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Abstract. An n × n complex matrix P is said to be a generalized reflection matrix if P∗ = P and P2 = I. An
n× n complex matrix A is said to be a anti-reflexive matrix with respect to the generalized reflection matrix
P if A = −PAP. We in this paper mainly investigate the anti-reflexive maximal and minimal rank solutions
to the matrix equation AX = B. We present necessary and sufficient conditions for the existence of the
maximal and minimal rank solutions with anti-reflexive to the matrix equation AX = B. The expressions
of such solutions to this system are also given when the solvability conditions are satisfied. In addition, in
corresponding the minimal rank solution set to the matrix equation AX = B, the explicit expression of the
nearest matrix to a given matrix in the Frobenius norm has been provided.

1. Introduction

Throughout this paper, let Cm×n be the set of all m × n complex matrices, UCn×n be the set of all n × n
unitary complex matrices. Denote by In the identity matrix with order n. For matrix A, A∗, ‖A‖F and r(A)
represent its conjugate transpose, Frobenius norm and rank, respectively. On Cm×n we define inner product,
(A,B) = trace(BTA) for all A,B ∈ Cm×n, then Cm×n is a Hilbert inner product space and the norm of a matrix
generated by this inner product is Frobenius norm.

Recall that a reflexive (anti-reflexive) matrix was defined in [1,2]: a complex matrix A is reflexive (anti-
reflexive) if A = PAP(A = −PAP), where P is a generalized reflection matrix. By a generalized reflection
matrix, say P, one mean that P satisfies the following two conditions: P∗ = P and P2 = I. In other words, a
generalized reflection matrix is a Hermitian involution matrix.

The reflexive (anti-reflexive) matrix with respect to a generalized reflection matrix P has many special
properties and widely used in engineering and scientific computations(see, e.g. [1-4]).

In matrix theory and applications, many problems are closely related to the ranks of some matrix
expressions with variable entries, and so it is necessary to explicitly characterize the possible ranks of the
matrix expressions concerned. The study on the possible ranks of matrix equations can be traced back
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to the late 1970s (see, e.g. [5-9]). Recently, the extremal ranks, i.e. maximal and minimal ranks, of some
matrix expressions have found many applications in control theory [10,11], statistics, and economics (see,
e.g. [12-14]).

In this paper, we consider the anti-reflexive extremal rank solutions of the matrix equation

AX = B, (1)

where A and B are given matrices in Cm×m. In 1987, Uhlig [8] gave the maximal and minimal ranks of
solutions to system (1). By applying the matrix rank method, recently, Tian [15] obtained the minimal
rank of solutions to the matrix equation A = BX + YC. Xiao et al. [16] in 2009 considered the symmetric
minimal rank solution to system (1). The reflexive and anti-reflexive matrices with respect to the generalized
reflection matrix P are two important classes of matrices and have engineering and scientific applications.
The anti-reflexive maximal and minimal rank solutions of the matrix equation (1), however, have not been
considered yet. In this paper, we will discuss this problem.

We also consider the matrix nearness problem

min
X∈Sm

∥∥∥X − X̃
∥∥∥

F
, (2)

where X̃ is a given matrix in Cn×m and Sm is the minimal rank solution set of Eq. (1).
The matrix nearness problem (2) is so-called the optimal approximation problem, which has important

application in practice, and has been discussed far and wide (see, e.g., [17-22] and the references therein).
We organize this paper as follows. In Section 2, we first establish a representation for the generalized

reflection matrix P. Then we give necessary and sufficient conditions for the existence of anti-reflexive
solution to (1). We also give the expressions of such solutions when the solvability conditions are satisfied.
We in Section 3 establish formulas of maximal and minimal ranks of anti-reflexive solutions to (1), and
present the anti-reflexive extremal rank solutions to (1). We in Section 4 present the expression of the
optimal approximation solution to the set of the minimal rank solution.

2. Anti-reflexive solution to AX = B

In this section we first introduce some structure properties of the generalized reflection matrix P and
establish the representations of anti-reflexive matrix. Then we give the necessary and sufficient conditions
for the existence of and the expressions for anti-reflexive solution of Eq. (1).

Lemma 2.1. [18] Assume P is a generalized reflection matrix of size n, and let

P1 =
In + P

2
, P2 =

In − P
2

. (3)

Then P1 and P2 are orthogonal projection matrices, and satisfied P1 + P2 = In, P1P2 = 0.

