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Abstract. Exponential stability and plain exponential stability of strongly continuous semigroups, and
dissipativity and boundedly strict dissipativity of its generator, are investigated. It is proved that dissipa-
tivity implies boundedly strict dissipativity in an equivalent topology, which ensures that dissipativity and
exponential stability together imply plain-e-stability in that topology.

1. Introduction

Throughout this paperH will stand for a complex Hilbert apace. Let B[H] denote the Banach algebra
of all (bounded linear) operators on H . We will be dealing with strongly continuous semigroups [T(t)] =
{T(t) ; t ≥ 0} (i.e., semigroups of class C0) of operators in B[H]. The inner product and norm on H are
denoted by 〈· ; ·〉 and by ‖ · ‖. Besides the inner product 〈· ; ·〉 we will also be dealing with a second inner
product 〈· ; ·〉P associated with an arbitrary positive operator P in B[H], namely,

〈x ; y〉P = 〈Px ; y〉 for every x, y ∈ H ,

so that the norm induced by it is given by

‖x‖P = ‖P 1
2 x‖ for every x ∈ H ,

where P
1
2 in B[H] denotes the unique positive square root of P.

A semigroup [T(t)] is exponentially stable (or e-stable) if there exist real constants M ≥ 1 and α > 0 such
that

‖T(t)‖ ≤Me−αt for every t ≥ 0

or, equivalently, if

‖T(t)x‖ ≤Me−αt ‖x‖ for every x ∈ H and every t > 0.
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We shall refer to any constant α that satisfies the above inequality for an e-stable semigroup as a decay
exponent.

A semigroup [T(t)] is contractive, or it is a contraction semigroup, if

‖T(t)‖ ≤ 1 for all t ≥ 0

or, equivalently, if

‖T(t)x‖ ≤ ‖x‖ for every x ∈ H and all t > 0.

Let A : D→H be the generator of the semigroup [T(t)], which is a linear transformation. If [T(t)] is
a C0-semigroup, then A is closed and densely defined. If A is densely defined (i.e., if D is a dense linear
manifold ofH), then it is dissipative if

Re〈Ax ; x〉 ≤ 0 for every x ∈ D.

If [T(t)] is a strongly continuous contractive semigroup (i.e., a contractive C0-semigroup), then its generator
A is maximal dissipative in the sense that it is dissipative and there is no dissipative extension of it on H
[3, 4, 9]. A dissipative generator A is called strictly dissipative if

Re〈Ax ; x〉 < 0 for every 0 , x ∈ D,

We say that a strictly dissipative generator A is boundedly strict dissipative (or uniformly dissipative — see [2,
p.34]) if there exists a constant γ > 0 such that

Re〈Ax ; x〉 ≤ −γ ‖x‖2 for every x ∈ D.

Even if an e-stable semigroup [T(t)] is contractive, it may happen that the inequality ‖T(t)‖ ≤Me−αt for
every x ∈ H and every t > 0 only holds for constants M > 1 [6]. If a semigroup is e-stable with M = 1, then
it is said to be plain-e-stable. In other words, [T(t)] is plain-e-stable if there exists a constant α > 0 such that

‖T(t)‖ ≤ e−αt for every t ≥ 0

or, equivalently, if

‖T(t)x‖ ≤ e−αt ‖x‖ for every x ∈ H and every t > 0.

In this case, the semigroup [T(t)] is obviously contractive (and hence it has a dissipative generator A, as we
saw above). Recall from [6] that an e-stable contraction C0-semigroup is plain-e-stable if and only if its generator
is boundedly strict dissipative [6, Theorem 2]. Actually, a contraction C0-semigroup is plain-e-stable if and only if
its generator is boundedly strict dissipative [6, Corollary 2] or, equivalently, a contraction C0-semigroup is not
plain-e-stable if and only if its generator is not boundedly strict dissipative, which means that for every
α > 0 there exist a vector xα ∈ H and a positive number tα > 0 such that

e−αtα‖xα‖ < ‖T(tα)xα‖

if and only if for every γ > 0 there exists a vector xγ ∈ D such that

−γ‖xγ‖ < Re〈Axγ ; xγ〉 ≤ 0.

