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Abstract. Let Γ be a set and Aγ be a unital normed algebra for each γ ∈ Γ. Here, we first show that any left
multiplier on `1−⊕γ∈ΓAγ is described by a function in `∞−⊕γ∈ΓAγ. We then characterize compact and weakly
compact left multipliers on `1−⊕γ∈ΓAγ in terms of functions in c0−⊕γ∈ΓAγ.

1. Introduction

Let Γ be a set and Aγ be a unital normed algebra for each γ ∈ Γ. As usual, let `1−⊕γ∈ΓAγ be the space of
all functions f : Γ −→ ⋃

γ∈Γ Aγ with

‖ f ‖1 =
∑

γ∈Γ
‖ f (γ)‖ < ∞.

Let also `∞−⊕γ∈ΓAγ denote the space of all functions f : Γ −→ ⋃
γ∈Γ Aγ with

‖ f ‖∞ := sup
Γ∈Γ
‖ f (γ)‖ < ∞.

For each ϕ ∈ `∞−⊕γ∈ΓAγ, the linear operator Λϕ : `1−⊕γ∈ΓAγ −→ `1−⊕γ∈ΓAγ defined by Λϕ( f ) = ϕ f for all
f ∈ `1−⊕γ∈ΓAγ is a left multiplier; that is, Λϕ( f1) = Λϕ( f ) 1 for all f , 1 ∈ `1−⊕γ∈ΓAγ; see [2] for details.

The remarkable fact on left multipliers on `1−⊕γ∈ΓAγ is that there are no other examples. In fact, if uγ is
the unit ofAγ with ‖uγ‖ = 1 and δuγ

γ ∈ `1−⊕γ∈ΓAγ is the function defined by δuγ
γ (γ) = uγ and δuγ

γ = 0 otherwise,
then any left multiplier Λ : `1−⊕γ∈ΓAγ −→ `1−⊕γ∈ΓAγ is of the form Λϕ for the function ϕ ∈ `∞−⊕γ∈ΓAγ
defined by ϕ(γ) = Λ(δuγ

γ )(γ) for all γ ∈ Γ. Indeed, for each γ ∈ Γ,

‖ϕ(γ)‖ =
∥∥∥Λ(δuγ

γ )(γ)
∥∥∥ ≤

∑

α∈Γ

∥∥∥Λ(δuγ
γ )(α)

∥∥∥

= ‖Λ(δuγ
γ )‖1 ≤ ‖Λ‖.
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and so ‖ϕ‖∞ ≤ ‖Λ‖. Also, for each function with finite support f ∈ `1−⊕γ∈ΓAγ, we have f =
∑m

n=1 δ
f (γn)
γn

for
some γ1, · · · , γm ∈ Γ and thus

Λ( f ) =

m∑

n=1

Λ(δuγn
γn
δ f (γn)
γn

) =

m∑

n=1

Λ(δuγn
γn

) δ f (γn)
γn

,

whence Λ( f ) = ϕ f . This together with that Λ and Λϕ are bounded on `1−⊕γ∈ΓAγ and that functions with
finite support are norm dense in `1−⊕γ∈ΓAγ imply that Λ = Λϕ; see [6] for more details.

Recently, we have characterized compact multipliers on L1(Ω,A), the space of all Bochner integrable
functions f from a locally compact Hausdorff space Ω to a nontrivial normed algebra A; see [1]. There
also has been considerable progress in the study of analysis on L1(Ω,A), and several authors have studied
various aspects of the subject; see for example [3], [4], [5], [7], [8] [10] and [11]. Our purpose in this work is
to present the following characterization of compact and weakly compact left multipliers on `1−⊕γ∈ΓAγ.

Theorem 1.1. Let Γ be a set, Aγ be a unital normed algebra for each γ ∈ Γ and ϕ ∈ `∞−⊕γ∈ΓAγ. Then the following
assertions are equivalent.

(a) ϕ ∈ c0−⊕γ∈ΓAγ.
(b) Λϕ is compact on `1−⊕γ∈ΓAγ.
(c) Λϕ is weakly compact on `1−⊕γ∈ΓAγ.

Here c0−⊕γ∈ΓAγ denotes the closed subalgebra of `∞−⊕γ∈ΓAγ consisting of all functions vanishing at
infinity.

