^* -convergence of double sequences in 2-normed spaces was introduced in [19,21]. Now, we show that $I^{\mathcal{K}}$ -convergence is a correct the generalization of I_2^* -convergence for double sequences in 2-normed spaces.

Definition 3.14. Let $x = (x_{jk})_{j,k \in \mathbb{N}}$ be a double sequence in 2-normed space $(X, \|., .\|)$. A double sequence $x = (x_{jk})_{j,k \in \mathbb{N}}$ is said to be convergent to $l \in X$ in Pringsheim's sense if $(\forall z \in X)(\forall \varepsilon > 0)(\exists N \in \mathbb{N})(\forall j, k \ge N) \quad ||x_{jk} - l, z|| < \varepsilon$. We write it as

$$x_{jk} \xrightarrow{\parallel \dots \parallel_X} l.$$

Definition 3.15. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ in 2-normed space $(X, \|., .\|)$ is said to be I_2 -convergent to $l \in X$, if for all $\varepsilon > 0$ and nonzero $z \in X$,

$$A(\varepsilon) = \{(j,k) : ||x_{jk} - l, z|| \ge \varepsilon\} \in I_2$$

In this case we write it as

$$\mathcal{I}_2 - \lim_{i \neq k} x_{jk} = l.$$

The Pringsheim's ideal I_2 on $\mathbb{N} \times \mathbb{N}$ whose dual filter $\mathcal{F}(I_2)$ is given by the filter base

$$\mathcal{B}_2 = \{ [n, \infty] \times [n, \infty]; n \in \mathbb{N} \}.$$

Definition 3.16. A double sequence $x=(x_{jk})_{j,k\in\mathbb{N}}$ in 2-normed space $(X, \|., .\|)$ is said to be \mathcal{I}_2^* -convergent to $l \in X$, if there exists a set $M \in \mathcal{F}(\mathcal{I})$ (i.e. $N \times N \setminus M \in \mathcal{I}$) such that $\lim_{m,n} x_{mn} = l(m, n) \in M$ and we write it as

$$\mathcal{I}_2^* - \lim_{j,k} x_{jk} = l.$$

Remark 3.17. The I^* -convergence of double sequences is the same as I^{I_2} -convergence in $\mathbb{N} \times \mathbb{N}$. Hence the notion of the $I^{\mathcal{K}}$ -convergence is a correct generalization of I and I^* -convergence.

Acknowledgements

The authors would like to thank Professor Martin Sleziak for the valuable comments on this manuscript.

References

- V. Baláž, J. Cervenansky, P. Kostyrko, T. Salat, I-convergence and I-continuity of real functions, Acta Mathematica 5, Faculty of Natural Sciences, Constantine the Philosopher University, Nitra, (2004) 43–50.
- [2] Y. J. Cho, P. C. S. Lin, S. S. Kim, A. Misiak, Theory of 2-inner product spaces, Nova Science, Huntington, NY, USA, (2001).
- [3] J. S. Connor, The statistical and strong p-Cesro convergence of sequences, Analysis, 8, (1988) 74-63.
- [4] P. Das, P. Kostyrko, W. Wilczyncki, P. Malik, I and I*-convergence of double sequence, Math. Slovaca, 58, (2008),605–620.
- [5] H. Fast, Sur la convergence statistique, Colloq. Math, 2, (1951) 241-244.
- [6] J. A. Fridy, On statistical convergence, Analysis, 105, (1985) 301–313.
- [7] S. Gähler, 2–normed spaces, Math. Nachr, 28, (1964) 1–43.
- [8] S. Gähler, 2–metrische Räumm und ihre topologische struktur, Math. Nachr, 26, (1963) 115–148.
- [9] M. Gürdal, On ideal convergent sequences in 2-normed Spaces, Thai. J. Math., 4(1), (2006) 85-91.
- [10] M. Gürdal and S. Pehlivan, The statistical convergence in 2-Banach Spaces, Thai. J. Math., 2(1), (2004) 107–113.
- [11] H. Gunawan and Mashadi, On finite dimensional 2-normed spaces, Soochow J. Math., 27(3), (2001) 321-329.
- [12] P. Kostyrko, T. Salat, W. Wilczyncki, I-convergence, Real Anal. Exchange, 26, (2000/2001) 669–666.
- [13] P. Kostyrko, M. Macaj, T. Salat, M. Sleziak, I-convergence and extremal I-limit points, Math. Slovaca, 55,(2005) 443-464.
- [14] B. Lahiri, P. Das, I and I*-convergence in topological spaces ,Math. Bohem, 130, (2005) 153–160.
- [15] F. Moricz, Tauberian theorems for Cesro summable double sequences, Studia Math, 110, (1994) 83–96.
- [16] M. Mursaleen and Osama H. H. Edely, Statistical convergence of double sequences, J. Math. Anal. Appl., 288, (2003) 223–231.
- [17] A. Pringsheim, Zur Ttheorie der zweifach unendlichen Zahlenfolgen, Math. Ann, 53, (1900) 289–321.
- [18] W. Raymond, Y. Freese, J. Cho, Geometry of linear 2-normed spaces, N.Y. Nova Science Publishers, Huntington, 2001.
- [19] S. Sarabadan, S. Talebi, Statistical convergence of double sequences in 2– normed spaces , Int. J. Contemp. Math. Sciences, 6, (2011) 373–380.
- [20] S. Sarabadan, S. Talebi, Statistical convergence and ideal convergence of sequences of functions in 2– normed spaces, International Journal of Mathematics and Mathematical Sciences, Volume 2011, Article ID 517841, (2011) 10 pages.
- [21] S. Sarabadan, S. Talebi, A condition for the equivalence of *I* and *I**-convergence in 2- normed spaces, Int. J. Contemp. Math. Sciences., 6, (2011) 2147–2159.
- [22] H. Steinhaus, Sur la convergence ordinarie et la convergence asymptotique , Colloq. Math,2 , (1953) 335–346.
- [23] C. Tripathy, B. C. Tripathy, On I-convergent double series , Soochow J. Math, 31, (2005) 549-560.