Functional Analysis, Approximation and Computation 4:2 (2012), 41–47

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

New Weyl-type Theorems - I

M. Berkani^a, M. Kachad^b

^aDepartment of mathematics, Science Faculty of Oujda, University Mohammed I, Operator Theory Team, SFO, Morocco ^bDepartment of mathematics, Science Faculty of Oujda, University Mohammed I, Operator Theory Team, SFO, Morocco

Abstract. In this paper we introduce the new spectral properties (W_E) and (UW_{E_a}). An operator *T* satisfies property (W_E) (resp. (UW_{E_a}), if its spectrum (resp. its approximate spectrum) is the disjoint union of its Weyl spectrum and its isolated eigenvalues (resp. of its upper semi-Weyl spectrum and its isolated eigenvalues in its approximate spectrum). The main purpose of the paper is to study relationship between the properties (W_E), (UW_{E_a}) and other Weyl-type theorems.

1. Introduction

Let *X* be a Banach space, and let L(X) be the Banach algebra of all bounded linear operators acting on *X*. For $T \in L(X)$, we will denote by N(T) the null space of *T*, by $\alpha(T)$ the nullity of *T*, by R(T) the range of *T*, by $\beta(T)$ its defect and by T^* the adjoint of *T*. We will denote also by $\sigma(T)$ the spectrum of *T* and by $\sigma_a(T)$ the approximate point spectrum of *T*. If the range R(T) of *T* is closed and $\alpha(T) < \infty$ (resp. $\beta(T) < \infty$), then *T* is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. If $T \in L(X)$ is either upper or lower semi Fredholm, then *T* is called a semi-Fredholm operator, and the index of *T* is defined by ind(T) = $\alpha(T) - \beta(T)$. If both $\alpha(T)$ and $\beta(T)$ are finite, then *T* is called a Fredholm operator. An operator $T \in L(X)$ is called a Weyl operator if it is a Fredholm operator of index zero. The Weyl spectrum $\sigma_W(T)$ of *T* is defined by $\sigma_W(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not a Weyl operator}\}$.

For a bounded linear operator T and a nonnegative integer n, define $T_{[n]}$ to be the restriction of T to $R(T^n)$, viewed as a map from $R(T^n)$ into $R(T^n)$ (in particular $T_{[0]} = T$). If for some integer n the range space $R(T^n)$ is closed and $T_{[n]}$ is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a lower) semi-B-Fredholm operator. A semi-B- Fredholm operator T is an upper or a lower semi-B-Fredholm operator, and in this case the index of T is defined as the index of the semi-Fredholm operator $T_{[n]}$, see [11]. Moreover if $T_{[n]}$ is a Fredholm operator, then T is called a B-Fredholm operator, see [2]. An operator $T \in L(X)$ is said to be a B-Weyl operator [4], if it is a B-Fredholm operator of index zero. The B-Weyl spectrum $\sigma_{BW}(T)$ of T is defined by $\sigma_{BW}(T) = \{\lambda \in \mathbb{C} \mid T - \lambda I \text{ is not a B-Weyl operator}\}.$

The ascent a(T) of an operator T is defined by $a(T) = \inf\{n \in \mathbb{N} : N(T^n) = N(T^{n+1})\}$, and the descent $\delta(T)$ of T, is defined by $\delta(T) = \inf\{n \in \mathbb{N} : R(T^n) = R(T^{n+1})\}$, with $\inf \emptyset = \infty$.

²⁰¹⁰ Mathematics Subject Classification. 47A53, 47A10, 47A11.

Keywords. Property (WE); property (UWE_a); Weyl-type theorems.

Received: August 17, 2012; Accepted: September 3, 2012

Communicated by Dragan S. Djordjević

Email addresses: berkanimo@aim.com (M. Berkani), kachad.mohammed@gmail.com (M. Kachad)

According to [13], a complex number λ is a pole of the resolvent of *T* if and only if $0 < \max(a(T - \lambda I), \delta(T - \lambda I)) < \infty$. Moreover, if this is true, then $a(T - \lambda I) = \delta(T - \lambda I)$. An operator *T* is called Drazin invertible if 0 is a pole of *T*. The Drazin spectrum $\sigma_D(T)$ of *T* is defined by $\sigma_D(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Drazin invertible}\}$.