2. The proof of Theorem 1.1

We first show that (a) implies (b). For this end, suppose that ϕ ∈ c0−⊕γ∈ΓAγ. Then coz(ϕ) := {γ ∈ Γ :
ϕ(γ) , 0} is a σ−finite subset of Γ; indeed, if we set Fn = {γ ∈ Γ : ‖ϕ(γ)‖ ≥ 1/n} for all n ≥ 1, then (Fn) is an
increasing sequence of finite subsets in Γ and coz(ϕ) =

⋃∞
n=1 Fn. Moreover,

‖Λχ
ϕ
Fn
−Λϕ‖ = ‖Λχ

ϕ
Γ\Fn
‖ = ‖χϕ

Γ\Fn
‖∞ < 1

n
,

where for each E ⊆ Γ, χϕE : Γ −→ ⋃
γ∈Γ Aγ is defined by χϕE(γ) = ϕ(γ) for all γ ∈ E and χϕE(γ) = 0 for all

γ ∈ Γ \ E. Since Λχ
ϕ
Fn

is a compact operator on `1−⊕γ∈ΓAγ for all n ≥ 1, it follows that Λϕ is also compact.

That (b) implies (c) is trivial. To complete the proof, suppose that Λϕ is weakly compact on `1−⊕γ∈ΓAγ.
Let F be the family of all finite subsets in Γ directed under upward inclusion. Suppose on the contrary that
ϕ < c0−⊕γ∈ΓAγ. Then we may find ε0 > 0 with ‖χϕ

Γ\F‖∞ ≥ ε0 for all F ∈ F ; that is, there exists γF ∈ Γ \ F such

that |ϕ(γF)| ≥ ε0. Thus (δϕ(γF)
γF

)F∈F is a net in `1−⊕γ∈ΓAγ bounded by ‖ϕ‖∞, and there is f0 ∈ `1−⊕γ∈ΓAγ and a
subnet (γF(β))β∈B of (γF)F∈F such that

δ
ϕ(γF(β))
γF(β)

→ f0

in the weak topology of `1−⊕γ∈ΓAγ. In particular, since ‖ϕ(γF(β))‖ , 0, it follows from the Hahn-Banach
theorem that there exists Φβ ∈ A∗γ such that

|〈Φβ, ϕ(γF(β)) 〉| = ‖ϕ(γF(β))‖ and ‖Φβ‖ = 1.

The dual space of `1−⊕γ∈ΓAγ is equal to `∞−⊕γ∈ΓA∗γ with the duality

〈Ψ, f 〉 =
∑

γ∈Γ
〈Ψ(γ), f (γ) 〉
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for all Ψ ∈ `∞−⊕γ∈ΓA∗γ and f ∈ `1−⊕γ∈ΓAγ; see for example [2]. Define Φ ∈ `∞−⊕γ∈ΓA∗γ by Φ(γF(β)) = Φβ and
Φ(γ) = 0 otherwise. Then Φ ∈ `∞−⊕γ∈ΓA∗γ, and therefore

〈Φ, f0 〉 = lim
β
〈Φ, δϕ(γF(β))

γF(β)
〉

= lim
β

∑

γ∈Γ
〈Φ(γ), δϕ(γF(β))

γF(β)
(γ) 〉

= lim
β
〈Φ(γF(β)), ϕ(γF(β)) 〉

= lim
β
〈Φβ, ϕ(γF(β)) 〉

and hence |〈Φ, f0 〉| = limβ ‖ϕ(γF(β))‖ ≥ ε0. It follows that f0(γ0) , 0 for some γ0 ∈ Γ and thus there is β0 ∈ B
such that γ0 ∈ F(β) for all β ≥ β0; in particular, γ0 , γF(β) for all β ≥ β0. Now, invoke the Hahn-Banach
theorem to conclude that there exists Ψγ0 ∈ A∗γ0

such that |〈Ψγ0 , f0(γ0) 〉| = ‖ f0(γ0)‖ and ‖Ψγ0‖ = 1; see [9].
Define Ψ0 ∈ `∞−⊕γ∈ΓA∗γ by Ψ0(γ0) = Ψγ0 and Ψ0(γ) = 0 for all γ ∈ Γ \ {γ0}. Therefore

‖ f0(γ0)‖ = |〈Ψγ0 , f0(γ0) 〉| = |〈Ψ0(γ0), f0(γ0) 〉|
= |

∑

γ∈Γ
〈Ψ0(γ), f0(γ) 〉| = |〈Ψ0, f0 〉|

= lim
β
|〈Ψ0, δ

ϕ(γF(β))
γF(β)

〉| = lim
β
|
∑

γ∈Γ
〈Ψ0(γ), δϕ(γF(β))

γF(β)
(γ) 〉|

= lim
β
|〈Ψ0(γ0), δϕ(γF(β))

γF(β)
(γ0) 〉| = 0;

that is, f0(γ0) = 0. This contradiction completes the proof. �
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