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Available at: http://www.pmf.ni.ac.rs/faac

EP matrices in indefinite inner product spaces

Sachindranath Jayaramana

aSchool of Mathematics, Indian Institute of Science Education and Research - Thiruvananthapuram
CET Campus, Engineering College P.O.

Thiruvananthapuram - 695 016, Kerala, India.

Abstract. The aim of this article is to introduce the notion of J-EP matrices as a generalization of EP matrices,
in the setting of indefinite inner product spaces with respect to the indefinite matrix product. Connections
between J-EP matrices and EP matrices, an interesting characterization of J-EP matrices similar to EP
matrices and the reverse order law for the Moore-Penrose inverse with respect to the indefinite matrix
product (including the triple product) are brought out. A generalization of a result on polynomials in two
variables satisfied by two related matrices is also presented in the setting of indefinite inner product spaces
with respect to the indefinite matrix product.

1. Introduction

An indefinite inner product in Cn is a conjugate symmetric sesquilinear form [x, y] together with the
regularity condition that [x, y] = 0, ∀ y ∈ Cn only when x = 0. Associated with any indefinite inner product
is a unique invertible Hermitian matrix J (called a weight) with complex entries such that [x, y] = 〈x, Jy〉,
where 〈., .〉denotes the Euclidean inner product onCn and vice versa. Motivated by the notion of Minkowski
space (as studied by physicists), we also make an additional assumption on J, namely, J2 = I. It can be
shown that this assumption on J is not really restrictive as the results presented in this manuscript can
also be deduced without this assumption on J, with appropriate modifications. It should be remarked that
this assumption also allows us to compare our results with the Euclidean case, apart from allowing us to
present the results with much algebraic ease.

Investigations of linear maps on indefinite inner product spaces employ the usual multiplication of
matrices which is induced by the Euclidean inner product of vectors (See for instance [4, 11] and the
references cited therein.) This causes a problem as there are two different values for dot product of vectors.
To overcome this difficulty, Kamaraj, Ramanathan and Sivakumar introduced a new matrix product called
indefinite matrix multiplication and investigated some of its properties in [11]. More precisely, the indefinite
matrix product of two matrices A and B of sizesm× n and n× l complex matrices, respectively, is defined to
be the matrix A ◦ B = AJnB. The adjoint of A, denoted by A[∗] is defined to be the matrix JnA∗ Jm, where Jm
and Jn are weights in the appropriate spaces.
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Many properties of this product are similar to that of the usual matrix product (refer [11]). Moreover, it
not only rectifies the difficulty indicated earlier, but also enables us to recover some interesting results in
indefinite inner product spaces in a manner analagous to that of the Euclidean case. Kamaraj, Ramanathen
and Sivakumar also established in [11] that in the setting of indefinite inner product spaces, the indefinite
matrix product is more appropriate that the usual matrix product. Recall that the Moore-Penrose inverse

exists if and only if rank(AA∗) = rank(A∗A) = rank(A). If we take A =

(
1 1
1 1

)
, J =

(
1 0
0 −1

)
, then AA[∗]

and A[∗]A are both the zero matrix and so rank(AA[∗]) < rank(A), thereby proving that the Moore-Penrose
inverse doesn’t exist with respect to the usual matrix product. However, it can be easily verified that with
respect to the indefinite matrix product, rank(A ◦ A[∗]) = rank(A[∗] ◦ A) = rank(A). Thus, the Moore-Penrose
of a matrix with real or complex entries exists over an indefinite inner product space with respect to the
indefinite matrix product, whereas a similar result is false with respect to the usual matrix multiplication.
It is therefore really pertinant to extend the study of generalized inverses to the setting of indefinite inner
product spaces, with respect to the indefinite matrix product.

