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Abstract. In this paper we prove some common fixed point theorems for a sequence of self maps satisfying
generalized contractive condition for a cone metric space which is not necessarily normal. The results
presented in this paper generalize the corresponding results of [10, 13, 19] and many others from the
current literature.

1. Introduction and Preliminaries

The Well-known Banach contraction principle and its several generalization in the setting of metric
spaces play a central role for solving many problems of nonlinear analysis. For example, see [2, 5, 6, 15, 16].

Huang and Zhang [8] the concept of cone metric spaces and establish some fixed point theorems for
contractive mappings in normal cone metric spaces. Subsequently, several other authors [1, 9, 19, 21]
studied the existence of fixed points and common fixed points of mappings satisfying contractive type
condition on a normal cone metric space.

Recently, Rezapour and Hamlbarani [19] omitted the assumption of normality in cone metric space,
which is a milestone in developing fixed point theory in cone metric space. In [11] the authors introduced
the concept of a compatible pair of self maps in a cone metric space and established a basic result for a
non-normal cone metric space with an example, while in [12] weakly compatible maps have been studied.
In this paper we prove a common fixed point theorem for a sequence of self maps satisfying a generalized
contractive condition for a non-normal cone metric space.

Definition 1.1. (See [8]) Let E be a real Banach space. A subset P of E is called a cone whenever the following
conditions hold:
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(C1) P is closed, nonempty and P # {0};
(Cy)a,beR,a,b>0andx,y € Pimplyax +by € P;
(C3) PN (=P) = {O}.
Given a cone P C E, we define a partial ordering < with respect to P by x < y if and only if y —x € P. We
shall write x < y to indicate that x < y but x # y, while x < y will stand for y — x € P’, where P° stands for
the interior of P. If P° # () then P is called a solid cone (see [20]).

There exist two kinds of cones- normal (with the normal constant K) and non-normal ones [6]).

Let E be a real Banach space, P C E a cone and < partial ordering defined by P. Then P is called normal
if there is a number K > 0 such that for all x, y € P,

0<x<y imply |l <K|y|, (1.1)

or equivalently, if (Vn) x, <y, <z, and

lim x, = lim z, = x imply lim y, = x. (1.2)

n—oo n—oo

The least positive number K satisfying (1.1) is called the normal constant of P.

Example 1.2. (See [20]) Let E = C%R[O,l] with ||x|| = ||¥|le + 1|l 0n P = {x € E : x(t) > 0}. This cone is

not normal. Consider, for example, x,(t) = % and y,(t) = % Then 0 < x, < Yy, and lim, ey, = 0, but

[l || = maxieo,1 |%| + maxepo 1 "1 = % +1 > 1; hence x, does not converge to zero. It follows by (1.2) that P is a
non-normal cone.

Proposition 1.3. (See [13]) Let P be a cone in a real Banach space E. If for a € P and a < ka for some k € [0, 1), then
a=0.

Proposition 1.4. (See [10]) Let P be a cone in a real Banach space E with non-empty interior. If fora € Eand a < c
forall c € P°, then a = 0.

Remark 1.5. (See [19]) AP° C P° for A > 0 and P° + P° C P°.

Definition 1.6. (See [8, 22]) Let X be a nonempty set. Suppose that the mapping d: X x X — E satisfies:
(d1) 0 <d(x,y) forall x,y € X and d(x,y) = 0 if and only if x = y;
(d2)d(x,y) =d(y,x) forall x,y € X;
(d3)d(x,y) <d(x,z) +d(z,y) x,y,z€ X.

Then d is called a cone metric [8] or K-metric [22] on X and (X, d) is called a cone metric [8] or K-metric space
[22] (we shall use the first term).

The concept of a cone metric space is more general than that of a metric space, because each metric space
is a cone metric space where E = R and P = [0, +o0).
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Example 1.7. (See [8]) Let E = R?>, P = {(x,y) € R* : x > 0,y > 0}, X = Rand d: X x X — E defined by
d(x,y) = (Ix = yl, alx — yl), where a > 0 is a constant. Then (X, d) is a cone metric space with normal cone P where
K=1.

