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Abstract. In this paper we prove some common fixed point theorems for a sequence of self maps satisfying
generalized contractive condition for a cone metric space which is not necessarily normal. The results
presented in this paper generalize the corresponding results of [10, 13, 19] and many others from the
current literature.

1. Introduction and Preliminaries

The Well-known Banach contraction principle and its several generalization in the setting of metric
spaces play a central role for solving many problems of nonlinear analysis. For example, see [2, 5, 6, 15, 16].

Huang and Zhang [8] the concept of cone metric spaces and establish some fixed point theorems for
contractive mappings in normal cone metric spaces. Subsequently, several other authors [1, 9, 19, 21]
studied the existence of fixed points and common fixed points of mappings satisfying contractive type
condition on a normal cone metric space.

Recently, Rezapour and Hamlbarani [19] omitted the assumption of normality in cone metric space,
which is a milestone in developing fixed point theory in cone metric space. In [11] the authors introduced
the concept of a compatible pair of self maps in a cone metric space and established a basic result for a
non-normal cone metric space with an example, while in [12] weakly compatible maps have been studied.
In this paper we prove a common fixed point theorem for a sequence of self maps satisfying a generalized
contractive condition for a non-normal cone metric space.

Definition 1.1. (See [8]) Let E be a real Banach space. A subset P of E is called a cone whenever the following
conditions hold:
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(C1) P is closed, nonempty and P , {0};

(C2) a, b ∈ R, a, b ≥ 0 and x, y ∈ P imply ax + by ∈ P;

(C3) P ∩ (−P) = {0}.

Given a cone P ⊂ E, we define a partial ordering ≤with respect to P by x ≤ y if and only if y− x ∈ P. We
shall write x < y to indicate that x ≤ y but x , y, while x� y will stand for y − x ∈ P0, where P0 stands for
the interior of P. If P0 , ∅ then P is called a solid cone (see [20]).

There exist two kinds of cones- normal (with the normal constant K) and non-normal ones [6]).

Let E be a real Banach space, P ⊂ E a cone and ≤ partial ordering defined by P. Then P is called normal
if there is a number K > 0 such that for all x, y ∈ P,

0 ≤ x ≤ y imply ‖x‖ ≤ K
∥∥∥y

∥∥∥ , (1.1)

or equivalently, if (∀n) xn ≤ yn ≤ zn and

lim
n→∞

xn = lim
n→∞

zn = x imply lim
n→∞

yn = x. (1.2)

The least positive number K satisfying (1.1) is called the normal constant of P.

Example 1.2. (See [20]) Let E = C1
R

[0, 1] with ‖x‖ = ‖x‖∞ + ‖x′‖∞ on P = {x ∈ E : x(t) ≥ 0}. This cone is
not normal. Consider, for example, xn(t) = tn

n and yn(t) = 1
n . Then 0 ≤ xn ≤ yn, and limn→∞ yn = 0, but

‖xn‖ = maxt∈[0,1] | tn

n | + maxt∈[0,1] |tn−1| = 1
n + 1 > 1; hence xn does not converge to zero. It follows by (1.2) that P is a

non-normal cone.

Proposition 1.3. (See [13]) Let P be a cone in a real Banach space E. If for a ∈ P and a ≤ ka for some k ∈ [0, 1), then
a = 0.

Proposition 1.4. (See [10]) Let P be a cone in a real Banach space E with non-empty interior. If for a ∈ E and a� c
for all c ∈ P0, then a = 0.

Remark 1.5. (See [19]) λP0 ⊆ P0 for λ > 0 and P0 + P0 ⊆ P0.

Definition 1.6. (See [8, 22]) Let X be a nonempty set. Suppose that the mapping d : X × X→ E satisfies:

(d1) 0 ≤ d(x, y) for all x, y ∈ X and d(x, y) = 0 if and only if x = y;

(d2) d(x, y) = d(y, x) for all x, y ∈ X;

(d3) d(x, y) ≤ d(x, z) + d(z, y) x, y, z ∈ X.

Then d is called a cone metric [8] or K-metric [22] on X and (X, d) is called a cone metric [8] or K-metric space
[22] (we shall use the first term).

