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Abstract. We study spectral properties of an m-isometric operator and show that an m-isometric operator
has the single valued extension property. Also we show if an m-isometric operator T is invertible and
paranormal, then T is a unitary operator. Next we give a new proof of T∗T − I ≥ 0 if T is a 2-isometry.

1. Introduction

J. Agler and M. Stankus introduced an m-isometry [1], [2] and [3]. Let H be a complex Hilbert space
and B(H) be a set of all bounded linear operators on H . Let mCk be the binomial coefficient. An operator

T ∈ B(H) is said to be an m-isometry if
m∑

k=0

(−1)k
mCk T∗m−kTm−k = 0. It is known that an isometry (m = 1)

admits Wold decomposition and has many interesting properties. m-Isometries are not only a natural
extension of an isometry, but they are also important in the study of Dirichlet operators and some other
classes of operators. For an operator T, we denote

Bm(T) = T∗mTm − mC1 · T∗m−1Tm−1 + · · · + (−1)m−1 · I.

Hence T is an m-isometry if and only if Bm(T) = 0.
Agler and Stankus [1] proved the following interesting result. If T is an m-isometry, then Bm−1(T) ≥ 0

([1], Proposition 1.5). We think their proof of Bm−1(T) ≥ 0 is fantastic. First we extend some results obtained
by S.M. Patel [6] to m-isometric operators. Next we give a new proof of B1(T) ≥ 0 for a 2-isometric operator
T. This is a known result, however we think our proof would be interesting.

Let σ(T) and r(T) be the spectrum and the spectral radius of T, respectively. Also let T = {z : |z| = 1}.
For an m-isometry T, the following theorem holds.
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Theorem A [1]. Let T be an m-isometry. Then the following assertions hold.
(1) If z is an approximate eigenvalue of T, then z ∈ T.
(2) If T is invertible, then σ(T) ⊂ T.
(3) If T is not invertible, then σ(T) = {z : |z| ≤ 1}.

2. m-isometry

Theorem 1. For an m-isometry T the following statements hold.
(a) If a is an eigenvalue of T, then a is an eigenvalue of T∗.
(b) Eigenvectors of T corresponding to distinct eigenvalues are orthogonal.
(c) If a is an approximate eigenvalue of T, then a is an approximate eigenvalue of T∗.
(d) If a, b are distinct approximate eigenvalues of T, and {xn}, {yn} sequences of unit vectors such that (T− a)xn −→ 0
and (T − b)yn −→ 0, then 〈xn, yn〉 −→ 0.

Proof.
(a) Let Tx = ax (x , 0). Then it holds

0 =


m∑

j=0

(−1) j
mC jT∗(m− j)Tm− j

 x = (aT∗ − 1)mx.

Since |a| = 1, we have (T∗ − a)mx = 0 and hence a is an eigenvalue of T∗.
(b) Let a, b be distinct eigenvalues of T and x, y be corresponding eigenvectors. It holds

0 =
〈

m∑

j=0

(−1) j
mC jT∗(m− j)Tm− j

 x, y
〉

= (ab − 1)m〈x, y〉.

Since a , b and |b| = 1, a − b = (ab − 1)b and ab − 1 , 0. Hence, 〈x, y〉 = 0.
(c) Let {xn} be a sequence of unit vectors such that lim(T − a)xn = 0. Then since


m∑

j=0

(−1) j
mC jT∗(m− j)Tm− j

 xn = 0,

0 = lim
n→∞


m∑

j=0

(−1) j
mC jT∗(m− j)Tm− j

 xn = lim
n→∞

(aT∗ − 1)mxn.