Example 1.8. (See [18]) Let E = €2, P = {{xy}u>1 € E : x, > 0, for all n}, (X, p) a metric space, and d: X x X — E
defined by d(x, y) = {p(x, y)/2"}u=1. Then (X, d) is a cone metric space.

Clearly, the above examples show that class of cone metric spaces contains the class of metric spaces.

Definition 1.9. (See [8]) Let (X, d) be a cone metric space. We say that {x,} is:
(i) a Cauchy sequence if for every € in E with 0 < ¢, then there is an N such that for all n,m > N, d(x,,, x) < &;

(ii) a convergent sequence if for every ¢ in E with 0 < ¢, then there is an N such that for all n > N, d(x,,x) < €
for some fixed x in X.

A cone metric space X is said to be complete if every Cauchy sequence in X is convergent in X.

In the following (X, d) will stands for a cone metric space with respect to a cone P with P? # 0 in a real
Banach space E and < is partial ordering in E with respect to P.

Remark 1.10. It follows from above definition that if {x,,} is a subsequence of a Cauchy sequence {x,} in a cone
metric space (X, d) and x, — uasn — oo then x, = uasn — oo.

Proposition 1.11. (See [13]) Let (X, d) be a cone metric space and P be a cone in a real Banach space E. If u < v,
v w,then u < w.

Lemma 1.12. (See [13]) Let (X, d) be a cone metric space and P be a cone in a real Banach space E and 1,11,1 > O are
some fixed real numbers. If x, — x, y, — y in X and for some a € P

llZ S ll d(xn/x) + lZ d(]/n/ ]/)/

forall n > N, for some integer N, then a = 0.

2. Generalized Contraction Mapping

Let X be a cone metric space and T: X — X be a mapping. Then T is called generalized contractive
mapping if it satisfies the following condition:

d(Tx, Ty) < ad(x,y)+bld(x, Tx)+d(y, Ty)] +cld(x, Ty) + d(y, Tx)] (2.1)

forall x,y € X and a,b, c € [0,1) are constants such thata + 2b + 2c < 1.

Remark 2.1. (1) Ifb=c=0and a € [0,1), then (2.1) reduces to contraction mapping defined by Banach [3].
(2)Ifa=c=0andb €[0,1/2], then (2.1) reduces to contraction mapping defined by Kannan [14].
(3)Ifc=0anda,b € [0,1/2], then (2.1) reduces to contraction mapping defined by Fisher [7].

(4)Ifa,b =0and c € [0,1/2], then (2.1) reduces to contraction mapping defined by Chaterjee [4].

(5)Ifb=0anda,c €[0,1), then (2.1) reduces to contraction mapping defined by Reich [17].
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3. Main Results

In this section we shall prove some fixed point theorems of generalized contractive mapping.

Theorem 3.1. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let {T,,} be a sequence of self maps on X satisfying generalized contractive condition (2.1) with a +2b + 2c < 1 for
somea,b,c € [0,1). For xg € X, let x, = Tyx—1 for all n. Then the sequence {x,} converges in X and its limit v is a
common fixed point of all the maps of the sequence {T,}. This common fixed point is unique if a + 2c < 1.

Proof. Taking x = x,—1, y =x,, T =T, and T = T,11 in (2.1), we have

d(Tnxn—lr Tn+1xn) < a d(xn—lr xn) +0b [d(xn—lr Tnxn—l) + d(xn/ Tn+1xn)]
+c[d(xp—1, Tps1xn) + A(x, Txy-1)].