The concept of a cone metric space is more general than that of a metric space, because each metric space
is a cone metric space where E = R and P = [0,+∞).
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Example 1.7. (See [8]) Let E = R2, P = {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, X = R and d : X × X → E defined by
d(x, y) = (|x − y|, α|x − y|), where α ≥ 0 is a constant. Then (X, d) is a cone metric space with normal cone P where
K = 1.

Example 1.8. (See [18]) Let E = `2, P = {{xn}n≥1 ∈ E : xn ≥ 0, for all n}, (X, ρ) a metric space, and d : X × X → E
defined by d(x, y) = {ρ(x, y)/2n}n≥1. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of metric spaces.

Definition 1.9. (See [8]) Let (X, d) be a cone metric space. We say that {xn} is:

(i) a Cauchy sequence if for every ε in E with 0� ε, then there is an N such that for all n,m > N, d(xn, xm)� ε;

(ii) a convergent sequence if for every ε in E with 0� ε, then there is an N such that for all n > N, d(xn, x)� ε
for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

In the following (X, d) will stands for a cone metric space with respect to a cone P with P0 , ∅ in a real
Banach space E and ≤ is partial ordering in E with respect to P.

Remark 1.10. It follows from above definition that if {x2n} is a subsequence of a Cauchy sequence {xn} in a cone
metric space (X, d) and x2n → u as n→∞ then xn → u as n→∞.

Proposition 1.11. (See [13]) Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If u ≤ v,
v� w, then u� w.

Lemma 1.12. (See [13]) Let (X, d) be a cone metric space and P be a cone in a real Banach space E and l, l1, l2 > 0 are
some fixed real numbers. If xn → x, yn → y in X and for some a ∈ P

la ≤ l1 d(xn, x) + l2 d(yn, y),

for all n > N, for some integer N, then a = 0.

2. Generalized Contraction Mapping

Let X be a cone metric space and T : X → X be a mapping. Then T is called generalized contractive
mapping if it satisfies the following condition:

d(Tx,Ty) ≤ a d(x, y) + b [d(x,Tx) + d(y,Ty)] + c [d(x,Ty) + d(y,Tx)] (2.1)

for all x, y ∈ X and a, b, c ∈ [0, 1) are constants such that a + 2b + 2c < 1.

Remark 2.1. (1) If b = c = 0 and a ∈ [0, 1), then (2.1) reduces to contraction mapping defined by Banach [3].

(2) If a = c = 0 and b ∈ [0, 1/2], then (2.1) reduces to contraction mapping defined by Kannan [14].

(3) If c = 0 and a, b ∈ [0, 1/2], then (2.1) reduces to contraction mapping defined by Fisher [7].

(4) If a, b = 0 and c ∈ [0, 1/2], then (2.1) reduces to contraction mapping defined by Chaterjee [4].

(5) If b = 0 and a, c ∈ [0, 1), then (2.1) reduces to contraction mapping defined by Reich [17].
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3. Main Results

In this section we shall prove some fixed point theorems of generalized contractive mapping.

Theorem 3.1. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let {Tn} be a sequence of self maps on X satisfying generalized contractive condition (2.1) with a + 2b + 2c < 1 for
some a, b, c ∈ [0, 1). For x0 ∈ X, let xn = Tnxn−1 for all n. Then the sequence {xn} converges in X and its limit v is a
common fixed point of all the maps of the sequence {Tn}. This common fixed point is unique if a + 2c < 1.

Proof. Taking x = xn−1, y = xn, T = Tn and T = Tn+1 in (2.1), we have

d(Tnxn−1,Tn+1xn) ≤ a d(xn−1, xn) + b [d(xn−1,Tnxn−1) + d(xn,Tn+1xn)]
+c [d(xn−1,Tn+1xn) + d(xn,Tnxn−1)].

As xn = Tnxn−1, we have

d(xn, xn+1) ≤ a d(xn−1, xn) + b [d(xn−1, xn) + d(xn, xn+1)] + c [d(xn−1, xn+1) + d(xn, xn)]
≤ a d(xn−1, xn) + b [d(xn−1, xn) + d(xn, xn+1)] + c [d(xn−1, xn) + d(xn, xn+1)].