Therefore, since |a| = 1,
lim
n→∞

am(T∗ − a)mxn = 0

and a is an approximate eigenvalue of T∗.
(d) Since

0 = lim
n→∞

〈
m∑

j=0

(−1) j
mC jT∗(m− j)Tm− j

 xn, yn

〉
= (ab − 1)m lim

n→∞
〈xn, yn〉,

we have 〈xn, yn〉 −→ 0. �

An operator T is said to have the single valued extension property if, for every open subset U of C, an
analytic function f : U −→ H satisfies (T − λ) f (λ) = 0 ∀λ ∈ U, then f (λ) = 0 ∀λ ∈ U. Uchiyama and
Tanahashi [7] studied the spectral condition (d) in Theorem 1 and proved that if T has the spectral condition
(d), then T has the single valued extension property. Hence we have the following result.
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Theorem 2. An m-isometric operator T has the single valued extension property.

An operator T is called paranormal if ‖Tx‖2 ≤ ‖T2x‖ for all unit vector x ∈ H . It is well known that if
T is paranormal, then r(T) = ‖T‖. Moreover, if there exists T−1, then T−1 is also paranormal. The following
lemma can be easily obtained. For the completeness, we give a proof.

Lemma 1. Let T be invertible and paranormal. If σ(T) ⊂ T, then T is a unitary operator.

Proof. Since ‖T‖ = r(T) = 1, T∗T ≤ I. Therefore, T∗−1T∗TT−1 ≤ T∗−1T−1. Hence, I ≤ T∗−1T−1. Since T−1 is
paranormal and σ(T−1) ⊂ T, ‖T−1‖ = r(T−1) = 1, that is, T∗−1T−1 ≤ I. Therefore, T∗−1T−1 = I and T∗T = I.
Since T is invertible, T is a unitary operator. �

If T is an invertible m-isometry, then σ(T) ⊂ T. Hence, we have the following result.

Theorem 3. Let T be an m-isometry. If T is invertible and paranormal, then T is a unitary operator.

Theorem 3 holds for a ∗-paranormal operator. An operator T ∈ B(H) is said to be ∗-paranormal if

‖T∗x‖2 ≤ ‖T2x‖‖x‖ for all x ∈ H .

Theorem 4. Let T be an m-isometry. If T is invertible and ∗-paranormal, then T is a unitary operator.

For the proof of Theorem 4, we prepare the following.

Theorem B [8]. Let T be ∗-paranormal. Then ‖T‖ = r(T).
Moreover, if T is invertible, then ‖T−1‖ ≤ r(T−1)3 · r(T)2.

First we give other result.

Lemma 2. Let T be invertible and satisfy

‖T2x‖3 ≤ ‖T3x‖2 · ‖x‖ for every x ∈ H .

Then ‖T‖2 ≤ ‖T−1‖ · r(T)3.

Proof. By the definition of ∗-paranormality, we have

‖T2x‖3 ≤ ‖T3x‖2 · ‖x‖,

‖T3x‖3 ≤ ‖T4x‖2 · ‖Tx‖,
‖T4x‖3 ≤ ‖T5x‖2 · ‖T2x‖,
‖T5x‖3 ≤ ‖T6x‖2 · ‖T3x‖,
‖T6x‖3 ≤ ‖T7x‖2 · ‖T4x‖,

...

‖Tnx‖3 ≤ ‖Tn+1x‖2 · ‖Tn−2x‖,
‖Tn+1x‖3 ≤ ‖Tn+2x‖2 · ‖Tn−1x‖,
‖Tn+2x‖3 ≤ ‖Tn+3x‖2 · ‖Tnx‖.
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Therefore, for n ≥ 2,
‖T2x‖2 · ‖Tn+1x‖ · ‖Tn+2x‖ ≤ ‖x‖ · ‖Tx‖ · ‖Tn+3x‖2.

Next it holds
‖T2x‖2 · ‖T3x‖ · ‖T4x‖ ≤ ‖x‖ · ‖Tx‖ · ‖T5x‖2,
‖T2x‖2 · ‖T4x‖ · ‖T5x‖ ≤ ‖x‖ · ‖Tx‖ · ‖T6x‖2,
‖T2x‖2 · ‖T5x‖ · ‖T6x‖ ≤ ‖x‖ · ‖Tx‖ · ‖T7x‖2,

...