As x, = T,,x,_1, we have

A(xXp, Xne1) < ad(xp-1,%,) + b [d(x4-1,%xn) + d(Xp, Xp41)] + € [d(Xp-1, Xpi1) + d(x, X4)]
< ad(xn—l/ xn) +b [d(xn—lr xn) + d(xnr xn+l)] +cC [d(xn—l/ xn) + d(xnr xn+1)]-

Writing d(x,, X,+1) = pn, We have

pn<@+b+c)pu-1+b+c)pn,

1-b-c)pp<@+b+c)pur,
which implies that

pn < tpu-, (3.1)
where

_a+b+c
T 1-b-¢

Asa+2b+ 2c <1, we obtain that f < 1.
Now

t

Pn Stpu1 SEpua < <t pg,
where py = d(xo, x1). Also for n > m, we have

d(xnr xm) < d(xnr xnfl) + d(xnflr xn72) +et d(merl/ xm)

m tm
< (tn_l 7244 t’”)d(xl,xo) < 1—¢ d(xl,xo) = 1—_1_ Po-
Ast <1 and P is closed, thus we obtain that
tWZ
A(xy, xm) < 1 Po- (3.2)

Now for ¢ € PY, there exists r > 0 such that ¢ — y € PY, if || y” < r. Choose a positive integer N, such that
foralln > N,, || & p0|| < r, which implies ¢ — == py € PY and i py — d(x,, x,s) € P by using (3.2).

So we have ¢ — d(x,,, x,;) € P° for all n > N, and for all m by proposition 1.11. This implies d(x,, x,) < €
for all n > N, and for all m. Hence {x,} is a Cauchy sequence in X. By the completeness of X, there exists
z € X such that x, — z as n — co. For an arbitrary fixed m we show that T,,,z = z. Now

A(Tnz,z) < ATz, Tpxp-1) + d(Tuxp-1,2)
d(xn/ Z) + d(TmZ/ Tnxn—l)-
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Using (2.1), we have

A(Tyz,z)

IA

ATz, Tyxy—1) + d(Tpxn-1,2)

= d(x,,z) +d(Tuz, Thxy-1)

d(x,,z) +ad(z,x,-1) + bld(z, Tz) + d(xp-1, Tuxn-1]
+e[d(z, Tuxn-1) + d(xu-1, Tmz)]

= d(x,,z)+ad(z,x,—1) +bld(z, Tyz) + d(x,-1, x,]
+c[d(z, x,) + d(xp-1, Tz)]

d(x,,z) +ad(z,x,-1) + bld(z, T),z) + d(x,-1, 2)
+d(z, x,)] + cld(z, x,,) + d(x-1,2) + d(z, Ty2)]

= (1+b+0)dx,,z)+@+b+c)d(z,x,-1)

+( +c)d(Tyyz, 2)-

IN

IA

So, we have
A1-b-0d(Tyz,z) < (A+b+c)d(xy,z)+@+b+c)d(z, xy-1).

Asx, = z,X,1 > z(n — o),and 1 — b — ¢ > 0, using Lemma 1.12, we have d(T},z,z) = 0, and we get
Tz = z. Thus z is a common fixed point of all the maps of the sequence {T},}.

Uniqueness

Let T,,v = v for all n be another common fixed point of all the maps of the sequence {T,,}. Now

d(v,z) d(Tyv, Tyz)

ad(v,z) + bld(v, Tyv) + d(z, T,z)] + c[d(v, T,z) + d(z, T,0)]

IN

which gives

d(v, z)

IA

(a+2c)d(v, z).

Asa+2c < 1, using proposition 1.3, we have d(v,z) = 0, i.e. v = z. Thus v is the unique common fixed point
of all the maps of the sequence {T,,}. [

Theorem 3.2. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let {S,,} be a sequence of self maps in X satisfying: for some ay, by,, ¢, € [0,1) with a, +2b, +2c, < land a, +2c, <1,
there exists positive integer m; for each i such that for all x,y € X

(s, s;”f y) < apd(x,y) + by [dx, Sx) +d(y, sj."f )]+ ¢, [d(x, s]’?” y) +d(y, S"x)]. (3.3)
Then all the maps of the sequence {S,} have a unigue common fixed point in X.
Proof. From Theorem 3.1 all the maps of the sequence {S;"} have a unique common fixed point, say z. Hence
Sz =z for all i. Now S}"z = z implies 5] S,z = S;z. Taking x = S1z,y = z,i = 1 and j = 2 in (3.3), we have
51z = z. Continuing in similar way it follows that S;z = z for all i. Thus z is a common fixed point of all the

maps of the sequence {S;}. Its uniqueness follows from the fact that S;z = z implies S;"" z=zforalli. O