Define also the set LD(X) by $LD(X) = \{T \in L(X) : a(T) < \infty \text{ and } R(T^{a(T)+1}) \text{ is closed} \}$ and $\sigma_{LD}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin LD(X)\}$. Following [10], an operator $T \in L(X)$ is said to be left Drazin invertible if $T \in LD(X)$. We say that $\lambda \in \sigma_a(T)$ is a left pole of T if $T - \lambda I \in LD(X)$, and that $\lambda \in \sigma_a(T)$ is a left pole of T of finite rank if λ is a left pole of T and $\alpha(T - \lambda I) < \infty$.

Let $SF_+(X)$ be the class of all upper semi-Fredholm operators and $SF_+(X) = \{T \in SF_+(X) : \operatorname{ind}(T) \le 0\}$. The upper semi-Weyl spectrum $\sigma_{SF_+}(T)$ of T is defined by $\sigma_{SF_+}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \notin SF_+(X)\}$. Similarly is defined the upper semi-B-Weyl spectrum $\sigma_{SBF_+}(T)$ of T.

An operator $T \in L(X)$ is called upper semi-Browder if it is upper semi-Fredholm operator of finite ascent, and is called Browder if it is a Fredholm of finite ascent and descent. The upper semi-Browder spectrum $\sigma_{ub}(T)$ of T is defined by $\sigma_{ub}(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not upper semi-Browder}\}$, and the Browder spectrum $\sigma_b(T)$ of T is defined by $\sigma_b(T) = \{\lambda \in \mathbb{C} : T - \lambda I \text{ is not Browder}\}$.

An operator $T \in L(X)$ is said to have the single valued extension property at $\lambda_0 \in \mathbb{C}$ (abbreviated SVEP at λ_0), if for every open neighborhood \mathcal{U} of λ_0 , the only analytic function $f : \mathcal{U} \longrightarrow X$ which satisfies the equation $(T - \lambda I)f(\lambda) = 0$ for all $\lambda \in \mathcal{U}$ is the function $f \equiv 0$. An operator $T \in L(X)$ is said to have the SVEP if *T* has this property at every $\lambda \in \mathbb{C}$. (See [15] for more details about this concept).

Below, we recall the list of all symbols and notations we will use:

E(T): eigenvalues of T that are isolated in the spectrum $\sigma(T)$ of T, $E^0(T)$: eigenvalues of T of finite multiplicity that are isolated in the spectrum $\sigma(T)$ of T, $E_a(T)$: eigenvalues of T that are isolated in the approximate point spectrum $\sigma_a(T)$ of T, $E_a^0(T)$: eigenvalues of T of finite multiplicity that are isolated in the spectrum $\sigma_a(T)$ of T, $\Pi(T)$: poles of T, $\Pi^0(T)$: poles of *T* of finite rank, $\Pi_a(T)$: left poles of *T*, $\Pi_a^0(T)$: left poles of T of finite rank, $\sigma_b(T)$: Browder spectrum of T, $\sigma_D(T)$: Drazin spectrum of *T*, $\sigma_{ub}(T)$: upper semi-Browder spectrum of *T*, $\sigma_{BW}(T)$: B-Weyl spectrum of T, $\sigma_W(T)$: Weyl spectrum of T, $\sigma_{SF_{\tau}}(T)$: upper semi-Weyl spectrum of T, $\sigma_{SBF_{-}}(T)$: upper semi-B-Weyl spectrum of *T*, $\Delta_a(T) = \sigma_a(T) \setminus \sigma_{SF^-_+}(T),$ $\Delta_a^g(T) = \sigma_a(T) \setminus \sigma_{SBF_+}(T),$ $\Delta(T) = \sigma(T) \setminus \sigma_W(T),$ $\Delta^g(T) = \sigma(T) \setminus \sigma_{BW}(T).$ $\sigma(T) \setminus \sigma_W(T) = \Pi^0(T)$: Browder's theorem holds for *T*, $\sigma(T) \setminus \sigma_W(T) = E^0(T)$: Weyl's theorem holds for *T*, $\sigma(T) \setminus \sigma_{BW}(T) = \Pi(T)$: generalized Browder's theorem holds for T, $\sigma(T) \setminus \sigma_{BW}(T) = E(T)$: generalized Weyl's theorem holds for T, $\sigma_a(T) \setminus \sigma_{SF_+}(T) = \Pi_a^0(T)$: a-Browder's theorem holds for *T*, $\sigma_a(T) \setminus \sigma_{SF^-}(T) = E^0_a(T)$: a-Weyl's theorem holds for T, $\sigma_a(T) \setminus \sigma_{SBF_+}(T) = \Pi_a(T)$: generalized a-Browder's theorem holds for *T*,

 $\sigma_a(T) \setminus \sigma_{SBF_+}(T) = E_a(T)$: generalized a-Weyl's theorem holds for *T*.

