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Abstract. In this paper we introduce the new spectral properties (WE) and (UWEa). An operator T satisfies
property (WE) (resp. (UWEa), if its spectrum (resp. its approximate spectrum) is the disjoint union of its Weyl
spectrum and its isolated eigenvalues( resp. of its upper semi-Weyl spectrum and its isolated eigenvalues in
its approximate spectrum). The main purpose of the paper is to study relationship between the properties
(WE), (UWEa) and other Weyl-type theorems.

1. Introduction

Let X be a Banach space, and let L(X) be the Banach algebra of all bounded linear operators acting on
X. For T ∈ L(X), we will denote by N(T) the null space of T, by α(T) the nullity of T, by R(T) the range
of T, by β(T) its defect and by T∗ the adjoint of T. We will denote also by σ(T) the spectrum of T and by
σa(T) the approximate point spectrum of T. If the range R(T) of T is closed and α(T) < ∞ (resp. β(T) < ∞),
then T is called an upper semi-Fredholm (resp. a lower semi-Fredholm) operator. If T ∈ L(X) is either
upper or lower semi Fredholm, then T is called a semi-Fredholm operator, and the index of T is defined
by ind(T) = α(T) − β(T). If both α(T) and β(T) are finite, then T is called a Fredholm operator. An operator
T ∈ L(X) is called a Weyl operator if it is a Fredholm operator of index zero. The Weyl spectrum σW(T) of T
is defined by σW(T) = {λ ∈ C | T − λI is not a Weyl operator}.

For a bounded linear operator T and a nonnegative integer n, define T[n] to be the restriction of T to
R(Tn), viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T). If for some integer n the range space
R(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm operator, then T is called an upper (resp. a
lower) semi-B-Fredholm operator. A semi-B- Fredholm operator T is an upper or a lower semi-B-Fredholm
operator, and in this case the index of T is defined as the index of the semi-Fredholm operator T[n], see [11].
Moreover if T[n] is a Fredholm operator, then T is called a B-Fredholm operator, see [2]. An operator T ∈ L(X)
is said to be a B-Weyl operator [4], if it is a B-Fredholm operator of index zero. The B-Weyl spectrum σBW(T)
of T is defined by σBW(T) = {λ ∈ C | T − λI is not a B-Weyl operator}.

The ascent a(T) of an operator T is defined by a(T) = inf{n ∈ N : N(Tn) = N(Tn+1)}, and the descent δ(T)
of T, is defined by δ(T) = inf{n ∈N : R(Tn) = R(Tn+1)}, with inf ∅ = ∞.
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According to [13], a complex numberλ is a pole of the resolvent of T if and only if 0 <max (a(T−λI), δ(T−
λI)) < ∞.Moreover, if this is true, then a(T − λI) = δ(T − λI). An operator T is called Drazin invertible if 0 is
a pole of T. The Drazin spectrum σD(T) of T is defined by σD(T) = {λ ∈ C : T − λI is not Drazin invertible}.

Define also the set LD(X) by LD(X) = {T ∈ L(X) : a(T) < ∞ and R(Ta(T)+1) is closed} and σLD(T) = {λ ∈ C :
T − λI < LD(X)}. Following [10], an operator T ∈ L(X) is said to be left Drazin invertible if T ∈ LD(X). We
say that λ ∈ σa(T) is a left pole of T if T − λI ∈ LD(X), and that λ ∈ σa(T) is a left pole of T of finite rank if λ
is a left pole of T and α(T − λI) < ∞.

Let SF+(X) be the class of all upper semi-Fredholm operators and SF−+(X) = {T ∈ SF+(X) : ind(T) ≤ 0}.
The upper semi-Weyl spectrum σSF−+ (T) of T is defined by σSF−+ (T) = {λ ∈ C : T − λI < SF−+(X)}. Similarly is
defined the upper semi-B-Weyl spectrum σSBF−+ (T) of T.

An operator T ∈ L(X) is called upper semi-Browder if it is upper semi-Fredholm operator of finite ascent,
and is called Browder if it is a Fredholm of finite ascent and descent. The upper semi-Browder spectrum
σub(T) of T is defined by σub(T) = {λ ∈ C : T − λI is not upper semi-Browder}, and the Browder spectrum
σb(T) of T is defined by σb(T) = {λ ∈ C : T − λI is not Browder}.