Remark 2.2. Assume P1 and P2 are defined as (3) and r(P1) = r, then r(P2) = n−r, and there exist column orthogonal
matrices U11 ∈ Cn×r, U22 ∈ Cn×(n−r), such that

P1 = U11U∗11, P2 = U22U∗22, P = U1UT
1 −U2UT

2 , UT
1 U2 = 0.

Let U = [U11,U22], From the Remark 2.2, it is easy to verify that U is an unitary matrix and the generalized
reflection matrix P can be expressed as

P = U
[

Ir 0
0 −In−r

]
U∗, (4)

where the symbols ”0” stand for null matrices with associated orders (in the sequel, we always mark them
like this).
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Lemma 2.3. [18] Let A ∈ Cn×n and a generalized reflection matrix P with the form of (4), then A is the anti-reflexive
matrix if and only if

A = U
[

0 M
N 0

]
U∗, (5)

where M ∈ Cr×(n−r), N ∈ C(n−r)×r are arbitrary and U is the same as in (4).

Lemma 2.4. (GSVD)[23] Given matrices A1 ∈ Cm×n, B1 ∈ Cm×p, there exist unitary matrices U1 ∈ UCn×n, V1 ∈
UCp×p and nonsingular matrix M1 ∈ Cm×m such that

A1 = M1ΣA1 U1, B1 = M1ΣB1 V1 (6)

where

ΣA1 =



I 0 0
0 SA1 0
0 0 0
0 0 0



r1 − s1
s1

k1 − r1
m − k1

, ΣB1 =



0 0 0
0 SB1 0
0 0 I
0 0 0



r1 − s1
s1

k1 − r1
m − k1

,

k1 = r([A1,B1]), r1 = r(A1), s1 = r(A1) + r(B1) − r([A1,B1]), SA1 = dia1(α1, . . . , αs1 ), SB1 = dia1(β1, . . . , βs1 ),
0 < αs1 ≤ · · · ≤ α1 < 1, 0 < β1 ≤ · · · ≤ βs1 < 1, α2

i + β2
i = 1, i = 1, . . . , s1.

Lemma 2.5. Given matrices A1 ∈ Cm×n, B1 ∈ Cm×p, the generalized singular value decomposition of the matrix pair
[A1,B1] is given by (6), then matrix equation A1X = B1 is consistent, if and only if

r([A1,B1]) = r(A1), (7)

and the expression of its general solution is

X = U∗1


0 0
0 S−1

A1
SB1

Y31 Y32

 V1, (8)

where Y31 ∈ C(n−r1)×(p−s1), Y32 ∈ C(n−r1)×s1 are arbitrary.

Proof. With (6) we have

r(B1 − A1X) = r(M1ΣB1 V1 −M1ΣA1 U1X) = r(ΣB1 − ΣA1 U1XV∗1).

Let Y = U1XV∗1 and let Y be partitioned as Y = (Yi j)3×3, then

ΣB1 − ΣA1 Y =



−Y11 −Y12 −Y13
−SA1 Y21 SB1 − SA1 Y22 −SA1 Y23

0 0 IB1

0 0 0



r1 − s1
s1

k1 − r1
m − k1

. (9)

Noting that Yi j(i = 1, 2, j = 1, 2, 3) are arbitrary, then

min r(B1 − A1X) = min r(ΣB1 − ΣA1 Y) = k1 − r1 = r(A1,B1) − r(A1).

A1X = B1 is solvable in Cn×p if and only if min r(B1−A1X) = 0. Then matrix equation A1X = B1 is consistent,
if and only if (7) holds. In this case, from (9) and Y = U1XV∗1, its general solution can be expressed as (8).
The proof is completed.



Qingfeng Xiao et al. / FAAC 4:2 (2012), 15–22 18

Assume the given generalized reflection matrix P with the form of (4). Let

AU = [A2,A3], BU = [B2,B3], (10)

where A2 ∈ Cm×r, A3 ∈ Cm×(n−r), B2 ∈ Cm×r, B3 ∈ Cm×(n−r), and the generalized singular value decomposition
of the matrix pairs [A2,B3], [A3,B2] are, respectively,

A2 = M2ΣA2 U2, B3 = M2ΣB3 V2, (11)

A3 = M3ΣA3 U3, B2 = M3ΣB2 V3, (12)

where U2 ∈ UCr×r, V2 ∈ UC(n−r)×(n−r), U3 ∈ UC(n−r)×(n−r), V3 ∈ UCr×r, nonsingular matrices M2,M3 ∈ Cm×m,
k2 = r([A2,B3]), r2 = r(A2), s2 = r(A2) + r(B3) − r([A2,B3]), and k3 = r([A3,B2]), r3 = r(A3), s3 = r(A3) + r(B2) −
r([A3,B2]),

ΣA2 =



I 0 0
0 SA2 0
0 0 0
0 0 0



r2 − s2
s2

k2 − r2
m − k2

, ΣB3 =



0 0 0
0 SB3 0
0 0 I
0 0 0



r2 − s2
s2

k2 − r2
m − k2

,

ΣA3 =



I 0 0
0 SA3 0
0 0 0
0 0 0



r3 − s3
s3

k3 − r3
m − k3

, ΣB2 =



0 0 0
0 SB2 0
0 0 I
0 0 0



r3 − s3
s3

k3 − r3
m − k3

.