The paper is organized as follows. In the second section, we introduce the property (*W*_E). Then we prove that $T \in L(X)$ satisfies property(*W*_E) if and only if *T* satisfies generalized Weyl's theorem and $\sigma_{BW}(T) = \sigma_W(T)$. We also give conditions for the equivalence of property (*W*_E) and the property (*Bw*) introduced in [14]. In the case of isoloid operators, we study the preservation of property (*W*_E) under functional calculus (resp.

under finite rank commuting perturbations).

In the third section, and in a similar way to the second, we introduce and study the property (UWE_a) . We prove that if *T* satisfies property (UWE_a) , then *T* satisfies generalized a-Weyl's theorem and satisfies also property (WE). Moreover, we prove under the hypothesis $\sigma_{SF_{+}}(T) = \sigma_W(T)$, that *T* satisfies property (UWE_a) if and only if *T* satisfies property (WE) and $E(T) = E_a(T)$. Preservation of the property (UWE_a) under functional calculus or finite rank commuting perturbation is also considered.

Our motivation in studying such properties is the analysis of the structure of the spectrum of a bounded linear operator acting on a Banach space *X*. An operator satisfying a Weyl-type property has a well-given partition of its spectrum as disjoint union of two of its distinguished parts. The original idea leading to a partition of the spectrum goes back to the famous paper by H. Weyl [17]. More recently, several authors had worked in this direction, see for example [1] and [16].

Hereafter, the symbol \square stands for disjoint union, while *iso*(*A*), *acc*(*A*) means respectively isolated points and accumulation points of a given subset *A* of \mathbb{C} .

This paper will be followed by a second one, in which we will consider a "Browder-type" version of the results obtained.

2. Property (WE)

Definition 2.1. A Bounded linear operator $T \in L(X)$ is said to satisfy property (WE), if its spectrum is the disjoint union of its Weyl spectrum and its isolated eigenvalues, that is $\sigma(T) = \sigma_W(T) \bigsqcup E(T)$.

Example 2.2. Recall that the Volterra operator V on $L^2([0,1])$ is defined by $V(f)(x) = \int_0^x f(t)dt$, for $f \in L^2([0,1])$. It is well known that $\sigma(V) = \{0\}$, $\sigma_W(V) = \{0\}$, $E(V) = \emptyset$. Hence property (WE) is satisfied by V.

Theorem 2.3. Let $T \in L(X)$. Then T satisfies property (WE) if and only if T satisfies generalized Weyl's theorem and $\sigma_{BW}(T) = \sigma_W(T)$.

Proof. Suppose that *T* satisfies property (*W*_E), then $\sigma(T) = \sigma_W(T) \bigsqcup E(T)$. Thus $\lambda \in E(T) \iff \lambda \in iso\sigma(T) \cap \sigma_W(T)^C \iff \lambda \in \Pi^0(T)$, where $\sigma_W(T)^C$ is the complement of the Weyl spectrum of *T*. This implies $\Pi(T) = \Pi^0(T) = E^0(T) = E(T)$, and *T* satisfies Weyl's theorem. As $E(T) = \Pi(T)$, from [6, Theorem 2.9], it follows that *T* satisfies generalized Weyl's theorem. We also have $\sigma_{BW}(T) = \sigma(T) \setminus \Pi(T) = \sigma(T) \setminus E(T) = \sigma_W(T)$.

Conversely, if *T* satisfies generalized Weyl's theorem, that is $\sigma(T) = \sigma_{BW}(T) \bigsqcup E(T)$, and $\sigma_{BW}(T) = \sigma_W(T)$, then $\sigma(T) = \sigma_W(T) \bigsqcup E(T)$, and *T* satisfies property (*WE*). \Box

Remark 2.4. From Theorem 2.3, if $T \in L(X)$ satisfies property (WE) then it satisfies generalized Weyl's theorem. However, the converse is not true in general as seen by the following example:

Let $X = \ell^2(\mathbb{N})$, let $B = \{e_i \mid e_i = (\delta_i^j)_{j \in \mathbb{N}}, i \in \mathbb{N}\}$ be the canonical basis of $\ell^2(\mathbb{N})$. Let E be the subspace of $\ell^2(\mathbb{N})$ generated by the set $\{e_i \mid 1 \leq i \leq n\}$. Let P be the orthogonal projection on E. Then $\sigma(P) = \{0, 1\}, \sigma_W(P) = \{0\}, \sigma_{BW}(P) = \emptyset$ and $E(P) = \{0, 1\}$. So $\Delta^g(P) = E(P)$, i.e. P satisfies generalized Weyl's theorem. But P does not satisfy property (W_E), since $\sigma(P) \setminus \sigma_W(P) \neq E(P)$.