An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C (abbreviated SVEP
at λ0), if for every open neighborhood U of λ0, the only analytic function f : U −→ X which satisfies the
equation (T − λI) f (λ) = 0 for all λ ∈ U is the function f ≡ 0. An operator T ∈ L(X) is said to have the SVEP
if T has this property at every λ ∈ C. (See [15] for more details about this concept).

Below, we recall the list of all symbols and notations we will use:

E(T) : eigenvalues of T that are isolated in the spectrum σ(T) of T,
E0(T) : eigenvalues of T of finite multiplicity that are isolated in the spectrum σ(T) of T,
Ea(T) : eigenvalues of T that are isolated in the approximate point spectrum σa(T) of T,
E0

a(T) : eigenvalues of T of finite multiplicity that are isolated in the spectrum σa(T) of T,
Π(T) : poles of T,
Π0(T) : poles of T of finite rank,
Πa(T) : left poles of T,
Π0

a(T) : left poles of T of finite rank,
σb(T) : Browder spectrum of T,
σD(T) : Drazin spectrum of T,
σub(T) : upper semi-Browder spectrum of T,
σBW(T) : B-Weyl spectrum of T,
σW(T) : Weyl spectrum of T,
σSF−+ (T) : upper semi-Weyl spectrum of T,
σSBF−+ (T) : upper semi-B-Weyl spectrum of T,
∆a(T) = σa(T) \ σSF−+ (T),
∆
1
a(T) = σa(T) \ σSBF−+ (T),

∆(T) = σ(T) \ σW(T),
∆1(T) = σ(T) \ σBW(T).
σ(T) \ σW(T) = Π0(T) : Browder’s theorem holds for T,
σ(T) \ σW(T) = E0(T) : Weyl’s theorem holds for T,
σ(T) \ σBW(T) = Π(T) : generalized Browder’s theorem holds for T,
σ(T) \ σBW(T) = E(T) : generalized Weyl’s theorem holds for T,
σa(T) \ σSF−+ (T) = Π0

a(T) : a-Browder’s theorem holds for T,
σa(T) \ σSF−+ (T) = E0

a(T) : a-Weyl’s theorem holds for T,
σa(T) \ σSBF−+ (T) = Πa(T) : generalized a-Browder’s theorem holds for T,
σa(T) \ σSBF−+ (T) = Ea(T) : generalized a-Weyl’s theorem holds for T.

The paper is organized as follows. In the second section, we introduce the property (WE). Then we prove
that T ∈ L(X) satisfies property(WE) if and only if T satisfies generalized Weyl’s theorem and σBW(T) = σW(T).
We also give conditions for the equivalence of property (WE) and the property (Bw) introduced in [14]. In
the case of isoloid operators, we study the preservation of property (WE) under functional calculus (resp.
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under finite rank commuting perturbations).
In the third section, and in a similar way to the second, we introduce and study the property (UWEa). We
prove that if T satisfies property (UWEa), then T satisfies generalized a-Weyl’s theorem and satisfies also
property (WE).Moreover, we prove under the hypothesis σSF−+ (T) = σW(T), that T satisfies property (UWEa) if
and only if T satisfies property (WE) and E(T) = Ea(T). Preservation of the property (UWEa) under functional
calculus or finite rank commuting perturbation is also considered.
Our motivation in studying such properties is the analysis of the structure of the spectrum of a bounded
linear operator acting on a Banach space X. An operator satisfying a Weyl-type property has a well-given
partition of its spectrum as disjoint union of two of its distinguished parts. The original idea leading to a
partition of the spectrum goes back to the famous paper by H. Weyl [17]. More recently, several authors
had worked in this direction, see for example [1] and [16].
Hereafter, the symbol

⊔
stands for disjoint union, while iso(A), acc(A) means respectively isolated points

and accumulation points of a given subset A of C.
This paper will be followed by a second one, in which we will consider a ”Browder-type” version of the

results obtained.

2. Property (WE)

Definition 2.1. A Bounded linear operator T ∈ L(X) is said to satisfy property (WE), if its spectrum is the disjoint
union of its Weyl spectrum and its isolated eigenvalues, that is σ(T) = σW(T)

⊔
E(T).

Example 2.2. Recall that the Volterra operator V on L2([0, 1]) is defined by V( f )(x) =
∫ x

0 f (t)dt, for f ∈ L2([0, 1]).
It is well known that σ(V) = {0}, σW(V) = {0}, E(V) = ∅. Hence property (WE) is satisfied by V.