The objective of this manuscript is to generalize the notion of EP matrices to indefinite inner product
spaces and investigate its relationship with the usual notion of EP-ness in the Euclidean setting. The paper
is organized as follows. We recall the basic definitions and facts in the next section. In particular, we recall
the definition of an indefinite product of two matrices / vectors (Definition 2.1) and the adjoint with respect
to this multiplication in Definition 2.2. The definions of the range and the null space, denoted by Ra(.) and
Nu(.), respectively, invertibility, the Moore-Penrose inverse, and the group inverse, all with respect to this
indefinite product, and its properties are given next in Definitions 2.3, 2.4, 2.5 and 2.6. The definition of
J-EP matrices is introduced first (Definition 3.1). The main results are presented in Section 3. Theorems 3.5
and 3.7 (a) - (c) give the basic relationship between J-EP matrices and EP matrices. In particular, Theorem
3.7 (c) is a nice generalization of a characterization of EP matrices, namely, that a matrix A is EP if and only
if R(A2) = R(A∗). A result concerning the sum of J-EP matrices being J-EP is presented next (Theorem 3.12).
A few remarks on range additivity results are also brought out (Remarks 3.13). We then move on to reverse
order laws for the Moore-Penrose inverse with respect to the indefinite matrix product (Theorems 3.14, 3.17
and Theorems 3.20, 3.21). A generalization to indefinite inner product spaces of a result of Baksalary, Hauke
and Johnson on characterizations of EP matrices in terms of polynomials in two variables evaluated at A
and A† is also brought out (Lemma 3.24 and Theorem 3.25). Wherever possible, we give examples to bring
out the importance of the assumptions made. We end with a few concluding remarks on the possibility of
extending this study to various matrix partial orders and its connection with reverse odrer laws.

2. Notations, Definitions and Preliminaries

We first recall the notion of an indefinite multiplication of matrices. We refer the reader to [11], wherein
various properties and also advantages of this product have been discussed in detail.

Definition 2.1. Let A and B be m × n and n × l complex matrices, respectively. Let Jn be an arbitrary but fixed
n × n complex matrix such that Jn = J∗n = J−1

n . The indefinite matrix product of A and B (relative to Jn) is defined by
A ◦ B = AJnB.

Note that there is only one value for the indefinite product of vectors / matrices. When Jn = In, the above
product becomes the usual product of matrices.

Definition 2.2. Let A be an m×n complex matrix. The adjoint A[∗] of A (relative to Jn, Jm) is defined by A[∗] = JnA∗ Jm.

When the dimensions are equal, the subscripts n,m will be dropped. A[∗] satisfies the following identities :
[Ax, y] = [x,A[∗]y] and [A ◦ x, y] = [x, (I ◦ A ◦ I)[∗] ◦ y].

Definition 2.3. Let A be an m × n complex matrix. Then the range space Ra(A) is defined by Ra(A) = {y = A ◦ x ∈
Cm : x ∈ Cn} and the null space Nu(A) of A is defined by Nu(A) = {x ∈ Cn : A ◦ x = 0}.
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Definition 2.4. Let A ∈ Cn×n. A is said to be J-invertible if there exists X ∈ Cn×n such that A ◦ X = X ◦ A = J.

It follows that A is J-invertible if and only if A is invertible and in this case the J-inverse is given by
A[−1] = JA−1J. We now pass on to the notion of the Moore-Penrose inverse in indefinite inner product
spaces.

Definition 2.5. For A ∈ Cm×n, a matrix X ∈ Cn×m is called the Moore-Penrose inverse if it satisfies the following
equations : A ◦ X ◦ A = A,X ◦ A ◦ X = X, (A ◦ X)[∗] = A ◦ X, (X ◦ A)[∗] = X ◦ A.

Such an X will be denoted by A[†]. It can be shown that A[†] exists if and only if rank(A) = rank(A ◦ A[∗]) =
rank(A[∗]◦A) [11]. The Moore-Penrose has the representation A[†] = JnA† Jm. We also have, Ra(A◦A[†]) = Ra(A)
and Ra(A[†] ◦ A) = Ra(A[∗]) (see for instance Lemma 2.1(v), [10].) One can similarly define the notion of the
group inverse in indefinite inner product spaces.