For a characterization of contraction C0-semigroups that are strongly stable but not plain-e-stable see [7,
Corollary 2]. The special case of plain-e-stability with ‖x‖ = Re〈Ax ; x〉 for every x ∈ D was investigated
in [5, Corollary 3]. Subspaces of plain-e-stability for contraction C0-semigroups with strictly dissipative
generators were considered in [8, Theorem 4].

In the following we will be dealing with dissipativity (in particular, with boundedly strict dissipativity)
of the generator A with respect to the inner product〈· ; ·〉 in H , as well as with P-dissipativity of A; that
is, dissipativity of A with respect to the inner product 〈· ; ·〉P in H for a positive operator P in B[H].
We investigate the role of dissipativity of the generator A of a C0-semigroup under the assumptions of
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e-stability and plain-e-stability of the semigroup. We begin in Section 2 by showing that the necessary
and sufficient conditions for e-stability of C0-semigroups due to Datko (Theorem 1), can be expressed in
terms of P-boundedly strict dissipativity of the generator A (Corollary 1). Since the results of Theorem 1
do not assume that the semigroup is contractive, our approach to e-stability of contraction semigroups is
to impose dissipativity constraints on the generator A of Theorem 1. The central results appear in Section
3, where we investigate Pα-dissipativity of A for a positive operator associated both with the e-stability
criterion of Theorem 1 and also with the decaying exponent of e-stability. Let P be the positive operator
of the Lyapunov equation of Theorem 1, and let α denote any decaying exponent for an arbitrary e-stable
semigroup.We show in Lemma 1 that for an e-stable C0-semigroup, the norm associated with the positive operator
Pα = P + (2α)−1I is equivalent to the Hilbert space norm, and also that if the generator of an e-stable C0-semigroup
is dissipative, then it is Pα-boundedly strict dissipative. This leads to the main result in Theorem 2, where we
prove that if a C0-semigroup has a dissipative generator (in particular, if the semigroup is contractive) and is e-stable,
then it is plain-e-stable with respect to the equivalent norm associated with the positive operator Pα = P + (2α)−1I.

2. e-Stability and P-Boundedly Strict Dissipativity

Take any positive operator P in B[H] and consider the inner product 〈· ·〉P and the norm ‖ · ‖P on H
associated with P. The generator A of a semigroup [T(t)] is

(i) P-dissipative if Re〈Ax ; x〉P ≤ 0 for every x ∈ D,

(ii) P-strictly dissipative if Re〈Ax ; x〉P < 0 for every 0 , x ∈ D,

(iii) P-boundedly strict dissipative if Re〈Ax ; x〉P ≤ −γ ‖x‖2P for every x ∈ D, for some constant γ > 0.

Recall the following results due to Datko [1].

Theorem 1. Let [T(t)] be a C0-semigroup onH with generator A. The following conditions are equivalent.

(a) [T(t)] is exponentially stable.

(b)
∫ ∞

0 ‖T(t)x‖2 dt < ∞ for every x ∈ H .

(c) There exists a unique positive operator P (i.e., P > O) onH such that

〈Px ; x〉 =

∫ ∞

0
‖T(t)x‖2 dt for every x ∈ H ,

and it satisfies the Lyapunov equation:

2 Re〈PAx ; x〉 = −‖x‖2 for every x ∈ D.

The next result is a straightforward consequence of Theorem 1 that will be needed in the sequel.

Corollary 1. Let [T(t)] be a C0-semigroup on H with generator A. Suppose there exist constants M≥ 1 and α > 0
such that

‖T(t)‖ ≤Me−αt for every t ≥ 0

(i.e., suppose [T(t)] is exponentially stable).
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(a) There exists a positive operator P in B[H] such that

〈Px ; x〉 ≤ M2

2α ‖x‖2 for every x ∈ H .