Theorem 2.3. Let T ∈ L(X). Then T satisfies property (WE) if and only if T satisfies generalized Weyl’s theorem and
σBW(T) = σW(T).

Proof. Suppose that T satisfies property (WE), then σ(T) = σW(T)
⊔

E(T). Thus λ ∈ E(T) ⇐⇒ λ ∈ isoσ(T) ∩
σW(T)C ⇐⇒ λ ∈ Π0(T), where σW(T)C is the complement of the Weyl spectrum of T. This implies Π(T) =
Π0(T) = E0(T) = E(T), and T satisfies Weyl’s theorem. As E(T) = Π(T), from [6, Theorem 2.9], it follows that
T satisfies generalized Weyl’s theorem. We also have σBW(T) = σ(T) \Π(T) = σ(T) \ E(T) = σW(T).

Conversely, if T satisfies generalized Weyl’s theorem, that is σ(T) = σBW(T)
⊔

E(T), and σBW(T) = σW(T),
then σ(T) = σW(T)

⊔
E(T), and T satisfies property (WE).

Remark 2.4. From Theorem 2.3, if T ∈ L(X) satisfies property (WE) then it satisfies generalized Weyl’s theorem.
However, the converse is not true in general as seen by the following example:
Let X = `2(N), let B = {ei | ei = (δ j

i ) j∈N, i ∈ N} be the canonical basis of `2(N). Let E be the subspace of `2(N)
generated by the set {ei | 1 ≤ i ≤ n}. Let P be the orthogonal projection on E. Then σ(P) = {0, 1}, σW(P) = {0},
σBW(P) = ∅ and E(P) = {0, 1}. So ∆1(P) = E(P), i.e. P satisfies generalized Weyl’s theorem. But P does not satisfy
property (WE), since σ(P) \ σW(P) , E(P).

Remark 2.5. It follows from the proof of Theorem 2.3 that if T ∈ L(X) satisfies property (WE), then Π0(T) = E0(T) =
E(T) = Π(T).

The equality of the Weyl spectrum and the B-Weyl spectrum establish a link between generalized Weyl’s
theorem and property (WE). In the following lemma, we give a sufficient condition for such equality, which
in turn implies equivalence of property (WE) and generalized Weyl’s theorem.

Proposition 2.6. Let T ∈ L(X). If iso σW(T) = ∅, then σW(T) = σBW(T). In this case, T satisfies property (WE) if and
only if T satisfies generalized Weyl’s theorem.
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Proof. From Theorem 2.3, it’s enough to show that if iso σW(T) = ∅, then σW(T) = σBW(T). So if λ ∈ σ(T) and
λ < σBW(T), then T − λI is a B-Weyl operator. From [5, Remark A, iii)] if η is small enough and | η |> 0, then
T − λI − ηI is a Weyl operator. As iso σW(T) = ∅, then λ < σW(T). Therefore σW(T) ⊂ σBW(T). As we have
always σBW(T) ⊂ σW(T), then σBW(T) = σW(T).
Then if σW(T) = σBW(T), it is clear that T satisfies property (WE) if and only if T satisfies generalized Weyl’s
theorem.

In [14], Gupta and Kashyap introduced a new variant of generalized Weyl’s theorem called the
property(Bw). An operator T ∈ L(X) satisfies property (Bw) if ∆1(T) = E0(T) or equivalently σ(T) =
σBW(T)

⊔
E0(T). In the following theorem we establish a relationship between property(WE) and property(Bw).

Theorem 2.7. Let T ∈ L(X). Then T satisfies property (WE) if and only if T satisfies property(Bw) and E(T) = E0(T).

Proof. Suppose that T satisfies property(WE). Then from Theorem 2.3, σBW(T) = σW(T), and from Remark
2.5, E(T) = E0(T). Hence ∆1(T) = E0(T) and so T satisfies also property (Bw).

Conversely assume that T satisfies property (Bw) and E(T) = E0(T). As we have ∆(T) ⊆ ∆1(T), then
∆(T) ⊆ E(T). Now if λ ∈ E(T), as E(T) = E0(T), then λ ∈ ∆1(T). Hence T − λI is a B-Weyl operator and
α(T −λI) < ∞. So by [8, Lemma 2.4], T −λI is a Weyl operator and λ ∈ ∆(T). Consequently ∆(T) = E(T) and
T satisfies property (WE).