Remark 2.5. It follows from the proof of Theorem 2.3 that if $T \in L(X)$ satisfies property (W_E), then $\Pi^0(T) = E^0(T) = E(T) = \Pi(T)$.

The equality of the Weyl spectrum and the B-Weyl spectrum establish a link between generalized Weyl's theorem and property (*W*_{*E*}). In the following lemma, we give a sufficient condition for such equality, which in turn implies equivalence of property (*W*_{*E*}) and generalized Weyl's theorem.

Proposition 2.6. Let $T \in L(X)$. If iso $\sigma_W(T) = \emptyset$, then $\sigma_W(T) = \sigma_{BW}(T)$. In this case, T satisfies property (WE) if and only if T satisfies generalized Weyl's theorem.

Proof. From Theorem 2.3, it's enough to show that if $iso \sigma_W(T) = \emptyset$, then $\sigma_W(T) = \sigma_{BW}(T)$. So if $\lambda \in \sigma(T)$ and $\lambda \notin \sigma_{BW}(T)$, then $T - \lambda I$ is a B-Weyl operator. From [5, Remark A, iii)] if η is small enough and $|\eta| > 0$, then $T - \lambda I - \eta I$ is a Weyl operator. As $iso \sigma_W(T) = \emptyset$, then $\lambda \notin \sigma_W(T)$. Therefore $\sigma_W(T) \subset \sigma_{BW}(T)$. As we have always $\sigma_{BW}(T) \subset \sigma_W(T)$, then $\sigma_{BW}(T) = \sigma_W(T)$.

Then if $\sigma_W(T) = \sigma_{BW}(T)$, it is clear that *T* satisfies property (*WE*) if and only if *T* satisfies generalized Weyl's theorem. \Box

In [14], Gupta and Kashyap introduced a new variant of generalized Weyl's theorem called the property(*Bw*). An operator $T \in L(X)$ satisfies property (*Bw*) if $\Delta^{g}(T) = E^{0}(T)$ or equivalently $\sigma(T) = \sigma_{BW}(T) \bigsqcup E^{0}(T)$. In the following theorem we establish a relationship between property(*W*_E) and property(*Bw*).

Theorem 2.7. Let $T \in L(X)$. Then T satisfies property (W_E) if and only if T satisfies property(Bw) and $E(T) = E^0(T)$.

Proof. Suppose that *T* satisfies property(*WE*). Then from Theorem 2.3, $\sigma_{BW}(T) = \sigma_W(T)$, and from Remark 2.5, $E(T) = E^0(T)$. Hence $\Delta^g(T) = E^0(T)$ and so *T* satisfies also property (*Bw*).

Conversely assume that *T* satisfies property (*Bw*) and $E(T) = E^0(T)$. As we have $\Delta(T) \subseteq \Delta^g(T)$, then $\Delta(T) \subseteq E(T)$. Now if $\lambda \in E(T)$, as $E(T) = E^0(T)$, then $\lambda \in \Delta^g(T)$. Hence $T - \lambda I$ is a B-Weyl operator and $\alpha(T - \lambda I) < \infty$. So by [8, Lemma 2.4], $T - \lambda I$ is a Weyl operator and $\lambda \in \Delta(T)$. Consequently $\Delta(T) = E(T)$ and *T* satisfies property (*WE*). \Box

In general, we cannot expect that property (*W^E*) holds for an operator satisfying property(Bw) and generalized Browder's theorem, as shown by the following example.

Example 2.8. Let $Q \in L(\ell^2(\mathbb{N}))$ defined by: $Q(x_0, x_1, ...) = (\frac{1}{2}x_1, \frac{1}{3}x_2, ...)$, for $(x_n)_n \in \ell^2(\mathbb{N})$ and let $N \in L(\ell^2(\mathbb{N}))$ be a nilpotent operator. Let $T = Q \oplus N$, then T is quasi-nilpotent operator but not a nilpotent one. Thus $\sigma(T) = \sigma_W(T) = \sigma_{BW}(T) = \{0\}$, $E(T) = \{0\}$ and $E^0(T) = \Pi(T) = \Pi^0(T) = \emptyset$. So T satisfies generalized Browder theorem and property(Bw), but does not satisfy property (We).