Equivalently, such that

P ≤ 1
2αM2I

(where I denotes the identity operator in B[H]).

(b) Moreover,

Re〈Ax ; x〉P ≤ − α
M2 ‖x‖2P for every x ∈ D

(so that the generator A is P-boundedly strict dissipative).

(c) Furthermore, if

P = 1
2αM2I,

then A is boundedly strict dissipative.

Proof. (a) Since
∫ ∞

0 M2e−2αt dt = M2

2α for every nonzero constants M and α, it follows that, if ‖T(t)x‖ ≤Me−αt‖x‖
for every x ∈ H and every t > 0, then the result in (a) is a consequence of Theorem 1(c).

(b) Moreover, since 2Re〈Ax ; x〉P = 2 Re〈PAx ; x〉 = −‖x‖2 for every x ∈ D by the Lyapunov equation in The-
orem 1(c), it follows by item (a) that, for every x ∈ D,

2 Re〈Ax ; x〉P = −‖x‖2 ≤ − 2α
M2 〈Px ; x〉 = − 2α

M2 ‖x‖2P.

(c) Finally, recall from (a) that P ≤ 1
2αM2. If P = 1

2αM2, then, by the Lyapunov equation in Theorem 1(a),
Re〈Ax ; x〉 = − α

M2 ‖x‖2 for every x ∈ D, and so A is boundedly strict dissipative.

Observe from Corollary 1(a,c) that if the generator of the e-stable C0-semigroup is not boundedly strict
dissipative, then P ≤ 1

2αM2I and P , 1
2αM2I (which does not imply that P < 1

2αM2I).

Conditions for e-stability of uniformly continuous semigroups, in terms of boundedly strict dissipative
generators were discussed in [2]. For contraction semigroups it follows that if a uniformly continuous con-
traction semigroup with a strictly dissipative generator is e-stable, then it is plain-e-stable [6, Corollary 1].

3. e-Stability, Dissipativity, and Plain-e-Stability

We now show that dissipativity and P-boundedly strict dissipativity of the generator of an e-stable
C0-semigroup can be connected by means of the inner product 〈· ; ·〉P+(2α)−1I on H , which is defined, for
every positive number α, by

〈x ; y〉P+(2α)−1I = 〈(P + (2α)−1I)x ; y〉 for every x, y ∈ H ,

where P > 0 is the unique solution to the Lyapunov equation of Theorem 1(c). Suppose α is any decay
exponent for an e-stable semigroup, and consider the norm ‖ · ‖P+(2α)−1I onH generated by the inner product
〈· ; ·〉P+(2α)−1I onH .
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Lemma 1. Suppose [T(t)] is an e-stable C0-semigroup onH , so that there exist constants M≥ 1 and α > 0 such that

‖T(t)‖ ≤Me−αt for every t ≥ 0.

Then the norms ‖ · ‖ and ‖ · ‖P+(2α)−1I satisfy the inequalities

(a) 2α
M2+1‖x‖2P+(2α)−1I ≤ ‖x‖2 ≤ 2α‖x‖2P+(2α)−1I for every x ∈ H ,

and so they are equivalent. If the generator A of [T(t)] is dissipative (in particular, if [T(t)] is contractive), then

Re〈Ax ; x〉P+(2α)−1I ≤ −‖x‖2 for every x ∈ D,

and therefore

(b) Re〈Ax ; x〉P+(2α)−1I ≤ − α
M2+1‖x‖2P+(2α)−1I for every x ∈ D,

so that A is (P + (2α)−1I)-boundedly strict dissipative.