‖T2x‖2 · ‖Tn+1x‖ · ‖Tn+2x‖ ≤ ‖x‖ · ‖Tx‖ · ‖Tn+3x‖2,
‖T2x‖2 · ‖Tn+2x‖ · ‖Tn+3x‖ ≤ ‖x‖ · ‖Tx‖ · ‖Tn+4x‖2,
‖T2x‖2 · ‖Tn+3x‖ · ‖Tn+4x‖ ≤ ‖x‖ · ‖Tx‖ · ‖Tn+5x‖2.

Therefore, for n ≥ 2,

‖T2x‖2(n+1) · ‖T3x‖ · ‖T4x‖2 ≤ ‖x‖n+1 · ‖Tx‖n+1 · ‖Tn+4x‖ · ‖Tn+5x‖2

≤ ‖x‖n+1 · ‖Tx‖n+1 · ‖Tn+1x‖ · ‖Tn+1x‖2 · ‖T‖11.

Hence,
‖T2x‖2 · ‖T3x‖ 1

n+1 · ‖T4x‖ 2
n+1 ≤ ‖x‖ · ‖Tx‖ · ‖Tn+1x‖ 3

n+1 · ‖T‖ 11
n+1

≤ ‖x‖ · ‖Tx‖ · ‖Tn+1‖ 3
n+1 · ‖x‖ 3

n+1 · ‖T‖ 11
n+1 .

Let n→∞, we have
‖T2x‖2 ≤ ‖x‖ · ‖Tx‖ · r(T)3.

Let x be T−1y. Therefore, we have
‖Ty‖2 ≤ ‖T−1y‖ · ‖y‖ · r(T)3

and ‖T‖2 ≤ ‖T−1‖ · r(T)3. �

If T is ∗-paranormal, then

‖Tx‖4 = (T∗Tx, x)2 ≤ ‖T∗Tx‖2 · ‖x‖2 ≤ ‖T3x‖ · ‖Tx‖ · ‖x‖2.

Therefore, it holds

(∗) ‖Tx‖3 ≤ ‖T3x‖ · ‖x‖2 for every x ∈ H .

If T is invertible and ∗-paranormal, by (∗) then we have

‖T−2x‖3 ≤ ‖x‖ · ‖T−3x‖2 for every x ∈ H .

Let S = T−1. Then the operator S satisfies

‖S2x‖3 ≤ ‖S3x‖2 · ‖x‖ for every x ∈ H .

Therefore, it holds ‖S‖2 ≤ ‖S−1‖ · r(S)3.

Hence by Lemma 2, we have
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Lemma 3. Let T be invertible and ∗-paranormal. Then

‖T−1‖2 ≤ ‖T‖ · r(T−1)3.

By Theorem B and Lemma 3, for an invertible ∗-paranormal operator T we have

‖T−1‖ ≤ r(T−1)3 · r(T)2 = r(T−1)3 · ‖T‖2.

Thus it holds
‖T−1‖3 ≤ ‖T‖3 · r(T−1)6

and
‖T−1‖ ≤ ‖T‖ · r(T−1)2.

Proof of Theorem 4. Since T is invertible and m-isometric, σ(T) ⊂ T. Hence, by Theorem B, ‖T‖ = 1. Since
T is invertible and ∗-paranormal, then ‖T−1‖ = 1 by Lemma 3. So it holds ‖T‖ = ‖T−1‖ = 1. Hence T is a
unitary operator. �

Remark 1. There exists an invertible ∗-paranormal operator T such that r(T−1) < ‖T−1‖ (cf. [8]).

3. 2-isometry

In this section, we give a new proof of T∗T − I ≥ 0 if T is a 2-isometry. For this we need the following
lemmas.

Lemma 4. For a constant a ∈ R and m ∈N, it holds

−
m∑

k=1

(−1)k
mCk (1 + (m − k)a) = 1 + ma.