Definition 2.9. An operator $T \in L(X)$ is said to be isoloid if $iso \sigma(T) = E(T)$. T is of stable sign index if for all $\lambda, \mu \in \mathbb{C}$ such that $T - \lambda I$ and $T - \mu I$ are B-Fredholm operators, then $index(T - \lambda I)$ and $index(T - \mu I)$ have the same sign.

Theorem 2.10. Let $T \in L(X)$ be an isoloid operator of stable sign index. If T satisfies property (WE) and if f is an anlaytic function in a neighborhood of the spectrum $\sigma(T)$ of T, which is not constant on any connected component of $\sigma(T)$, then f(T) satisfies property (WE).

Proof. Since *T* is isoloid, then from [7, Lemma 2.9], we have $\sigma(f(T)) \setminus E(f(T)) = f(\sigma(T) \setminus E(T))$. As *T* satisfies property (*WE*), then $f(\sigma(T) \setminus E(T)) = f(\sigma_W(T))$. As *T* is of stable sign index, using a similar proof as in [7, Theorem 2.4], we have $f(\sigma_W(T)) = \sigma_W(f(T))$. Hence $\sigma(f(T)) \setminus E(f(T)) = \sigma_W(f(T))$, and f(T) satisfies property (*WE*). \Box

Theorem 2.11. Let $T \in L(X)$ be an isoloid operator and let F be a finite rank operator commuting with T. If T satisfies property (W_E), then T + F satisfies property (W_E).

Proof. Since *T* satisfies property (*WE*), it satisfies generalized Weyl's theorem. Since *T* is also isoloid, from [7, Theorem 3.4], *T* + *F* satisfies generalized Weyl's theorem. Moreover as *F* is of finite rank, we have $\sigma_W(T) = \sigma_W(T + F)$ and from [5, Theorem 4.3] we have $\sigma_{BW}(T) = \sigma_{BW}(T + F)$. As *T* satisfies property (*WE*), from Theorem 2.3, we have $\sigma_W(T) = \sigma_{BW}(T)$. Hence $\sigma_W(T + F) = \sigma_{BW}(T + F)$. As we know already that T + F satisfies generalized Weyl's theorem, then T + F satisfies property (*WE*). \Box

3. Property (UWE_a)

Definition 3.1. A Bounded linear operator $T \in L(X)$ is said to satisfy property (UW_{E_a}) if $\Delta_a(T) = E_a(T)$, or in other words if its approximate spectrum is the disjoint union of its upper semi-Weyl spectrum and its isolated eigenvalues in its approximate spectrum, that is $\sigma_a(T) = \sigma_{SF_{\tau}}(T) \bigsqcup E_a(T)$.

Theorem 3.2. Let $T \in L(X)$. Then T satisfies property (UW_{E_a}) if and only if T satisfies generalized a-Weyl's theorem and $\sigma_{SBF_{+}}(T) = \sigma_{SF_{+}}(T)$.

Proof. Suppose that *T* satisfies property (UW_{E_a}) , then $\sigma_a(T) = \sigma_{SF_+^-}(T) \bigsqcup E_a(T)$. Thus $\lambda \in E_a(T) \iff \lambda \in iso\sigma_a(T) \cap \sigma_{SF_+^-}(T)^C \iff \lambda \in \Pi_a^0(T)$, where $\sigma_{SF_+^-}(T)^C$ is the complement of the upper semi- Weyl spectrum. This implies $\Pi_a(T) = \Pi_a^0(T) = E_a(T)$, and T satisfies a-Weyl's theorem. Moreover as $\Pi_a(T) = E_a(T)$, then from [6, Theorem 2.10], *T* satisfies generalized a-Weyl's theorem. We also have $\sigma_{SBF_+^-}(T) = \sigma_a(T) \setminus \Pi_a(T) = \sigma_a(T) \setminus E_a(T) = \sigma_{SF_+^-}(T)$.

Conversely, if *T* satisfies generalized a-Weyl's theorem, that is $\sigma_a(T) = \sigma_{SBF_+}(T) \bigsqcup E_a(T)$, and $\sigma_{SBF_+}(T) = \sigma_{SF_+}$, then $\sigma_a(T) = \sigma_{SF_+} \bigsqcup E_a(T)$, and so *T* satisfies property (UW_{E_a}). \Box

The following example shows that there exists operators satisfying generalized a-Weyl's theorem but not property (UW_{E_a}) .