In general, we cannot expect that property (WE) holds for an operator satisfying property(Bw) and
generalized Browder’s theorem, as shown by the following example.

Example 2.8. Let Q ∈ L(`2(N)) defined by: Q(x0, x1, ...) = ( 1
2 x1, 1

3 x2, ...), for (xn)n ∈ `2(N) and let N ∈ L(`2(N))
be a nilpotent operator. Let T = Q ⊕ N, then T is quasi-nilpotent operator but not a nilpotent one. Thus σ(T) =
σW(T) = σBW(T) = {0}, E(T) = {0} and E0(T) = Π(T) = Π0(T) = ∅. So T satisfies generalized Browder theorem and
property(Bw), but does not satisfy property (WE).

Definition 2.9. An operator T ∈ L(X) is said to be isoloid if iso σ(T) = E(T). T is of stable sign index if for all
λ, µ ∈ C such that T − λI and T − µI are B-Fredholm operators, then index(T − λI) and index(T − µI) have the same
sign.

Theorem 2.10. Let T ∈ L(X) be an isoloid operator of stable sign index. If T satisfies property (WE) and if f is an
anlaytic function in a neighborhood of the spectrum σ(T) of T, which is not constant on any connected component of
σ(T), then f (T) satisfies property (WE).

Proof. Since T is isoloid, then from [7, Lemma 2.9], we have σ( f (T)) \ E( f (T)) = f (σ(T) \ E(T)). As T satisfies
property (WE), then f (σ(T) \ E(T)) = f (σW(T)). As T is of stable sign index, using a similar proof as in [7,
Theorem 2.4], we have f (σW(T)) = σW( f (T)).Hence σ( f (T)) \ E( f (T)) = σW( f (T)), and f (T) satisfies property
(WE).

Theorem 2.11. Let T ∈ L(X) be an isoloid operator and let F be a finite rank operator commuting with T. If T satisfies
property (WE), then T + F satisfies property (WE).

Proof. Since T satisfies property (WE), it satisfies generalized Weyl’s theorem. Since T is also isoloid, from
[7, Theorem 3.4], T + F satisfies generalized Weyl’s theorem. Moreover as F is of finite rank, we have
σW(T) = σW(T + F) and from [5, Theorem 4.3] we have σBW(T) = σBW(T + F). As T satisfies property (WE),
from Theorem 2.3, we have σW(T) = σBW(T). Hence σW(T + F) = σBW(T + F). As we know already that T + F
satisfies generalized Weyl’s theorem, then T + F satisfies property (WE).
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3. Property (UWEa)

Definition 3.1. A Bounded linear operator T ∈ L(X) is said to satisfy property (UWEa) if ∆a(T) = Ea(T), or in other
words if its approximate spectrum is the disjoint union of its upper semi-Weyl spectrum and its isolated eigenvalues
in its approximate spectrum, that is σa(T) = σSF−+ (T)

⊔
Ea(T).

Theorem 3.2. Let T ∈ L(X). Then T satisfies property (UWEa) if and only if T satisfies generalized a-Weyl’s theorem
and σSBF−+ (T) = σSF−+ (T).

Proof. Suppose that T satisfies property (UWEa), then σa(T) = σSF−+ (T)
⊔

Ea(T). Thus λ ∈ Ea(T) ⇐⇒ λ ∈
isoσa(T) ∩ σSF−+ (T)C ⇐⇒ λ ∈ Π0

a(T), where σSF−+ (T)C is the complement of the upper semi- Weyl spectrum.
This implies Πa(T) = Π0

a(T) = E0
a(T) = Ea(T), and T satisfies a-Weyl’s theorem. Moreover as Πa(T) = Ea(T),

then from [6, Theorem 2.10], T satisfies generalized a-Weyl’s theorem. We also haveσSBF−+ (T) = σa(T)\Πa(T) =
σa(T) \ Ea(T) = σSF−+ (T).

Conversely, if T satisfies generalized a-Weyl’s theorem, that is σa(T) = σSBF−+ (T)
⊔

Ea(T), and σSBF−+ (T) =
σSF−+ , then σa(T) = σSF−+

⊔
Ea(T), and so T satisfies property (UWEa).