Writing d(xn, xn+1) = ρn, we have

ρn ≤ (a + b + c)ρn−1 + (b + c)ρn,

(1 − b − c)ρn ≤ (a + b + c)ρn−1,

which implies that

ρn ≤ tρn−1, (3.1)

where

t =
a + b + c
1 − b − c

.

As a + 2b + 2c < 1, we obtain that t < 1.
Now

ρn ≤ tρn−1 ≤ t2 ρn−2 ≤ · · · ≤ tn ρ0,

where ρ0 = d(x0, x1). Also for n > m, we have

d(xn, xm) ≤ d(xn, xn−1) + d(xn−1, xn−2) + · · · + d(xm+1, xm)

≤ (tn−1 + tn−2 + · · · + tm)d(x1, x0) ≤ tm

1 − t
d(x1, x0) =

tm

1 − t
ρ0.

As t < 1 and P is closed, thus we obtain that

d(xn, xm) ≤ tm

1 − t
ρ0. (3.2)

Now for ε ∈ P0, there exists r > 0 such that ε − y ∈ P0, if
∥∥∥y

∥∥∥ < r. Choose a positive integer Nε such that
for all n ≥ Nε,

∥∥∥ tm

1−t ρ0

∥∥∥ < r, which implies ε − tm

1−t ρ0 ∈ P0 and tm

1−t ρ0 − d(xn, xm) ∈ P by using (3.2).
So we have ε − d(xn, xm) ∈ P0 for all n > Nε and for all m by proposition 1.11. This implies d(xn, xm)� ε

for all n > Nε and for all m. Hence {xn} is a Cauchy sequence in X. By the completeness of X, there exists
z ∈ X such that xn → z as n→∞. For an arbitrary fixed m we show that Tmz = z. Now

d(Tmz, z) ≤ d(Tmz,Tnxn−1) + d(Tnxn−1, z)
= d(xn, z) + d(Tmz,Tnxn−1).
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Using (2.1), we have

d(Tmz, z) ≤ d(Tmz,Tnxn−1) + d(Tnxn−1, z)
= d(xn, z) + d(Tmz,Tnxn−1)
≤ d(xn, z) + a d(z, xn−1) + b [d(z,Tmz) + d(xn−1,Tnxn−1]

+c [d(z,Tnxn−1) + d(xn−1,Tmz)]
= d(xn, z) + a d(z, xn−1) + b [d(z,Tmz) + d(xn−1, xn]

+c [d(z, xn) + d(xn−1,Tmz)]
≤ d(xn, z) + a d(z, xn−1) + b [d(z,Tmz) + d(xn−1, z)

+d(z, xn)] + c [d(z, xn) + d(xn−1, z) + d(z,Tmz)]
= (1 + b + c) d(xn, z) + (a + b + c) d(z, xn−1)

+(b + c) d(Tmz, z).

So, we have

(1 − b − c)d(Tmz, z) ≤ (1 + b + c) d(xn, z) + (a + b + c) d(z, xn−1).

As xn → z, xn−1 → z (n → ∞), and 1 − b − c > 0, using Lemma 1.12, we have d(Tmz, z) = 0, and we get
Tmz = z. Thus z is a common fixed point of all the maps of the sequence {Tn}.

Uniqueness

Let Tnv = v for all n be another common fixed point of all the maps of the sequence {Tn}. Now

d(v, z) = d(Tnv,Tnz)
≤ a d(v, z) + b [d(v,Tnv) + d(z,Tnz)] + c [d(v,Tnz) + d(z,Tnv)]

which gives

d(v, z) ≤ (a + 2c) d(v, z).

As a + 2c < 1, using proposition 1.3, we have d(v, z) = 0, i.e. v = z. Thus v is the unique common fixed point
of all the maps of the sequence {Tn}.

