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An existence theorem of monotonic solutions for a nonlinear functional
integral equation of convolution type

E. M. El-Abda

aDepartment of Mathematics, Faculty of Science, Tanta University, A.R.E

Abstract. In this paper, we shall prove an existence theorem of monotonic solutions for a nonlinear
functional integral equation of convolution type. We used Darbo fixed point theorem associated with the
Hausdorff measure of noncompactness.

1. Introduction

The theory of integral equations plays an important part in the theory of nonlinear functional integral
equations of convolution type arise very often in applications of integral equaions in many branches of
Mathematical physics such as neutron transportation, radiation and gases kinetic theorey

(
c. f . [5, 8] , [12]

)
.

The equations of such kind have been investigated in several papers [2] , [9], where the equation have
solutions in some function spaces. Also Banaś and knap [5] discussed the solvability of the considered
equations in the space of Lebesgue integrable functions by using the technique of measures of weak
noncompactness and the fixed point theorem due to Emmanuel [8].

In spite of this approuch gives more general result under less restrictive assumptions than those in [2] ,
[9] but the weak continuity conditions for an operator is not easy to be satisfied in general.

In this paper, we try to overcome this difficulty by using Darbo fixed point theorem associated with
Hausdorff measure of noncompactness which is a strong measure.

2. Notation and auxiliary facts

Throughout this paper we denote by R the field of real numbers and by R+the interval [0,∞) , suppose
that I is an arbitrary measurable subset of R not necessary bounded . Let L1 (I ) denote the space of
Lebesgue integrable functions on the set I with the standerd norm

‖x ‖L1(I ) =

∫

I
| x ( t )| dt.
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The space L1 (R+) will be shortly denoted by L1 and its norm by ‖.‖, i.e.

‖x ‖ =

∫ ∞

0
| x ( t )| dt.

One of the must important operators studied in nonlinear functional analysis is the so-called superpo-
sition operator [1, 14] .

Assuume that a function f (t, x) = f : I ×R → R satisfies Carathéodory conditions i.e. it is measurable
in t for any x ∈ R and continuous in x for almost all t ∈ I. Then to every function x (t ) being measurable
on I we may assign the function

(F x ) (t ) = f (t, x (t ) ) , t ∈ I.
The operator F defined in such a way is called superposition operator generated by the function f .
We have the following theorem due to Appell and Zabrejko [1].

Theorem 1. The superposition operator F maps continuously the space L1 (I ) into itself if and only if
∣∣∣ f (t, x)

∣∣∣ ≤ a (t) + b | x | ,
for all t ∈ I and x ∈ R, where a (t) is a function from L1 (I ) and b is a nonnegative constant.

Next, we will mention a desired theorem concerning the compactness in measure of a subset X of L1 (I )(
c f . |7| ) .

Theorem 2. Let X be a bounded subset of L1 (I ) consisting of functions which are a.e. nondecreasing
(or nonincreasing) on the interval I . Then X is compact in measure.

Furthermore, we recall a few fact about the convolution operator (c f . |11|).
Let k ∈ L1 (R ) be a given function. Then for any function x ∈ L1, the integral

(K x ) (t ) =

∫ ∞

0
k (t − s ) x (s ) ds

exists for almost every t ∈ R+. Moreover, the function (K x ) (t ) belongs to the space L1. Thus K is a linear
operator which maps the space L1 into itself and K is also bounded since

‖ K x ‖ ≤ ‖ K ‖L1(R ) ‖ x ‖ ,
for every x ∈ L1; so it will be continuous.

Hence the norm ‖ K ‖ of the convolution operator is majorized by

‖ K ‖L1(R ) .

In the sequel, we have the following theorem due to Krzyz [10] .

Theorem 3. Assume that k (t, s ) = k : R2
+ −→ R+ is measurable on R2

+ and such that the integral
operator

(Kx ) (t ) =

∫ ∞

0
k (t, s ) x (s ) ds, t ≥ 0,

maps L1 into itself. Then K transforms the set of nonincreasing functions from L1 into itself if and only if
for any A � 0 the following implication is true

t1 ≺ t2 =⇒
∫ A

0
k
(
t1 , s

)
ds �

∫ A

0
k
(
t2 , s

)
ds.
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3. Measures of noncompactness

We give a short note on measures of noncompactness and fixed point theorem. Let E be an arbitrary
Banach space and let X be a nonempty and bounded subset of E. Denoted by Br the closed ball in E
centered at θ and radius r.

The Hausdorff measure of noncompactness χ (X ) [4] is defined as :

χ (X ) = inf
{
r � 0 there exists a f inite subset Y o f E such that X @ Y + Br

}
.