The following example shows that there exists operators satisfying generalized a-Weyl’s theorem but
not property (UWEa).

Example 3.3. Let T be defined on `2(N) by

T(x1, x2, x3, ...) = (0,
1
2

x1, 0, 0, ...).

Then σa(T) = σSF−+ (T) = {0} and Ea(T) = {0}. As T is nilpotent, then σSBF−+ (T) = ∅. So ∆
1
a(T) = Ea(T), and T

satisfies generalized a-Weyl’s theorem, but T does not satisfy property (UWEa).

Remark 3.4. From Theorem 3.2, if T ∈ L(X) satisfies property (UWEa), then Π0
a(T) = E0

a(T) = Πa(T) = Ea(T).

Theorem 3.5. Suppose that T ∈ L(X). If T satisfies property (UWEa), then T satisfies property (WE).

Proof. Assume that T satisfies property (UWEa). Then from Theorem 3.2, T satisfies generalized a-Weyl’s
theorem and Π0

a(T) = Πa(T). Hence from [10, Theorem 3.7], T satisfies generalized Weyl’s theorem.
Let us show that Π0(T) = Π(T). Indeed, If λ ∈ Π(T), as Π(T) ⊆ Πa(T) and since Π0

a(T) = Πa(T), then
λ ∈ Π0

a(T). This implies that α(T − λI) < +∞. Therefore λ ∈ Π0(T). As we know that Π0(T) ⊆ Π(T),
then Π0(T) = Π(T). Consequently T satisfies generalized Weyl’s theorem and Π0(T) = Π(T). Hence
σBW(T) = σ(T) \Π(T) = σ(T) \Π0(T) = σW(T). From Theorem 2.3, T satisfies property (WE).

The converse of Theorem 3.5 does not hold in general as shown by the following example.

Example 3.6. Let T be the operator given by the direct sum of the unilateral right shift R on `2(N), and the
quasinilpotent operator S defined on `2(N), by S(x1, x2, x3, ...) = (x2/2, x3/3, ...) for all x = (x1, x2, x3, ...) ∈ `2(N).
Then σ(T) = D(0, 1), where D(0, 1) is the closed unit disc in C and σa(T) = C(0, 1)∪ {0}, where C(0, 1) the unit circle
of C. Furthermore σW(T) = D(0, 1),Ea(T) = {0} and σSF−+ (T) = σSBF−+ (T) = C(0, 1) ∪ {0}, while Πa(T) = ∅ since
a(T) = a(S) = ∞. Hence, T does not satisfies property (UWEa). But T satisfies property (WE) because E(T) = ∅.

In the following theorem, we give a sufficient conditions under which the property (UWEa) and (WE) are
equivalent.

Theorem 3.7. Let T ∈ L(X) be such that σSF−+ (T) = σW(T). Then the following statements are equivalent:
(i) T satisfies property (UWEa);
(ii) T satisfies property (WE) and E(T) = Ea(T).
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Proof. (i) ⇒ (ii) Suppose that T satisfies property (UWEa). Then from Theorem 3.5, T satisfies property
(WE). So it is sufficient to prove that E(T) = Ea(T). Let λ ∈ Ea(T) be arbitrary. Since T satisfies property
(UWEa), then T − λI is an upper semi-Fredholm with negative index. As σSF−+ (T) = σW(T), then T − λI is a
Weyl operator. As T satisfies property (WE), then λ ∈ E(T). As we have always that E(T) ⊆ Ea(T), then
E(T) = Ea(T).
(ii) ⇒ (i) Suppose that T satisfies property(WE) and E(T) = Ea(T). If λ ∈ Ea(T), then λ ∈ E(T). Since T
satisfies property(WE), then λ < σW(T) and so λ < σSF−+ (T). We have also λ ∈ σa(T). Indeed if λ < σa(T), as
T−λI is a Weyl operator, then α(T−λI) = β(T−λI) = 0.Hence λ < σ(T),which is a contradiction. Therefore
λ ∈ ∆a(T), and Ea(T) ⊆ ∆a(T). Conversely if λ ∈ ∆a(T), then T − λI is an upper semi-Fredholm operator
such that ind(T − λI) ≤ 0. By our assumption T − λI is a Weyl operator. As T satisfies property (WE), then
λ ∈ E(T). So λ ∈ Ea(T). Finally Ea(T) = ∆a(T) and T satisfies property (WE).

