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Abstract. The paper deals with approximations of the eigenvalues of compact operators in a Hilbert
space by the eigenvalues of finite matrices. Namely, let (a jk)∞j,k=1 be the matrix representation of a com-
pact A in an orthonormal basis, and An = (a jk)n

j,k=1. A priori estimates are established for the quantity
supµ∈σ(A) minλ∈σ(An) |λ − µ|, where σ(A) is the spectrum of A.

1. Introduction and statement of the main result

The literature devoted to approximations of the eigenvalues of various concrete operators is very rich,
cf. the interesting papers [1–3, 6, 8] and references given therein. Besides, in many cases the error estimates
are suggested. At the same time, to the best of our knowledge, such estimates for approximations of
the eigenvalues of compact operators in a Hilbert space by the eigenvalues of finite matrices were not
investigated in the available literature.

Let H be a separable Hilbert space with a scalar product (., .), the norm ‖.‖ =
√

(., .) and the unit
operator I; A is a compact operator acting in H. In the sequel (a jk)∞j,k=1 is the matrix representation of A in
an orthonormal basis {ek}∞k=1, and An = (a jk)n

j,k=1 is the n × n-matrix; λk(A) are the eigenvalues of A taken
with their multiplicities. In this paper we establish a priori error estimates for the approximation of the
eigenvalues of A by the eigenvalues of An.

Belowσ(A) denotes the spectrum of A, Rλ(A)= (A−Iλ)−1 (λ < σ(A)) is the resolvent; ρ(A, λ) = infs∈σ(A) |λ−s|
the distance between λ ∈ C and σ(A). For an integer p ≥ 2, let SNp be the Schatten - von Neumann ideal of
compact operators A in H with the finite norm Np(A) = [Trace (AA∗)p/2]1/p, where A∗ is the adjoint of A, cf.
[5].

Furthermore, put

1(An) = [N2
2(An) −

n∑

k=1

|λk(An)|2 ]1/2,
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The following relations are checked in [4, Section 2.1].

12(An) ≤ N2
2(An) − |Trace A2

n| and 12(An) ≤ N2
2(An − A∗n)

2
= 2N2

2(AnI),

where AnI = (An − A∗n)/2i. If An is a normal matrix: AnA∗n = A∗nAn, then 1(An) = 0. Since A is compact we
have

qn := ‖An − A‖ → 0.

Denote by r(qn) the unique positive root of the algebraic equation

(1.1) zn = qn

n−1∑

j=0

zn− j−11 j(An)√
j!

.

Now we are in a position to formulate the main result of the paper.

Theorem 1.1. For any µ ∈ σ(A) and a natural n, either there is an eigenvalue λ(An) of the n×n-matrix An satisfying
|µ − λ(An)| ≤ r(qn), or |µ − a j j| ≤ r(qn) for some j > n. If in addition, A ∈ SN2, then r(qn)→ 0 as n→∞.

This theorem is proved in the next section. In Section 3, we suggest another error estimate, which tends to
zero, provided A ∈ SNp, p ≥ 2. That estimate is rougher than r(qn).

Put

Pn(x) =

n−1∑

j=0

x j+11 j(An)√
j!

(x ≥ 0).

Thanks to [4, Lemma 1.6.1] we have r(qn) ≤ ζ(qn), where

ζ(qn) =

{
n
√

qnPn(1) if qnPn(1) ≤ 1,
qnPn(1) if qnPn(1) ≥ 1

.

Thus in Theorem 1.1 one can replace r(qn) by ζ(qn).

2. Proof of Theorem 1.1

First let us prove that r(qn)→ 0 as n→∞, provided A ∈ SN2. To this end rewrite (1.1) as

1 = qn

n−1∑

j=0

1 j(An)

z j+1
√

j!
.

Clearly, 1(An) ≤ N2(An) ≤ N2(A) and thus

1 ≤ qn

∞∑

j=0

N j
2(A)

r j+1(qn)
√

j!
.

Since qn → 0, hence r(qn)→ 0.
Furthermore, we will consider A as a perturbation of the operator Cn = Sn +An where Sn = dia1(a j j)∞k=n+1.

Put Qn =
∑n

k=1(., ek)ek. Then An = QnAQn and Sn = (I − Qn)Sn = Sn(I − Qn). Clearly, SnAn = AnSn = 0 and
consequently

(2.1) σ(Cn) = σ(An) ∪ {a j j}∞k=n+1.

Thus

(2.2) ‖Rλ(Cn)‖ = max{‖QnRλ(An)‖, ‖(I −Qn)Rλ(Sn)‖}.
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Thanks to Corollary 2.1.2 from [4],

(2.3) ‖QnRλ(An)‖ ≤
n−1∑

k=0

1k(An)√
k!ρk+1(An, λ)

(λ < σ(An)).

Rewrite (2.3) as

(2.4) ‖QnRλ(An)‖ ≤ Pn(1/ρ(An, λ)).

Now (2.4) and (2.2) imply the inequality

(2.5) ‖Rλ(Cn)‖ ≤ max{Pn(1/ρ(An, λ)), 1/ρ(Sn, λ)}.