Now we can establish the existence theorems as follows.

Theorem 2.6. Let A,B ∈ Cm×n and the generalized reflection matrix P of size n be known. Suppose the generalized
reflection matrix P with the form of (4), AU,BU have the partition forms of (10), and the generalized singular value
decompositions of the matrix pairs [A2,B3] and [A3,B2] are given by (11) and (12), respectively. Then the equation
(1) has an anti-reflexive solution X if and only if

r([A2,B3]) = r(A2), r([A3,B2]) = r(A3), (13)

and its general solution can be expressed as

X = U



0 U∗2


0 0
0 S−1

A2
SB3

Z31 Z32

 V2

U∗3


0 0
0 S−1

A3
SB2

W31 W32

 V3 0



U∗, (14)

where Z31 ∈ C(r−r2)×(n−r−s2), Z32 ∈ C(r−r2)×s2 , W31 ∈ C(n−r−r3)×(r−s3), W32 ∈ C(n−r−r3)×s3 are arbitrary.

Proof. Suppose the matrix equation (1) has a solution X which is anti-reflexive, then it follows from Lemma
2.3 that there exist M ∈ Cr×(n−r), N ∈ C(n−r)×r satisfying

X = U
[

0 M
N 0

]
U∗ and AX = B (15)

By (10), that is

[A2 A3]
[

0 M
N 0

]
= [B2 B3], (16)

i.e.

A2M = B3, A3N = B2. (17)
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Therefore by Lemma 2.5, (13) hold, and

M = U∗2


0 0
0 S−1

A2
SB3

Z31 Z32

 V2, N = U∗3


0 0
0 S−1

A3
SB2

W31 W32

 V3, (18)

where Z31 ∈ C(r−r2)×(n−r−s2), Z32 ∈ C(r−r2)×s2 , W31 ∈ C(n−r−r3)×(r−s3), W32 ∈ C(n−r−r3)×s3 are arbitrary. Substituting
(18) into (15) yields that the anti-reflexive solution X of the matrix equation (1) can be represented by (14).
The proof is completed.

3. Anti-reflexive extremal rank solutions to AX = B

In this section, we first derive the formulas of the maximal and minimal ranks of anti-reflexive solutions
of (1), then present the expressions of anti-reflexive maximal and minimal rank solutions to (1).

Theorem 3.1. Suppose that the matrix equation (1) has an anti-reflexive solution X and Ω is the set of all anti-reflexive
solutions of (1). Then the extreme ranks of X are as follows:

(1) The maximal rank of X is

max
X∈Ω

r(X) = min{n − r, r − r(A2) + r(B3)} + min{r,n − r − r(A3) + r(B2)}. (19)

The general expression of X satisfying (19) is

X = U



0 U∗2


0 0
0 S−1

A2
SB3

Z31 Z32

 V2

U∗3


0 0
0 S−1

A3
SB2

W31 W32

 V3 0



U∗, (20)

where Z31 ∈ C(r−r2)×(n−r−s2), W31 ∈ C(n−r−r3)×(r−s3) are chosen such that r(Z31) = min(r − r2,n − r − s2), r(W31) =
min(n − r − r3, r − s3), Z32 ∈ C(r−r2)×s2 , W32 ∈ C(n−r−r3)×s3 are arbitrary.

(2) The minimal rank of X is

min
X∈Ω

r(X) = r(B2) + r(B3). (21)

The general expression of X satisfying (20) is

X = U



0 U∗2


0 0
0 S−1

A2
SB3

0 Z32

 V2

U∗3


0 0
0 S−1

A3
SB2

0 W32

 V3 0



U∗, (22)

where Z32 ∈ C(r−r2)×s2 , W32 ∈ C(n−r−r3)×s3 are arbitrary.