Another measure we defined in the space L1 [3]. For any ε � 0, let

c ( X) = lim
c −→ 0

{
sup
x ∈ X

{
sup

[∫

D
| x ( t ) | dt : D @ R+ , meas. D ≤ ε

]}}

and

d ( X) = lim
a −→∞

{
sup

[∫ ∞

a
| x ( t ) | dt : x ∈ X

]}
,

where meas.D denotes the Lebesgue measure of a subset D.
Put

γ (X) = c ( X) + d ( X) .

Then we have the follwing theorem which connects between the two measures χ (X ) and γ (X) [3] .

Theorem 4. Let X be a nonempty, bounded and compact in measure subset of L1, then

χ (X ) ≤ γ (X ) ≤ 2χ (X ) .

As an application of measures of noncompactness, we recall the fixed point theorem due to Darbo [6] .

Theorem 5. Let Q be a nonempty , bounded closed and convex subset of E and let H : Q −→ Q be
a continuous transformation which is a contraction with respect to the measure of noncompactness µ , i.e.
there exists k ∈ [0, 1] such that

µ (H X ) ≤ kµ (X ) ,

for every nonempty subset X of Q. Then H has at least one fixed point in the set Q.

4. Main results

This section is devoted to the study of the following nonlinear integral equation of convolution type

x (t ) = f 1

(
t,

∫ ∞

0
k (t − s ) f 2

(
s, x

(
φ (s )

))
ds

)
, t ≥ 0 (1) .

For further purposes the operator

(H x ) (t ) = f 1

(
t,

∫ ∞

0
k (t − s ) f 2

(
s, x

(
φ (s

)
)
)

ds
)
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will be often written as the product

H x = F K f2
(
s, x

(
φ (s )

))

of the convolution operator

(K x ) (t ) =

∫ ∞

0
k (t − s ) x (s ) ds

and the superposition operator

(F x ) (t) = f (t, x (t )) .

Thus equation (1) becomes

x = H x = F K f 2

(
s, x

(
φ

))
. (2)

We shall treat the equation (1) under the following assumptions which are listed below.
(i ) The function f i : R+ ×R −→ R ,i = 1, 2 satisfies Carathéodory conditions and there are tow functions

ai ∈ L1, i = 1, 2 and tow nonnegative constants bi, i = 1, 2 such that

∣∣∣ f i (t, x )
∣∣∣ ≤ ai (t ) + bi |x | , i = 1, 2,

for all t ∈ R+ and x ∈ R. Moreover, f i (t, x ) ≥ 0 , i = 1, 2 for x ≥ 0 and f i is assumed to be nonincreasing
in the first variable and nondecreasing in the second one;

(ii ) The function k : R −→ R + belongs to the space L1 (R ) and for any A � 0 and for all t1, t2 ∈ R
+, the following condition is satisfied

t1 ≺ t2 =⇒
∫ A

0
k (t1 − s) ds �

∫ A

0
k (t 2 − s) ds ;

(iii ) The function φ : R+ −→ R+ is increasing absolutely continuous and there is a constant M � 0
with the property φ´.≥ M for almost all t ∈ R+,

(iv ) b1b2 ‖K ‖M −1 ≺ 1.

Then we can prove the following theorem.

Theorem 6. Let the assumptions (i) −→ (iv) be satisfied , then the equation (1) has at least one solution
x ∈ L1 being a.e. nonincreasing on R+.

Proof. First of all observe that for a given x ∈ L1 the function H x belongs to L1,which is a consequence
of the assumptions

(i ) −→ (iii ) .

Additionally, using (2) we get

‖H x ‖ =

∫ ∞

0

∣∣∣∣∣∣ f 1

(
t,

∫ ∞

0
k (t − s ) f 2

(
s, x

(
φ (s

)
)
)

ds
)∣∣∣∣∣∣

Then
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‖H x ‖ =
∥∥∥∥ F K f 2

(
s, x

(
φ (s )

))∥∥∥∥

≤
∫ ∞

0

[
a1 (t ) + b1

∣∣∣∣∣
∫ ∞

0
k (t − s ) f 2

(
s, x

(
φ (s )

))
ds

∣∣∣∣∣
]

dt

≤ ‖a1 (t )‖ + b1

∥∥∥∥K f 2x
(
φ

)∥∥∥∥ ,
where Fi , i = 1, 2 are the superposition operators generated by f i , i = 1, 2 i.e. we have

‖H x ‖ ≤ ‖a1 ‖ + b1 ‖K ‖
∫ ∞

0

[
a 2 (t ) + b2

∣∣∣∣ x
(
φ (t )

)∣∣∣∣
]

dt

≤ ‖a1‖ + b1 ‖K ‖ ‖a 2‖ + b1b2M−1
∫ ∞

0
|x (u )| d u,

where u = φ (t ) i.e.