But due to (2.1), ρ(An, λ) ≥ ρ(Cn, λ) and ρ(Sn, λ) ≥ ρ(Cn, λ). In addition, Pn(x) ≥ x for x ≥ 0. Thus

(2.6) ‖Rλ(Cn)‖ ≤ Pn(1/ρ(Cn, λ)).

Furthermore, for two bounded operators A and Ã, the spectral variation svA(Ã) of Ã with respect to A is
defined by

svA(Ã) := sup
µ∈σ(Ã)

inf
λ∈σ(A)

|λ − µ|.

Assume that
‖Rλ(A)‖ ≤ φ(1/ρ(A, λ)) (λ < σ(A)),

where φ(x) is a monotonically increasing non-negative continuous function of a non-negative variable x,
such that φ(0) = 0 and φ(∞) = ∞. Then due to Lemma 8.4.2 [4], the inequality svA(Ã) ≤ z(φ, q) is true, where
z(φ, q) is the a unique positive root of the equation

(2.7) 1 = qφ(1/z).

Now (2.6) implies svCn (A) ≤ rn(qn). According to (2.1) this proves the theorem. �

3. The case A ∈ SN2p, p > 1

Assume that

(3.1) A ∈ SN2p, p = 2, 3, ...

Let

(3.2) n = jp with integers p ≥ 1, j > 1.

Denote by r̂p(qn) the unique positive root of the algebraic equation

(3.3) zn = qn

p−1∑

m=0

j∑

k=0

zn−pk−m−1
Nkp+m

2p (2An)
√

k!
.

Theorem 3.1. Let condition (3.1) hold. Then for any µ ∈ σ(A) and a natural n = pj, either there is an eigenvalue
λ(An) of the n×n-matrix An satisfying |µ−λ(An)| ≤ r̂p(qn), or |µ−a j j| ≤ r̂p(qn) for some j > n. Moreover, r̂p(qn)→ 0
as n→∞.

To prove this theorem we need the following result.
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Lemma 3.2. Let An be a linear operator acting in a Euclidean space Cn with n = jp and integers p ≥ 1, j > 1. Then

(3.4) ‖Rλ(An)‖ ≤
p−1∑

m=0

j∑

k=0

Nkp+m
2p (2An)

ρpk+m+1(An, λ)
√

k!
(λ < σ(An)).

Proof. Due to the Schur theorem, cf. [7],

An = D + V (σ(An) = σ(D))

where D is a normal matrix and V is a nilpotent matrix. Besides, D and V have the same invariant subspaces,
and V is called the nilpotent part of An. Thanks to [4, Lemma 6.8.3],

‖Rλ(An)‖ ≤
p−1∑

m=0

j∑

k=0

Nkp+m
2p (V)

ρpk+m+1(An, λ)
√

k!
(λ < σ(An))

where V is the nilpotent part of An. But it is not hard to check that N2p(V) ≤ N2p(2An), cf [4, page 90, formula
(8.8)]. This proves the lemma. �

Proof of Theorem 3.1: First let us prove that r̂p(qn)→ 0 as n→∞, provided (3.1) holds. To this end rewrite
(3.3) as

1 = qn

p−1∑

m=0

j∑

k=0

z−pk−m−1
Nkp+m

2p (2An)
√

k!
.

Hence

1 ≤ qn

p−1∑

m=0

∞∑

k=0

r̂−pk−m−1
p (qn)

Nkp+m
2p (2A)
√

k!
.

Since qn → 0, we have r̂p(qn)→ 0.
Furthermore, rewrite (3.4) as

(3.5) ‖Rλ(An)‖ ≤ P̂n,p(1/ρ(An, λ)),

where

P̂n,p(x) =

p−1∑

m=0

∞∑

k=0

xpk+m+1
Nkp+m

2p (2An)
√

k!
(x ≥ 0).

Now (3.5) and (2.2) imply the inequality

‖Rλ(Cn)‖ ≤ max{P̂n,p(1/ρ(An, λ)), 1/ρ(Sn, λ)}.
But due to (2.1) , we have ρ(An, λ) ≥ ρ(Cn, λ) and ρ(Sn, λ) ≥ ρ(Cn, λ). In addition, P̂n,p(x) ≥ x for x ≥ 0. Thus,

(3.6) ‖Rλ(Cn)‖ ≤ P̂n,p(1/ρ(Cn, λ)).

Due to the above mentioned Lemma 8.4.2 [4], the inequality

svCn (A) ≤ r̂p(qn).

holds. According to (2.1) this proves the theorem. �

Furthermore, again use [4, Lemma 1.6.1]; we obtain r̂p(qn) ≤ ζ̂p(qn), where

ζ̂p(qn) =


n
√

qnP̂n,p(1) if qnP̂n,p(1) ≤ 1,
qnP̂n,p(1) if qnP̂n,p(1) ≥ 1

.

Thus in Theorem 3.1 one can replace r̂p(qn) by ζ̂p(qn).
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