Theorem 3.2. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let {Sn} be a sequence of self maps in X satisfying: for some an, bn, cn ∈ [0, 1) with an +2bn +2cn < 1 and an +2cn < 1,
there exists positive integer mi for each i such that for all x, y ∈ X

d(Smi
i x,Sm j

j y) ≤ an d(x, y) + bn [d(x,Smi
i x) + d(y,Sm j

j y)] + cn [d(x,Sm j

j y) + d(y,Smi
i x)]. (3.3)

Then all the maps of the sequence {Sn} have a unique common fixed point in X.

Proof. From Theorem 3.1 all the maps of the sequence {Smi
i } have a unique common fixed point, say z. Hence

Smi
i z = z for all i. Now Sm1

1 z = z implies Sm1
1 S1z = S1z. Taking x = S1z, y = z, i = 1 and j = 2 in (3.3), we have

S1z = z. Continuing in similar way it follows that Siz = z for all i. Thus z is a common fixed point of all the
maps of the sequence {Si}. Its uniqueness follows from the fact that Siz = z implies Smi

i z = z for all i.

In Theorem 3.1 taking T1 = T2 = T3 = · · · = Tn = · · · = T, we get the following general form of Banach
contraction principle in a cone metric space which is not necessarily normal.
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Theorem 3.3. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let T be a self map in X satisfying generalized contractive condition (2.1) with a + 2b + 2c < 1 for some a, b, c ∈ [0, 1).
Then for each x ∈ X the sequence {Tnx} converges in X and its limit u is a fixed point T. This fixed point is unique if
a + 2c < 1.

Theorem 3.4. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Suppose the mapping T : X→ X satisfies for some positive integer n:

d(Tnx,Tny) ≤ an d(x, y) + bn [d(x,Tnx) + d(y,Tny)] + cn [d(x,Tny) + d(y,Tnx)]

for all x, y ∈ X and an, bn, cn ∈ [0, 1) are constants such that an + 2bn + 2cn < 1. Then T has a unique fixed point in X.

Proof. From Theorem 3.3, Tn has a unique fixed point u. But Tn(Tu) = T(Tnu) = Tu, so Tu is also a fixed
point of Tn. Hence Tu = u, u is a fixed of T. Since the fixed point of T is also a fixed point of Tn, the fixed
point of T is unique.

Corollary 3.5. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space
E. Suppose the mapping T : X→ X satisfies for some positive integer m,n:

d(Tmx,Tny) ≤ an d(x, y) + bn [d(x,Tmx) + d(y,Tny)] + cn [d(x,Tny) + d(y,Tmx)]

for all x, y ∈ X and an, bn, cn ∈ [0, 1) are constants such that an + 2bn + 2cn < 1 and bn = cn. Then T has a unique
fixed point in X.

Proof. By Theorem 3.4, we get x ∈ X such that Tmx = Tnx = x. The result then follows from the fact that

d(Tx, x) = d(TTmx,Tnx) = d(TmTx,Tnx)
≤ an d(Tx, x) + bn [d(Tx,TmTx) + d(x,Tnx)] + cn [d(Tx,Tnx) + d(x,TmTx)]
≤ an d(Tx, x) + bn [d(Tx,Tx) + d(x, x)] + cn [d(Tx, x) + d(x,Tx)]
= (an + 2cn)d(Tx, x),

which implies Tx = x.

Example 3.6. (Applications) X = C([1, 3],R), E = R2, α > 0 and

d(x, y) =
(

sup
t∈[1,3]

|x(t) − y(t)|, α sup
t∈[1,3]

|x(t) − y(t)|
)

for every x, y ∈ X, and P =
{
(u, v) ∈ R2 : u, v ≥ 0

}
. It is easily seen that (X, d) is a complete cone metric space.

Define T : X→ X by

T(x(t)) = 4 +

∫ t

1

(
x(u) + u2

)
eu−1du.

For x, y ∈ X

d(Tx,Ty) =
(

sup
t∈[1,3]

|T(x(t)) − T(y(t))|, α sup
t∈[1,3]

|T(x(t)) − T(y(t))|
)

≤
( ∫ 3

1
|(x(u) − y(u))|e2du, α

∫ 3

1
|(x(u) − y(u))|e2du

)

= 2e2d(x, y).
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Similarly,

d(Tnx,Tny) ≤ e2n 2n

n!
d(x, y).