Remark 3.8. The condition σSF−+ (T) = σW(T) is always satisfied if T∗ has the SVEP. Of course in this case if
λ < σSF−+ (T), then T − λI is a semi-Fredholm operator with negative index. As T∗ has the SVEP, then from [9,
Corollary 2.7] , the descent δ(T − λI) is finite. Therefore λ < σW(T). As we have always σW(T) ⊂ σSF−+ (T), then
σW(T) = σSF−+ (T),

Definition 3.9. An operator T ∈ L(X) is said to be finitely a-isoloid if iso σa(T) = E0
a(T), and is said to be finitely

a-polaroid, if iso σa(T) = Π0
a(T).

Theorem 3.10. Let T ∈ L(X) be a finitely a-isoloid operator. Then T satisfies property (UWEa) if and only if T
satisfies a-Weyl’s theorem.

Proof. suppose that T satisfies property (UWEa), then from Theorem 3.2 and [10, Theorem 3.11], T satisfies
a-Weyl’s theorem. Conversely, if T satisfies a-Weyl’s theorem, then σa(T) \ σSF−+ (T) = E0

a(T). Now let
λ ∈ Ea(T) be arbitrary given, then λ ∈ iso σa(T). Since T is finitely a-isoloid, it implies that λ ∈ E0

a(T) and
Ea(T) ⊆ E0

a(T). As we have always E0
a(T) ⊆ Ea(T), then Ea(T) = E0

a(T). Consequently σa(T) \ σSF−+ (T) = Ea(T)
and T possesses property (UWEa).

Lemma 3.11. Let T ∈ L(X) be a finitely a-polaroid operator and f an anlaytic function in a neighborhood of the
spectrum σ(T) of T, which is not constant on any connected component of σ(T), then Ea( f (T)) = Π0

a( f (T)).

Proof. Since T is a finitely a-polaroid, then T is a-polaroid and Ea(T) = Π0
a(T). From [6, Theorem 3.5], we

have σa( f (T)) \ Ea( f (T)) = f (σa(T) \ Ea(T)) = f (σa(T) \ Π0
a(T)) = f (σub(T)). As σub(T) satisfies the spectral

mapping theorem, see [3, Corollary 3.9], then f (σub(T)) = σub( f (T)). Hence σa( f (T)) \ Ea( f (T)) = σub( f (T)) =
σa( f (T)) \Π0

a( f (T)). Therefore Ea( f (T)) = Π0
a( f (T)).

Theorem 3.12. Let T ∈ L(X) be a finitely a-polaroid operator and f an anlaytic function in a neighborhood of the
spectrum σ(T) of T, which is not constant on any connected component of σ(T). Then f (T) satisfies property (UWEa)
if and only if f (T) satisfies a-Weyl’s theorem.

Proof. The direct sense is obvious. Now if f (T) satisfies a-Weyl’s theorem, then f (T) satisfies a-Browder’s
theorem. Since T is finitely a-polaroid operator, then from Lemma 3.11 we have Ea( f (T)) = Π0

a( f (T)). Since
a finitely a-polaroid is finitely a-isoloid, then from Theorem 3.10, f (T) satisfies property (UWEa).

Theorem 3.13. Let H be a Hilbert space and let T ∈ L(H) be a finitely a-polaroid operator. If F is a finite rank
operator commuting with T, then T satisfies property (UWEa) if and only if T + F satisfies property (UWEa).

Proof. Since T is finitely a-polaroid operator, then from [6, Lemma 3.9], T + F is an a-polaroid operator.
Assume that T satisfies property (UWEa). From Theorem 3.10, it follows that T satisfies a-Weyl’s theorem.
Now from [6, Corollary 3.10], T + F satisfies a-Weyl’s theorem. We know from [12, Theorem 3.2] that
acc σa(T) = acc σa(T + F). Let λ ∈ Ea(T + F), then λ < accσa(T). Since T is finitely a-polaroid, it follows that
T−λ is invertible or λ ∈ Π0

a(T). In the two cases we have λ ∈ Π0
a(T + F). Thus T + F is finitely a-polaroid. As

T + F satisfies a-Weyl’s theorem, again from Theorem 3.10, T + F satisfies property (UWEa). For the converse,
observe that T = T + F − F. Moreover if T + F satisfies property (UWEa), then T + F is a finitely a-polaroid
operator and F commutes withy T + F.
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