Proof. (1) By (14),

max
X∈Ω

r(X) = max
Z31

r


0 0
0 S−1

A2
SB3

Z31 Z32

 + max
W31

r


0 0
0 S−1

A3
SB2

W31 W32

 , (23)

max
Z31

r


0 0
0 S−1

A2
SB3

Z31 Z32

 = s2 + min{r − r2,n − r − s2} (24)
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= min{n − r, r − r2 + s2} = min{n − r, r − r(A2) + r(B3)},
and

max
W31

r


0 0
0 S−1

A3
SB2

W31 W32

 = s3 + min{n − r − r3, r − s3} (25)

= min{r,n − r − r3 + s3} = min{r,n − r − r(A3) + r(B2)}.
Taking (24) and (25) into (23) yields (19).

According to the general expression of the solution in theorem 2.6, it is easy to verify the rest of part in
(1).

(2) By (14),

min
X∈Ω

r(X) = min
Z31

r


0 0
0 S−1

A2
SB3

Z31 Z32

 + min
W31

r


0 0
0 S−1

A3
SB2

W31 W32

 , (26)

min
Z31

r


0 0
0 S−1

A2
SB3

Z31 Z32

 = s2 = r(B3) (27)

and

min
W31

r


0 0
0 S−1

A3
SB2

W31 W32

 = s3 = r(B2). (28)

Taking (27) and (28) into (26) yields (21).
According to the general expression of the solution in theorem 2.6, it is easy to verify the rest of part in

(2). The proof is completed.

4. The expression of the optimal approximation solution to the set of the minimal rank solution

From (22), When the solution set Sm = {X | AX = B,X = −PXP, r(X) = min
Y∈Ω

r(Y)} is nonempty, it is easy

to verify that Sm is a closed convex set, therefore there exists a unique solution X̂ to the matrix nearness
Problem (2).

Theorem 4.1. Given matrix X̃, and the other given notations and conditions are the same as in Theorem 2.6. Let

U∗X̃U =

[
X̃11 X̃12
X̃21 X̃22

]
, X̃12 ∈ Cr×(n−r), X̃21 ∈ C(n−r)×r, (29)

and we denote

U2X̃12V∗2 =


Z̃11 Z̃12
Z̃21 Z̃22
Z̃31 Z̃32

 , U3X̃21V∗3 =


W̃11 W̃12
W̃21 W̃22
W̃31 W̃32

 . (30)

If Sm is nonempty, then Problem (2) has a unique X̂ which can be represented as

X̂ = U



0 U∗2


0 0
0 S−1

A2
SB3

0 Z̃32

 V2

U∗3


0 0
0 S−1

A3
SB2

0 W̃32

 V3 0



U∗, (31)



Qingfeng Xiao et al. / FAAC 4:2 (2012), 15–22 21

where Z̃32, W̃32 are the same as in (4.2).

Proof. When Sm is nonempty, it is easy to verify from (22) that Sm is a closed convex set. Since Cn×n is a
uniformly convex Banach space under Frobenius norm, there exists a unique solution for Problem (2). By
theorem 3.1, for any X ∈ Sm, X can be expressed as

X = U



0 U∗2


0 0
0 S−1

A2
SB3

0 Z32

 V2

U∗3


0 0
0 S−1

A3
SB2

0 W32

 V3 0



U∗, (32)

where Z32 ∈ C(r−r2)×s2 , W32 ∈ C(n−r−r3)×s3 are arbitrary.
Using the invariance of the Frobenius norm under unitary transformations, we have

‖X − X̃‖2F =

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



0 U∗2


0 0
0 S−1

A2
SB3

0 Z32

 V2

U∗3


0 0
0 S−1

A3
SB2

0 W32

 V3 0



−U∗X̃U

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

F

=
∥∥∥Z32 − Z̃32

∥∥∥2

F +
∥∥∥W32 − W̃32

∥∥∥2

F +
∥∥∥S−1

A2
SB3 − Z̃22

∥∥∥2

F
+

∥∥∥S−1
A3

SB2 − W̃22

∥∥∥2

F

+
∥∥∥X̃11

∥∥∥2

F +
∥∥∥X̃22

∥∥∥2

F +
∥∥∥Z̃11

∥∥∥2

F +
∥∥∥Z̃12

∥∥∥2

F +
∥∥∥Z̃21

∥∥∥2

F +
∥∥∥Z̃31

∥∥∥2

F

+
∥∥∥W̃11

∥∥∥2

F +
∥∥∥W̃12

∥∥∥2

F +
∥∥∥W̃21

∥∥∥2

F +
∥∥∥W̃31

∥∥∥2

F .

Therefore, ‖X − X̃‖F reaches its minimum if and only if

Z32 = Z̃32, W32 = W̃32. (33)

Substituting (33) into (32) yields (31). The proof is completed.
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