Note that

e2n 2n

n!
=



109 if n = 2,
1987 if n = 4,
1.37 if n = 37,
0.53 if n = 38.

Thus for an = 0.53, bn = cn = 0, m = n = 38, all conditions of Corollary 3.5 are satisfied and so T has a unique
fixed point, which is the unique solution of the integral equation:

x(t) = 4 +

∫ t

1

(
x(u) + u2

)
eu−1du,

or the differential equation:

x′(t) =
(
x(t) + t2

)
et−1, t ∈ [1, 3], x(1) = 4.

Hence, the use of Corollary 3.5 is a delightful way of showing the existence and uniqueness of solutions
for the following class of integral equations:

q +

∫ t

p
K(x(u),u)du = x(t) ∈ C

(
[p, q], Rn

)
.

In Huang and Zhang [8] and Rezapour and Hamlbarani [19] proved the following various form of
Banach contraction principle in a normal cone metric space and in a cone metric space.

Theorem 1[8] and Theorem 2.3 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T : X→ X satisfies the contractive condition

d(Tx,Ty) ≤ k d(x, y),

for all x, y ∈ X, where k ∈ [0, 1) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, the
iterative sequence {Tnx} converges to the fixed point.

Theorem 3[8] and Theorem 2.6 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T : X→ X satisfies the contractive condition

d(Tx,Ty) ≤ k [d(x,Tx) + d(y,Ty)],

for all x, y ∈ X, where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, the
iterative sequence {Tnx} converges to the fixed point.

Theorem 4[8] and Theorem 2.7 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T : X→ X satisfies the contractive condition

d(Tx,Ty) ≤ k [d(y,Tx) + d(x,Ty)],
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for all x, y ∈ X, where k ∈ [0, 1/2) is a constant. Then T has a unique fixed point in X. And for any x ∈ X, the
iterative sequence {Tnx} converges to the fixed point.

Remark 3.7. Above Theorems of [8] and [19] follows from Theorem 3.3 of this paper by taking:

(i) b = c = 0 and a = k,

(ii) a = c = 0 and b = k,

(iii) a = b = 0 and c = k,

respectively in it.

Precisely, Theorem 3.3 synthesizes and generalizes all the results of [8] and [19] for a non-normal cone
metric space. Theorem 3.2 is a generalized form of Banach contraction principle in a complete cone metric
space which is not necessarily normal.

Remark 3.8. Our results also generalize the corresponding results of Jain et al. [13].

We conclude with an example.

Example 3.9. (of Theorem 2.3) Let E = R2, the Euclidean plane, and P = {(x, y) ∈ R2 : x, y ≥ 0} a normal cone in
P. Let X = {(x, 0) ∈ R2 : 0 ≤ x ≤ 1} ∪ {(0, x) ∈ R2 : 0 ≤ x ≤ 1}. The mapping d : X × X→ E is defined by

d((x, 0), (y, 0)) =
(5
3
|x − y|, |x − y|

)
,

d((0, x), (0, y)) =
(
|x − y|, 2

3
|x − y|

)
,

d((x, 0), (0, y)) = d((0, y), (x, 0)) =
(5
3

x + y, x +
2
3

y
)
.

Then (X, d) is a complete cone metric space.

Let mapping T : X→ X with

T((x, 0)) = (0, x) and T((0, x)) =
(1
2

x, 0
)
.

Then T satisfies the generalized contractive condition

d
(
T((x, x′)),T((y, y′))

)
≤ a d

(
(x, x′), (y, y′)

)
+ b

[
d
(
(x, x′),T((x, x′))

)
+ d

(
(y, y′),T((y, y′))

)]

+c
[
d
(
(x, x′),T((y, y′))

)
+ d

(
(y, y′),T((x, x′))

)]

for all (x, x′), (y, y′) ∈ X with the constant λ = a + 2b + 2c < 1, where a, b, c are such that a = b = c = 1
6 . Then it is

obvious that T has a unique fixed point (0, 0) ∈ X, where λ = 5
6 ∈ [0, 1).

Acknowledgement. The authors would like to thank the referee for his careful reading and useful sug-
gestions on the manuscript.
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