Proof. We have

−
m∑

k=1

(−1)k
mCk = 1 −

( m∑

k=0

(−1)k
mCk

)
= 1 − (1 − 1)m = 1

and

−
m∑

k=1

(−1)k
mCk (m − k) = −m

m∑

k=1

(−1)k
mCk +

m∑

k=1

(−1)k k mCk

= m +

m∑

k=1

m (−1)k
m−1Ck−1 = m + m

m−1∑

j=0

(−1) j+1
m−1C j

= m −m
m−1∑

j=0

(−1) j
m−1C j = m −m(1 − 1)m−1 = m. �

Lemma 5. Let T be a 2-isometry. If T∗Tx = (1 + a)x for some constant a ∈ R and a non-zero vector x ∈ H , then, for
every m (m ≥ 2),

T∗mTmx = (1 + ma)x.
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Proof. Since T is a 2-isometry, it holds

T∗2T2x = 2T∗Tx − x = (1 + 2a)x.

Hence, it holds for m = 2. We assume T∗kTkx = (1 + ka)x for k = 2, ...,m − 1. It is easy to see that T is an
m-isometry for every m ≥ 2. Since

T∗mTm = −
m∑

k=1

(−1)k
mCk T∗(m−k)Tm−k,

by Lemma 4 it holds

T∗mTmx =
(
−

m∑

k=1

(−1)k
mCk T∗(m−k)Tm−k

)
x

=
(
−

m∑

k=1

(−1)k
mCk (1 + (m − k)a)

)
x = (1 + ma)x.

By induction, the proof is complete. �

Theorem 5. Let T be a 2-isometry. Then T∗T − I ≥ 0.

Proof. We assume T∗T − I � 0. Since the operator T∗T − I is hermitian, there exist a < 0 and a sequence {xn}
of unit vectors such that (T∗T − I − a)xn −→ 0 (n −→ ∞). By Berberian’s method [4], we can assume that
there exists a non-zero vector x such that (T∗T − I − a)x = 0. Hence we have T∗Tx = (1 + a)x. Since T is a
2-isometry, by Lemma 5 it holds

T∗mTmx = (1 + ma)x for every m ≥ 2.

Since a < 0 and ‖Tmx‖2 = (1 + ma)‖x‖2, it’s a contradiction for some large m ∈N. �

Then we have the following corollary.

Corollary 1 [6]. Let T be a 2-isometry. If T is power bounded, then T is an isometry.

Proof. By the above theorem, T∗T − I ≥ 0. Suppose T is power bounded. If T is not an isometry, there is
a > 0 such that a ∈ σ(T∗T − I). Therefore, similarly as in the proof of Theorem 5, we have ‖Tm‖ ≥

√
1 + ma

for every m ∈N. This is a contradiction to our assumption. �

Remark 2. An operator T is called concave if T∗2T2−2T∗T+I ≥ 0. Then by [5], it holds T∗mTm ≥ mT∗T−(m−1)I
for every m ≥ 2. Hence, for a concave operator T if T∗Tx = (1 + a)x for some constant a ∈ R and a non-zero
vector x ∈ H , then ‖Tmx‖2 ≥ (1 + ma)‖x‖2 (m ≥ 2). Hence, a power bounded concave operator T is a
contraction, i.e., T∗T ≤ I.

Patel proved that a 2-isometry similar to a spectraloid operator (the spectral radius coincides with the
numerical radius, i.e., r(T) = w(T)) is an isometry ([6], Corollary 2.6). We have the following result.

Theorem 6. Let T be a 2-isometry. If the range of T is dense, then T is a unitary operator.

Proof. Since (T∗T − I)2 ≥ 0 and 2T∗T − I = T∗2T2,

0 ≤ (T∗T − I)2 = (T∗T)2 − 2T∗T + I = (T∗T)2 − T∗2T2 = T∗(TT∗ − T∗T)T.
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Since the range of T is dense, we have TT∗ − T∗T ≥ 0. Hence, T∗ is hyponormal and ‖T‖ = ‖T∗‖ = r(T∗) =
r(T) = 1. By Corollary 2.6 of [6], T is an isometry. Since T is an isometry, the range of T is closed and hence
T is a unitary operator. �

The following result is a direct consequence of the above theorem.

Corollary 2 [1, Proposition 1.23]. If T is an invertible 2-isometry, then T is a unitary operator.
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