Definition 2.6. For A ∈ Cn×n,X ∈ Cn×n is called the group inverse of A if it satisfies the equations : A ◦ X ◦ A =
A,X ◦ A ◦ X = X,A ◦ X = X ◦ A.

As in the Euclidean setting, it can be proved that the group inverse exists in the indefinite setting if and
only if rank(A) = rank(A[2]) and is denoted by A[#]. In particular, if A = A[∗], then A[#] exists. However, an
analagous formula for the group inverse similar to that of the Moore-Penrose inverse does not hold in the
indefinite setting. However, if A = B ◦ C is a rank factorization, then the group inverse of A exists if and
only if C ◦ B is invertible and in this case, the group inverse is given by A[#] = B ◦ (C ◦ B)[−2] ◦ C.

3. Main Results

We present our main results in this section. We first start by a notion of EP matrices in the setting of
indefinite inner product spaces.

Definition 3.1. A ∈ Cn×n is said to be J-EP if A ◦ A[†] = A[†] ◦ A.

Remark 3.2. Notice that when J = I, the above definition coincides with the usual definition of EP matrices. Note
also that A is J-EP if and only if AJ is EP. It is a well known result that a square matrix A is EP if and only if A† is
a polynomial in A (see, for instance, Corollary 3 on page 178, Chapter 4, [3]). Noting that (AJ)† = JA†, we see that
A is J-EP if and only if A[†] is a polynomial in A. It is also interesting to note that there are matrices that are EP but
not J-EP and J-EP but not EP. The following two examples illustrate this.

Example 3.3. Let A =

(
1 1
1 1

)
, J =

(
1 0
0 −1

)
. Clearly, A is EP. One then computes A[†] to be the matrix A[†] =

(1/4)
(

1 −1
−1 1

)
. It is then not hard to see that A ◦ A[†] , A[†] ◦ A and so A is not J-EP.

Example 3.4. Let A =

(
1 −1
1 −1

)
and J =

(
−1 0
0 1

)
. It can be easily seen that A[†] = (1/4)A, which proves that A is

J-EP. However A is not EP.

The following are consequences of the above definition.

Theorem 3.5. If A is J-EP, then A[#] exists. If A[†] = A[#], then A is J-EP and vice versa.

The following example shows that A[#] may exist without A being J-EP.

Example 3.6. By taking A =

(
1 0
1 0

)
and J =

(
1 0
0 −1

)
, we see that A[#] exists, although A is not J-EP.
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We now have the following theorem.

Theorem 3.7. Let A,B be square matrices. We then have the following :
(a) If AJ = JA, then A is EP if and only if A is J-EP.
(b) If AJ = JA, then AB is EP if and only if A ◦ B is J-EP.
(c) A is J-EP if and only if Ra(A[2]) = Ra(A[∗]).

Proof. (a) : By definition, we note that A ◦ A[†] = AJJA†J = AA† J. On the other hand, A[†] ◦ A = JA†JJA =
JA†A = A†JA = A†AJ = AA† J, as AJ = JA and that A is EP. Thus A is J-EP.

Conversely, assume that A is J-EP. We shall prove that R(A) = R(A∗). Let y ∈ R(A). Then, y = AA†y =
A◦A[†]◦y = A[†]◦A◦y. Note that Ra(A[†]◦A) = Ra(I◦A†A). Therefore, y = I◦A†A◦x = JA†AJx = A†Ax ∈ R(A∗).
Thus, R(A) ⊆ R(A∗). On the other hand, if y ∈ R(A∗), then y = A†Ay = I ◦ A†A ◦ x (as AJ = JA). This means
y ∈ Ra(I ◦A†A) = Ra(A[†] ◦A) and so, y = A[†] ◦A ◦ u = A ◦A[†] ◦ u = AA†u ∈ R(A). Thus, R(A∗) ⊆ R(A). This
completes the proof.