Example 3.3. Let T be defined on $\ell^2(\mathbb{N})$ by

$$T(x_1, x_2, x_3, \ldots) = (0, \frac{1}{2}x_1, 0, 0, \ldots).$$

Then $\sigma_a(T) = \sigma_{SF_+}(T) = \{0\}$ and $E_a(T) = \{0\}$. As T is nilpotent, then $\sigma_{SBF_+}(T) = \emptyset$. So $\Delta_a^g(T) = E_a(T)$, and T satisfies generalized a-Weyl's theorem, but T does not satisfy property (UWE_a) .

Remark 3.4. From Theorem 3.2, if $T \in L(X)$ satisfies property (UW_{E_a}) , then $\Pi_a^0(T) = E_a^0(T) = \Pi_a(T) = E_a(T)$.

Theorem 3.5. Suppose that $T \in L(X)$. If T satisfies property (UW_{E_a}) , then T satisfies property (W_E) .

Proof. Assume that *T* satisfies property (UW_{E_a}). Then from Theorem 3.2, *T* satisfies generalized a-Weyl's theorem and $\Pi_a^0(T) = \Pi_a(T)$. Hence from [10, Theorem 3.7], *T* satisfies generalized Weyl's theorem. Let us show that $\Pi^0(T) = \Pi(T)$. Indeed, If $\lambda \in \Pi(T)$, as $\Pi(T) \subseteq \Pi_a(T)$ and since $\Pi_a^0(T) = \Pi_a(T)$, then $\lambda \in \Pi_a^0(T)$. This implies that $\alpha(T - \lambda I) < +\infty$. Therefore $\lambda \in \Pi^0(T)$. As we know that $\Pi^0(T) \subseteq \Pi(T)$, then $\Pi^0(T) = \Pi(T)$. Consequently *T* satisfies generalized Weyl's theorem and $\Pi^0(T) = \Pi(T)$. Hence $\sigma_{BW}(T) = \sigma(T) \setminus \Pi(T) = \sigma(T) \setminus \Pi^0(T) = \sigma_W(T)$. From Theorem 2.3, *T* satisfies property (*WE*). \Box

The converse of Theorem 3.5 does not hold in general as shown by the following example.

Example 3.6. Let *T* be the operator given by the direct sum of the unilateral right shift *R* on $\ell^2(\mathbb{N})$, and the quasinilpotent operator *S* defined on $\ell^2(\mathbb{N})$, by $S(x_1, x_2, x_3, ...) = (x_2/2, x_3/3, ...)$ for all $x = (x_1, x_2, x_3, ...) \in \ell^2(\mathbb{N})$. Then $\sigma(T) = D(0, 1)$, where D(0, 1) is the closed unit disc in \mathbb{C} and $\sigma_a(T) = C(0, 1) \cup \{0\}$, where C(0, 1) the unit circle of \mathbb{C} . Furthermore $\sigma_W(T) = D(0, 1)$, $E_a(T) = \{0\}$ and $\sigma_{SF_+}(T) = \sigma_{SBF_+}(T) = C(0, 1) \cup \{0\}$, while $\Pi_a(T) = \emptyset$ since $a(T) = a(S) = \infty$. Hence, *T* does not satisfies property (UWE_a). But *T* satisfies property (WE) because $E(T) = \emptyset$.

In the following theorem, we give a sufficient conditions under which the property (UW_{E_a}) and (W_E) are equivalent.

Theorem 3.7. Let $T \in L(X)$ be such that $\sigma_{SF_{+}}(T) = \sigma_W(T)$. Then the following statements are equivalent: (*i*) *T* satisfies property (UW_{E_a}); (*ii*) *T* satisfies property (W_E) and $E(T) = E_a(T)$. *Proof.* (*i*) \Rightarrow (*ii*) Suppose that *T* satisfies property (UWE_a). Then from Theorem 3.5, *T* satisfies property (WE). So it is sufficient to prove that $E(T) = E_a(T)$. Let $\lambda \in E_a(T)$ be arbitrary. Since *T* satisfies property (UWE_a), then $T - \lambda I$ is an upper semi-Fredholm with negative index. As $\sigma_{SF_+}(T) = \sigma_W(T)$, then $T - \lambda I$ is a Weyl operator. As *T* satisfies property (WE), then $\lambda \in E(T)$. As we have always that $E(T) \subseteq E_a(T)$, then $E(T) = E_a(T)$.