Proof. The very definition of the norm ‖ · ‖P+(2α)−1I leads to

‖x‖2P+(2α)−1I = 〈(P + (2α)−1I)x ; x〉 = ‖x‖2P + 1
2α‖x‖2

for every x ∈ H . Thus, under the e-stability assumption, Corollary 1(a) says that ‖x‖2P ≤ M2

2α ‖x‖2, and so

‖x‖2P+(2α)−1I ≤ M2

2α ‖x‖2 + 1
2α‖x‖2 = M2+1

2α ‖x‖2

for every x ∈ H . The above two expressions ensure the inequalities in (a). Take an arbitrary x ∈ D. Since
Re〈Ax ; x〉P+(2α)−1I = Re〈Ax ; x〉P + 1

2αRe〈Ax ; x〉, and since 2 Re〈Ax ; x〉P = −‖x‖2 by Theorem 1(c), it follows
that

2 Re〈Ax ; x〉P+(2α)−1I = −‖x‖2 + 1
αRe〈Ax ; x〉.

Therefore, if A is dissipative, then Re〈Ax ; x〉 ≤ 0, and so

2 Re〈Ax ; x〉P+(2α)−1I ≤ −‖x‖2.

Thus we get the inequality in (b) by using the first inequality in (a).

If a C0-semigroup with a dissipative generator is e-stable, then it is plain-e-stable with respect to the equivalent
norm associated with the operator P + (2α)−1I > O.

Theorem 2. Suppose [T(t)] is an e-stable C0-semigroup on H , so that there exist constants M≥ 1 and α > 0 such
that

‖T(t)x‖ ≤Me−αt ‖x‖ for every t ≥ 0 for every x ∈ H .

If its generator A is dissipative, then [T(t)] is plain-e-stable in the (P + (2α)−1I)-norm, which means that there exists
a constant β > 0 such that

‖T(t)x‖P+(2α)−1I ≤ e−βt‖x‖P+(2α)−1I for every x ∈ H .
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Proof. Take an arbitrary x ∈ D. Set β = α
M2+1 > 0 and Pα = P + (2α)−1I > O in B[H]. Lemma 1(b) can be

rewritten as Re〈Ax ; x〉Pα ≤ −β‖x‖2Pα , and therefore Re〈(A + βI)x ; x〉Pα ≤ 0. Then, since D is T-invariant, it
follows that

Re
〈
(A + βI)eβtT(t)x ; eβtT(t)x

〉
Pα ≤ 0.

Thus, since the generator of the semigroup [eβtT(t)] is A + βI, it also follows that

d
dt
‖eβtT(t)x‖2Pα = 2 Re

〈
(A + βI)eβtT(t)x ; eβtT(t)x

〉
Pα ≤ 0

[3, p.80,90]. Integrating over [0, t] we get ‖T(t)x‖2Pα− e−βt‖T(0)x‖2Pα ≤ 0, and so

‖T(t)x‖2Pα ≤ e−βt‖x‖2Pα for every t ≥ 0.

Extending by continuity from the dense domainD to the whole spaceH ,

‖T(t)x‖2Pα ≤ e−βt‖x‖2Pα for every t ≥ 0 for every x ∈ H .

Note that the assumption “A is dissipative” in the statement of Theorem 2 is implied by the stronger
assumption “[T(t)] is contractive”. Thus we get the following straightforward consequence of Theorem 2. If
a contraction C0-semigroup is e-stable, then it is plain-e-stable with respect to the equivalent norm associated with the
positive operator P + (2α)−1I. Also note that the decay exponent β = α

M2+1 is smaller than the original decay
exponent α.

4. Conclusion

We have presented an approach to exponential stability of C0-semigroups with dissipative generator (in
particular, to contraction semigroups; but not necessarily to contraction semigroups).We began in Corollary
1 by expressing e-stability in terms of P-boundedly strict dissipativity. After verifying the equivalence
between the original norm and the Pα-norm, we have shown in Lemma 1 that if the generator of an e-
stable C0-semigroup is dissipative, then it is Pα-boundedly strict dissipative. This lead to the main result
in Theorem 2, which says that dissipativity of the generator and e-stability of the semigroup imply plain-
e-stability of the semigroup with respect to the equivalent norm associated with the (invertible) positive
operator Pα = P + (2α)−1I.
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