(b) : Suppose AJ = JA. We then have (A ◦ B)[†] = J(AB)†. Therefore, (A ◦ B) is J-EP if and only if
J(AB)(AB)† = J(AB)†(AB) if and only if AB is EP.

(c) : As pointed out earlier, A is J-EP if and only if AJ is EP. Therefore, A is J-EP if and only if
R((AJ)2) = R((AJ)∗) = R(JA∗). However, Ra(A[2]) = R((AJ)2) and Ra(A[∗]) = R((JA∗)). The conclusion now
follows. An alternate proof can be given as follows :

An alternate proof :

Suppose A is J-EP. Then, A[#] exists and so Ra(A) = Ra(A[2]). Moreover, Ra(A) = Ra(A[∗]) and so one way is
proved. For the converse, suppose Ra(A[∗]) = Ra(A[2]). It is clear that Ra(A[2]) ⊆ Ra(A). Let y = A◦x ∈ Ra(A).
From the lemma on linear equations (Lemma 2.2, [10]), we see that x = A[†] ◦ y + z, z ∈ Nu(A); that is, x− z =
A[†] ◦ y ∈ Ra(A[†]) = Ra(A[∗]) = Ra(A[2]) and so, x − z = A[2] ◦ u. Consequently, y = A ◦ x = A[3] ◦ u ∈ Ra(A[2]).
Therefore, Ra(A) = Ra(A[2]) = Ra(A[∗]). Therefore, R((AJ)(AJ)†) = R((AJ)†(AJ)), which is the same as saying
that AJ is EP.

The following examples (Examples 3.8, 3.9 and 3.10) show that the commutativity assumption in the
above theorem cannot be dispensed with.

Example 3.8. Let J =

(
1 0
0 −1

)
and A =

(
1 1
1 1

)
. Then, A is EP, A† = (1/4)A. However, A is not J-EP as

A ◦ A[†] = (1/2)
(
1 −1
1 −1

)
, while A[†] ◦ A = (1/2)

(
1 1
−1 −1

)
. Note that AJ , JA.

Example 3.9. Let J be as in Example 3.8 and A =

(
1 −1
1 −1

)
. Then, A = A[∗] and so A[#] exists. Moreover,

A[†] = A[#] = (1/4)A. Therefore, A is J-EP. But A is not EP. Note again that AJ , JA.

Example 3.10. Let A =

(
1 1
1 1

)
,B =

(
−1 −1
1 1

)
and J =

(
1 0
0 −1

)
. Then AB = 0, which is EP. However, A◦B = −2A,

which is not J-EP. Note that AJ , JA. On the other hand, let A =

(
1 −1
1 −1

)
,B =

(
−1 1
0 0

)
and J =

(
−1 0
0 1

)
. Then,

A ◦ B = A, which is J-EP. However, AB =

(
−1 1
−1 1

)
, which is not EP. In this case also, AJ , JA.

The following result was proved by Meenakshi in relation to sums of EP matrices being EP.

Theorem 3.11. (Theorem 1, [8]) Let Ai (i = 1 . . .m) be EP. Then, A := A1 + . . .+ Am is EP if any one of the following
equivalent conditions hold :
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(i) N(A) ⊆ N(Ai) for each i.

(ii) rank



A1
A2
...

Am


= rank(A).

We then have the following theorem.

Theorem 3.12. Let A1, . . . ,Am be J-EP and let A := A1 + . . . + Am. Suppose Nu(A) ⊆ Nu(Ai) for each i and that
Ai ◦ A j = 0 for i , j. Then A is J-EP.