(*ii*) \Rightarrow (*i*) Suppose that *T* satisfies property(*WE*) and *E*(*T*) = *E*_{*a*}(*T*). If $\lambda \in E_a(T)$, then $\lambda \in E(T)$. Since *T* satisfies property(*WE*), then $\lambda \notin \sigma_W(T)$ and so $\lambda \notin \sigma_{SF_+}(T)$. We have also $\lambda \in \sigma_a(T)$. Indeed if $\lambda \notin \sigma_a(T)$, as $T - \lambda I$ is a Weyl operator, then $\alpha(T - \lambda I) = \beta(T - \lambda I) = 0$. Hence $\lambda \notin \sigma(T)$, which is a contradiction. Therefore $\lambda \in \Delta_a(T)$, and $E_a(T) \subseteq \Delta_a(T)$. Conversely if $\lambda \in \Delta_a(T)$, then $T - \lambda I$ is an upper semi-Fredholm operator such that $ind(T - \lambda I) \leq 0$. By our assumption $T - \lambda I$ is a Weyl operator. As *T* satisfies property (*WE*), then $\lambda \in E(T)$. So $\lambda \in E_a(T)$. Finally $E_a(T) = \Delta_a(T)$ and *T* satisfies property (*WE*). \Box

Remark 3.8. The condition $\sigma_{SF_{+}}(T) = \sigma_W(T)$ is always satisfied if T^* has the SVEP. Of course in this case if $\lambda \notin \sigma_{SF_{+}}(T)$, then $T - \lambda I$ is a semi-Fredholm operator with negative index. As T^* has the SVEP, then from [9, Corollary 2.7], the descent $\delta(T - \lambda I)$ is finite. Therefore $\lambda \notin \sigma_W(T)$. As we have always $\sigma_W(T) \subset \sigma_{SF_{+}}(T)$, then $\sigma_W(T) = \sigma_{SF_{+}}(T)$,

Definition 3.9. An operator $T \in L(X)$ is said to be finitely a-isoloid if iso $\sigma_a(T) = E_a^0(T)$, and is said to be finitely *a*-polaroid, if iso $\sigma_a(T) = \prod_a^0(T)$.

Theorem 3.10. Let $T \in L(X)$ be a finitely a-isoloid operator. Then T satisfies property (UW_{E_a}) if and only if T satisfies a-Weyl's theorem.

Proof. suppose that *T* satisfies property (*UW*_{*E*_{*a*}}), then from Theorem 3.2 and [10, Theorem 3.11], *T* satisfies a-Weyl's theorem. Conversely, if *T* satisfies a-Weyl's theorem, then $\sigma_a(T) \setminus \sigma_{SF_+}(T) = E_a^0(T)$. Now let $\lambda \in E_a(T)$ be arbitrary given, then $\lambda \in iso \sigma_a(T)$. Since *T* is finitely a-isoloid, it implies that $\lambda \in E_a^0(T)$ and $E_a(T) \subseteq E_a^0(T)$. As we have always $E_a^0(T) \subseteq E_a(T)$, then $E_a(T) = E_a^0(T)$. Consequently $\sigma_a(T) \setminus \sigma_{SF_+}(T) = E_a(T)$ and *T* possesses property (*UW*_{*E*_{*a*}). \Box}

Lemma 3.11. Let $T \in L(X)$ be a finitely a-polaroid operator and f an anlaytic function in a neighborhood of the spectrum $\sigma(T)$ of T, which is not constant on any connected component of $\sigma(T)$, then $E_a(f(T)) = \prod_a^0 (f(T))$.

Proof. Since *T* is a finitely a-polaroid, then *T* is a-polaroid and $E_a(T) = \Pi_a^0(T)$. From [6, Theorem 3.5], we have $\sigma_a(f(T)) \setminus E_a(f(T)) = f(\sigma_a(T) \setminus E_a(T)) = f(\sigma_a(T) \setminus \Pi_a^0(T)) = f(\sigma_{ub}(T))$. As $\sigma_{ub}(T)$ satisfies the spectral mapping theorem, see [3, Corollary 3.9], then $f(\sigma_{ub}(T)) = \sigma_{ub}(f(T))$. Hence $\sigma_a(f(T)) \setminus E_a(f(T)) = \sigma_{ub}(f(T)) = \sigma_{ab}(f(T))$. Therefore $E_a(f(T)) = \Pi_a^0(f(T))$. \Box

Theorem 3.12. Let $T \in L(X)$ be a finitely a-polaroid operator and f an anlaytic function in a neighborhood of the spectrum $\sigma(T)$ of T, which is not constant on any connected component of $\sigma(T)$. Then f(T) satisfies property (UW_{E_a}) if and only if f(T) satisfies a-Weyl's theorem.