‖H x ‖ ≤
‖a1‖ + b1 ‖K ‖ ‖a 2‖ + b1b2 ‖K ‖ M−1 ‖ x ‖ .

From this estimate and (iv ) we infer that the operator H maps the ball Br into itself , where

r =
‖ a 1‖ + b 1

∥∥∥ a 2

∥∥∥ ‖ K ‖
1 - b 1 b 2 ‖ K ‖ M −1 ., r � 0.

Further, let Qr stand for the subset of Br consisting of all functions which are a.e. positive and
nonincreasing on R+. Note that Qr is nonempty, bounded, closed and convex subset of L1. Moreover, in
view of theorem 2 the set Qr is compact in measure.

Next, take x ∈Qr , we deduce that x
(
φ

)
is a.e. nonnegative and nonincreasing on R+ and consequently

K x
(
φ

)
is also of the same type in virtue of the assumption (i ) and Theorem 3.

Further, the assumption (i ) permits us to the deduce that H x = F K f 2 x
(
φ

)
is also a.e. positive and

nonincreasing on R+ .
This fact, together with the assertion H : Br −→ Br gives that H is a self - mapping of the set Qr.
In the sequel, we show that the operator H is construction with respect to Hausdorff measure of

noncompactness, for this let X be a nonempty subset of Qr and ε � 0. Then, for an arbitrary x ∈ X and
for a subset D ⊂ R+ with meas D ≤ ε, we obtain

∫

D
| ( H x ) (t )| dt ≤

∫

D

[
a1 (t ) + b1

∣∣∣∣∣
∫ ∞

0
k (t − s) f 2

(
s, x

(
φ(s

)
)
)

ds
∣∣∣∣∣
]

dt

≤ ‖ a1‖L1(D ) + b1 ‖K ‖D
∫

D

[
a2 ( t) + b2

∣∣∣∣ x
(
φ (t )

)∣∣∣∣
]

dt,

Where ‖K ‖D denotes the norm of the operator

K : L1 (D ) −→ L1 (D ) .

Consequently, we get
∫

D
| ( H x ) (t )| dt ≤ ‖ a 1‖L1(D ) + b 1 ‖ K ‖ D ‖ a 2‖ L 1

( D )
+
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+b 1b 2 ‖ K ‖ D M −1
∫

φ ( D )
| x (u )| d u.

Since

lim
c −→ 0

{
sup

[∫

D
a i ( t) dt : D @ R+, meas. D ≤ ε

]}
= 0

and φ is absolutly continuous , then we get

c ( H X ) ≤ b 1b 2 ‖ K ‖ D M −1 c ( X ) (6 )

where the quantity c ( X ) was defined in Section 2.
Furthermore, for fixed T � 0 we have

∫ ∞

T
| ( H x )| ( t ) dt ≤

∫ ∞

T

[
a1 (t ) +b1

∣∣∣∣∣
∫ ∞

0
k (t − s) f 2

(
s, x

(
φ(s

)
)
)

ds
∣∣∣∣∣
]

dt

≤
∫ ∞

T
a1 (t ) dt + b1 ‖K ‖

∫ ∞

T
a2 (t ) dt +

+b 1b 2 ‖ K ‖ M −1
∫ ∞

T

∣∣∣∣ x
(
φ (t )

)∣∣∣∣φ´ ( t ) d t

≤
∫ ∞

T
a 1 (t) dt + b1 ‖K ‖

∫ ∞

T
a2 (t ) dt +

+ b 1b 2 ‖ K ‖ M −1
∫ ∞

φ(T)
|x (u)| d u ,

where φ ( t )→∞, as t→∞.
Since

lim
T −→∞

∫ ∞

T
ai ( t ) d t = 0 , i = 1, 2,

then as T→∞ , we get

d ( H X ) ≤ b1b2 ‖K ‖M−1d (X ) (7) .

Combining (6) and (7) we get

γ ( H X ) ≤ b1b2 ‖K ‖M−1γ (X ) .

Since X ⊂ Q r is compact in measure, then by using Theorem (4) we deduce that

χ ( H X ) ≤ b1b2 ‖K ‖M−1χ (X ) .

By using all properties of the operator H and the set Q r as well as (iv) we can apply theorem (5) to get
a fixed point for H which is the solution (1) .

The proof is completed .
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