Proof. Assume that Nu(A) ⊆ Nu(Ai) for each i. Since Ai J is EP for all i, this means that A1 J + . . . + Am J is EP,
by Theorem 3.11. Therefore, from Remarks 3.2, we infer that A1 + . . . + . . .Am is J-EP. Alternately, from [7],
we see that R(J(A1 + . . . + Am)∗) = R(((A1 + . . . + Am)J)2). The left hand side of this last equation is nothing
but Ra((A1 + . . . + Am)[∗]), whereas the right hand side equals Ra(A[2]

1 + . . . + A[2]
m ) (after simplification using

the fact that Ai ◦ A j = 0 for i , j). Note that Ra(A[2]
1 + . . . + A[2]

m ) = Ra(A[2]), as Ai ◦ A j = 0 for i , j. Thus,
A = A1 + . . . + Am is J-EP.

Remark 3.13. If A is J-EP and Ai ◦ A j = 0 for i , j then, R((AJ)∗) = R((A1 J)2 + . . . + (Am J)2), by Remark 3.2.
The right hand side of the above is contained in R((A1 J)2) + . . . + R((Am J)2) =

∑
Ra(A[2]

i ). The left hand side is
Ra(A[∗]) = Ra(A[2]). An interesting problem in linear algebra is to study rank additivity results. For some recent
results, refer [13] and the references cited therein. On the other hand, range additivity is less studied. Results
connecting these two themes was studied by Baksalary, Semrl and Styan [1]. In particular, they proved the following
: If A1,A2 and A3 are matrices and A = A1 + A2 + A3 and if every {1}- inverse of A is also a {1}-inverse of each of
the Ai’s, then R(A) =

⊕
R(Ai) (Refer Theorems 4 and 5, [1]). Thus, in the setting of Theorem 3.12, if m = 3 and if

every {1}-inverse of (A1J)2 + (A2J)2 + (A3J)2 is a {1}-inverse of (Ai J)2 for each i = 1, 2, 3, then Ra(A[2]) =
∑

Ra(A[2]
i ).

We now investigate the reverse order law with respect to the Moore-Penrose inverse in the indefinite
setting. It is known that in the Euclidean setting, if A and B are EP and if R(A) = R(B), then (AB)† = B†A†

(See Theorem 7.2.4, Chapter 7, [5]). The following theorem is an analogue of the above.

Theorem 3.14. If A and B are J-EP with Ra(A) = Ra(B), then (A ◦ B)[†] = B[†] ◦ A[†].

Proof. Since A and B are J-EP, AJ and BJ are EP. Also, Ra(A) = Ra(B) implies that R(AJ) = R(BJ). Therefore,
by Theorem 7.2.4, Chapter 7, [5], we see that (AJBJ)† = (BJ)†(AJ)†. On simplifying, we get (AJB)† = B† JA†.
The conclusion follows by noting that the reverse order law (A ◦ B)[†] = B[†] ◦ A[†] holds if and only if
(AJB)† = B† JA†.

The example below shows that the assumption Ra(A) = Ra(B) in the above theorem cannot be dropped.

Example 3.15. Let J =

(
−1 0
0 1

)
,A =

(
1 −1
1 −1

)
and B =

(
1 0
0 0

)
. In this case, A and B are J-EP. Ra(A) and Ra(B)

are spanned by the vectors (1, 1)t and (1, 0)t, respectively. Also, A ◦ B =

(
−1 0
−1 0

)
and (A ◦ B)[†] = (1/2)

(
−1 1
0 0

)
.

On the other hand, B[†] ◦ A[†] = (1/4)
(
−1 1
0 0

)
. Thus, (A ◦ B)[†] , B[†] ◦ A[†].