Proof. The direct sense is obvious. Now if f(T) satisfies a-Weyl's theorem, then f(T) satisfies a-Browder's theorem. Since *T* is finitely a-polaroid operator, then from Lemma 3.11 we have $E_a(f(T)) = \prod_a^0 (f(T))$. Since a finitely a-polaroid is finitely a-isoloid, then from Theorem 3.10, f(T) satisfies property (UW_{E_a}) .

Theorem 3.13. Let *H* be a Hilbert space and let $T \in L(H)$ be a finitely a-polaroid operator. If *F* is a finite rank operator commuting with *T*, then *T* satisfies property (UW_{E_a}) if and only if T + F satisfies property (UW_{E_a}).

Proof. Since *T* is finitely a-polaroid operator, then from [6, Lemma 3.9], T + F is an a-polaroid operator. Assume that *T* satisfies property (UW_{E_a}). From Theorem 3.10, it follows that *T* satisfies a-Weyl's theorem. Now from [6, Corollary 3.10], T + F satisfies a-Weyl's theorem. We know from [12, Theorem 3.2] that $acc \sigma_a(T) = acc \sigma_a(T + F)$. Let $\lambda \in E_a(T + F)$, then $\lambda \notin acc \sigma_a(T)$. Since *T* is finitely a-polaroid, it follows that $T - \lambda$ is invertible or $\lambda \in \Pi_a^0(T)$. In the two cases we have $\lambda \in \Pi_a^0(T + F)$. Thus T + F is finitely a-polaroid. As T + F satisfies a-Weyl's theorem, again from Theorem 3.10, T + F satisfies property (UW_{E_a}). For the converse, observe that T = T + F - F. Moreover if T + F satisfies property (UW_{E_a}), then T + F is a finitely a-polaroid operator and *F* commutes withy T + F. \Box

References

- [1] P. Aiena, P. Peña, Variations on Weyl's theorem, J. Math. Anal. Appl. 324 (2006) 566-579.
- [2] M. Berkani, On a class of quasi-Fredholm operators, Integr. Equ. and Oper. Theory 34 (1999), no. 2, p. 244-249.
- [3] M. Berkani, Restriction of an operator to the range of its powers, Studia Mathematica 140 (2) (2000), p. 163-175.
- [4] M. Berkani, B-Weyl spectrum and poles of the resolvent, J. Math. Anal. Applications, 272 (2), 596–603 (2002).
- [5] M. Berkani, Index of B-Fredholm operators and generalization of a Weyl theorem, Proc. Amer. Math. Soc. 130 (2002) 1717–1723
- [6] M. Berkani, On the equivalence of Weyl and generalized Weyl theorem , Acta Mathematica Sinica, English series, Vol. 23(no.1) (2007), 103-110. (2002).
- [7] M. Berkani, A. Arroud, Generalized Weyl's theorem and hyponormal operators, J. Aust. Math. Soc. 76 (2004) 291–1302.
- [8] M. Berkani, M. Amouch, Preservation of property (gw) under perturbations, Acta Sci. Math. (Szeged) 74 (2008), 769-781.
- [9] M. Berkani, N. Castro and S. V. Djordjević, Single valued extension property and generalized Weyl's theorem, Math. Bohemica, 131 (2006), No. 1, p. 29–38.
 [10] M. Berkani, J.J. Koliha, Weyl type theorems for bounded linear operators, Acta Sci. Math. (Szeged) 69 (2003), 359–376.
- [11] M. Berkani, M. Sarih, On semi B-Fredholm operators, Glasgow Math. J. 43 (2001), 457-465.
- [12] Djordjevic, D. S. Operators obeying a-Weyl's theorem, Publ. Math. Debrecen 55 (1999), no 3-4, 283-298.
- [13] H. Heuser, Functional Analysis, John Wiley & Sons Inc, New York, (1982).
- [14] A. Gupta, N. Kashyap, Property (Bw) and Weyl type theorems, Bull. Math. Anal. Appl. 3 (2) (2011), 1–7.
- [15] K. B. Laursen and M. M. Neumann, An introduction to Local Spectral Theory, Clarendon Press Oxford, (2000).
- [16] V. Rakočević, Operators obeying a-Weyl's theorem, Rev. Roumaine Math. Pures Appl. 34 (1989), 915–919.
 [17] Weyl, H. Über beschränkte quadratische Formen, deren Differenz vollstetig ist. Rend. Circ. Mat. Palermo 27 (1909), 373-392.