Remark 3.16. It follows from Theorem 3.7 (b) that if A and B are such that JA∗A = A∗AJ, then A∗ABB∗ is EP if and
only if A∗A ◦ BB∗ is J-EP. However, A∗ABB∗ is EP if and only if (AB)† = B†A†. We thus have the following :

Theorem 3.17. Let A be such that AJ = JA. Then, (A ◦ B)[†] = B[†] ◦ A[†] if and only if A∗A ◦ BB∗ is J-EP.
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Proof. J-EP-ness of A∗A ◦ BB∗ is equivalent to A∗ABB∗ is EP, as JA∗A = A∗AJ (from the above remark).
However, from the above remark, A∗ABB∗ is EP if and only if (AB)† = B†A†. Since AJ = JA, from this we get
the reverse order law (A ◦ B)[†] = B[†] ◦ A[†].

The following example illustrates that even if AJ = JA, neither of the conclusions in Theorem 3.17 need
hold.

Example 3.18. Let A =

(
1 1
1 1

)
,B =

(
1 1
1 0

)
and let J =

(
0 1
1 0

)
. Then, AJ = JA,A∗A ◦ BB∗ = 2

(
3 2
3 2

)
, is

not J-EP. Since AJ = JA, we see that B[†] ◦ A[†] = JB†A† = (1/4)
(
0 0
1 1

)
. On the other hand, one can see that

(A ◦ B)[†] = (1/10)
(
1 1
2 2

)
.

It is interesting to note, however, that A ◦ B can be J-EP without A∗A ◦ BB∗ being J-EP, even if AJ = JA,
as the following example shows.

Example 3.19. Let A =

(
1 1
1 1

)
,B =

(
1 1
0 0

)
and J =

(
0 1
1 0

)
. Then C := A∗A ◦ BB∗ is given by the matrix

C = 4
(
1 0
1 0

)
and one can easily check that C is not J-EP. Now, A ◦ B = AB =

(
1 1
1 1

)
, which is J-EP. Note that

AJ = JA.

We now pass on to the reverse order law for triple products. We first prove the following theorem,
which is a simple application of Theorem 3.17.

Theorem 3.20. Let A,B and C be square matrices and J be a weight such that AJ = JA, (A◦B)J = J(A◦B). Further,
assume that A∗ABB∗ and (AB)∗(AB)CC∗ are EP. Then, (A ◦ B ◦ C)[†] = C[†] ◦ B[†] ◦ A[†].

Proof. Let us observe first that the conditions (A ◦ B)J = J(A ◦ B) and EP-ness of (AB)∗(AB)CC∗ together
imply that (A ◦B ◦C)[†] = C[†] ◦ (A ◦B)[†] (see Remarks 3.16 and Theorem 3.17). On the other hand, from the
conditions AJ = JA and the EP-ness of A∗ABB∗ we see that (A ◦ B)[†] = B[†] ◦ A[†]. Combining these two, we
get the desired result.

A well known result of Hartwig [6] says that for matrices A,B,C for which the product ABC is defined,
the reverse order law (ABC)† = C†B†A† holds if and only if Q = P† and that A∗APQ and QPCC∗ are EP, where
P = A†ABCC† and Q = CC†B†A†A (see (ii) of Theorem 1, [6]). We prove below that for square matrices
A,B,C and a weight J, if BJ = JB, then the reverse order law for the indefinite product A ◦B ◦C holds if and
only if the reverse order law for the triple product ABC holds; that is,

Theorem 3.21. (A ◦ B ◦ C)[†] = C[†] ◦ B[†] ◦ A[†] if and only if (ABC)† = C†B†A†, assuming BJ = JB.

Proof. Assume that BJ = JB and that (A◦B◦C)[†] = C[†] ◦B[†] ◦A[†]. Then, we have J(AJBJC)†J = JC†JB† JA†J,
which in turn implies that (ABC)† = C†B†A†. The converse can be established in a similar manner.

As the following example shows, the commutativity assumption BJ = JB cannot be dispensed with in
the above theorem.

Example 3.22. Let J =

(
0 1
1 0

)
. Let A =

(
1 0
1 0

)
,B =

(
1 −1
1 −1

)
, C =

(
1 1
0 0

)
. It can be easily seen that (A◦B◦C)[†] =

(−1/4)
(
1 1
1 1

)
, whereas C[†] ◦ B[†] ◦ A[†] = (−1/16)

(
1 1
1 1

)
. Note that BJ , JB.
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Baksalary, Hauke and Johnson considered polynomials in two variables, evaluated at A and Ã with
Ã ∈ {A=,A†,A∗}, in which A= denotes a reflexive generalized inverse of A and obtained characterizations of
EP matrices (Refer Theorems 1 and 2, [2]). It is natural to investigate an analogue of the same in indefinite
inner product spaces with respect to the indefinite matrix product. Let us recall an interesting result. A
problem posed in issue 34 of IMAGE - The Bulletin of the International Linear Algebra Society [14], was
to prove the equivalence of the following two statements for a square matrix A : (1) A + A† = 2AA† (2)
A+A† = AA†+A†A. In issue 35 of IMAGE, in addition to the equivalence of (1) and (2) above, it was shown
that each of them implies EP-ness of A. Another related problem is to characterize all square matrices such
that A + A† = 2AA†. The solution to this problem is given in the following.

Lemma 3.23. (Lemma on page 2336, [2]) Let A ∈ Mn(C). Then A + A† = 2AA† if and only if A is an EP matrix
and A3 − 2A2 + A = 0.

Let us point out that if A =

(
1 1
0 1

)
and J =

(
1 0
0 −1

)
, then A is invertible and hence trivially J-EP. In this

case, A[−1] = A and hence, the equation A + A[†] = A ◦ A[†] + A[†] ◦ A is not satisfied. Note that the other
equation A[3] − 2A[2] + A = 0 is not satisfied, too. However, a generalization of the above Lemma does hold
in indefinite inner product spaces, as we prove below.

Lemma 3.24. Let A be a square matrix such that A + A[†] = 2A ◦ A[†]. Then, A is J-EP and satisfies the equation
A[3] − 2A[2] + A = 0. The converse is also true.

Proof. The equation A + A[†] = 2A ◦ A[†] can be written as A[†] = A ◦ (2A[†] − J). From this it follows
that Ra(A[†]) ⊆ Ra(A) and hence R((AJ)†) = R(JA†) ⊆ R(AJ), proving that AJ is EP. Thus, A is J-EP. Now,
premultiplying and postmultiplying the equation A + A[†] = 2A ◦ A[†] by A, we get A[3] − 2A[2] + A = 0.

Conversely, if A is J-EP, then by premultiplying and postmultiplying the equation A[3] − 2A[2] + A = 0
by A[†], we get the result.

Let P(A,A[†]) = A ◦ Q1(A,A[†]) + A[†] ◦ Q2(A,A[†]), where Qi(A,A[†]) are polynomials in two variables
evaluated at A and A[†], with multiplication with respect to the indefinite matrix product. We then have the
following analogue of Corollary in page 2338 of [2].

Theorem 3.25. Let P(A,A[†]) = 0, where P(A,A[†]) is as above with the condition that Qi(A,A[†]) is non-singular
for at least one i. Then, A is J-EP. Consequently, P(A,A[†]) can be expressed as an annihilating polynomial of A.

Proof. Suppose P(A,A[†]) = 0 and that Q2(A,A[†]) is non-singular. Then A◦Q1(A,A[†])◦Q2(A,A[†])[−1] = −A[†].
This means, Ra(A[†]) ⊆ Ra(A) and so AJ is EP. Therefore, A is J-EP. The second statement follows from
Corollary 3 in Chapter 4 in [3].

Nonsingularity of the Qi for at least one i is crucial in the above proof. Also, it may be the case that A is
J-EP with neither of the Qi being non-singular. The following example illustrates this.

Example 3.26. Let A and J be as in Example 3.3. We know from Example 3.3 that A is not J-EP. From the equation

A ◦ A[†] ◦ A = A, we see that A ◦ (A[†] ◦ A − J) = 0. In this case, Q1(A,A[†]) = (1/2)
(
−1 1
−1 1

)
and Q2(A,A[†]) = 0,

thereby proving that neither of the Qi is non-singular. On the other hand, if A and J are as in Example 3.4, then Q1
and Q2 are given by the matrices A[†] and A, respectively, which are clearly singular.

4. Concluding Remarks

For matrices A and B of the same order, A is said to be below B in the star order, denoted by A <∗ B, if
AA∗ = BA∗ and A∗A = A∗B. The star order, which is a partial order, was introduced by Drazin. The star
order and other kinds of matrix partial orders were studied in connection with the reverse order law for
generalized inverses. A good and an up to date reference on this topic is the monograph by S. K. Mitra,
Bhimasankaram and Saroj Malik [12]. Among several interesting results concerning the star order, we state
below two interesting results.
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Theorem 4.1. (Corollary 5.2.9, [12]) If A and B are matrices of the same order, then the following are eqiuvalent:
(1) A <∗ B (2) A† <∗ B† (3) AA†B = A = BA†A = BA†B and (4) A†AB = A† = B†AA† = B†AB†.

Theorem 4.2. (Theorem 5.4.3, [12]) Let A and B be mtrices of the same order such that A <∗ B. Then, the following
are equivalent:
(1) A is EP (2) A†B = BA† and (3) AB† = B†A.

One can now define the star order with respect to the indefinite matrix product. However, it turns out
that the two notions coincide. This is because : we would want to define A <[∗] B if A ◦ A[∗] = B ◦ A[∗] and
A[∗] ◦A = A[∗] ◦B. This, after simplification, yields A <∗ B. One can now attempt to study reverse order laws
and other partial orders with respect to the indefinite matrix product. An in-depth investigation of this is
deferred for future study. Let us first present a generalization of Theorem 4.2 above.

Theorem 4.3. Let A and B be square matrices of the same order such that A <∗ B. Then, A is J-EP if and only if
A[†] ◦ B = B ◦ A[†].

Proof. Suppose A <∗ B and that A is J-EP. Since A is J-EP, AA†J = JA†A. From A <∗ B, we have that AA† =
BA†,A†A = A†B. Therefore, AA†J = BA†J and JA†A = JA†B. From this, we conclude that BA† J = JA†B,
which is the same as saying A[†] ◦ B = B ◦A[†]. For the converse, note that if BA† J = JA†B, then from A <∗ B,
we see that AA†J = JA†A. This implies that A is J-EP.

We end with the following Theorem.

Theorem 4.4. Let A and B be square matrices of the same size. Then, we have the following: If A <∗ B,AJ =
JA,BJ = JB and AB∗ = B∗A, then A[†] ◦ B = B ◦ A[†] =⇒ B[†] ◦ A = A ◦ B[†].

Proof. From Theorem 4.3, it follows that A is J-EP, and hence EP (as AJ = JA). This, in turn, is equivalent
to A†B = BA† (Refer Theorem 4.2). As remarked earlier (Refer Remarks 3.2), A is EP if and only if A† is
a polynomial in A. Combining this with the assumption AB∗ = B∗A, we see that A†B∗ = B∗A†. We then
have (A[†])∗A[†]BB∗ = (A†)∗A†BB∗ = (A†)∗BA†B∗ = (B∗A†)∗(A†B∗) = (A†B∗)∗(A†B∗), which is Hermitian. From
AJ = JA, we then have from Theorem 3.17 that (A[†] ◦ B)[†] = B[†] ◦ A. On the other hand, B∗BA†(A†)∗ =
B∗A†B(A†)∗ = (A†B∗)B(A†)∗ = (B(A†)∗)∗(B(A†)∗), which is again Hermitian. Now, since BJ = JB, it follows
from Theorem 3.17 that B[†] ◦ A = (A[†] ◦ B)[†] = (B ◦ A[†])[†] = A ◦ B[†].
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