In Theorem 3.1 taking Ty =T, = Tz = --- =T, = --- = T, we get the following general form of Banach
contraction principle in a cone metric space which is not necessarily normal.
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Theorem 3.3. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Let T be a self map in X satisfying generalized contractive condition (2.1) with a +2b+2c < 1 for somea, b, c € [0, 1).
Then for each x € X the sequence {T"x} converges in X and its limit u is a fixed point T. This fixed point is unique if
a+2c<1.

Theorem 3.4. Let (X, d) be a complete cone metric space with respect to a cone P contained in a real Banach space E.
Suppose the mapping T: X — X satisfies for some positive integer n:

Ad(T"x, T"y) < apd(x,y)+ b, [d(x, T"x) + d(y, T"y)] + ¢, [d(x, T"y) + d(y, T"x)]
forall x,y € Xanday,, b,,c, € [0,1) are constants such that a, +2b, +2c, < 1. Then T has a unique fixed point in X.
Proof. From Theorem 3.3, T" has a unique fixed point u. But T"(Tu) = T(T"u) = Tu, so Tu is also a fixed
point of T". Hence Tu = u, u is a fixed of T. Since the fixed point of T is also a fixed point of T", the fixed
point of T is unique. [
Corollary 3.5. Let (X,d) be a complete cone metric space with respect to a cone P contained in a real Banach space
E. Suppose the mapping T: X — X satisfies for some positive integer m, n:

A(T"x, T"y) < a,d(x,y) + b, [d(x, T"x) + d(y, T"y)] + ¢, [d(x, T"y) + d(y, T"x)]

for all x,y € X and a,, by, c, € [0, 1) are constants such that a, + 2b, + 2¢, < 1 and b, = c,. Then T has a unique
fixed point in X.

Proof. By Theorem 3.4, we get x € X such that T"x = T"x = x. The result then follows from the fact that
d(Tx, x)

A(TT"x, T"x) = d(T"Tx, T"x)

a, d(Tx,x) + b, [d(Tx, T"Tx) + d(x, T"x)] + ¢, [d(Tx, T"x) + d(x, T" Tx)]
a, d(Tx,x) + b, [d(Tx, Tx) + d(x, x)] + ¢, [d(Tx, x) + d(x, Tx)]

(ay + 2c,)d(Tx, x),

IAN A

which implies Tx =x. [

Example 3.6. (Applications) X = C([1,3],R), E = R? a > 0 and

d(x,y) = ( sup k(®) - y(®)l, @ sup x(t) - y())

te[1,3]

for every x,y € X, and P = {(u, v)eR?: u,v> 0}. It is easily seen that (X, d) is a complete cone metric space.
Define T: X — X by

t
Tx(t) =4+ f (x(u) + uz)e“‘ldu.
1
Forx,ye X

d(Tx, Ty)

(sup ITG(t) = TEM)], a sup [T(x(®) - TEH)])

te[1,3] te[1,3]

3
( f1 () - y(w)le*du, a f |(e(u) = y(w))le*du)
2¢%d(x, y).

IA
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Similarly,

d(T"x, T"y) < &*" % d(x, y).

Note that
109 ifn=2,
62ng _ 1987 ifn=4,
n! 1.37 ifn=37,
0.53 ifn=238.

Thus for a, = 0.53, b, = ¢, =0, m = n = 38, all conditions of Corollary 3.5 are satisfied and so T has a unique
fixed point, which is the unique solution of the integral equation:

t
x(t) =4 + f (x(u) + uz)e”‘ldu,
1
or the differential equation:
X(t) = (x(t) + £)e' ™, t€[1,3], x(1) = 4.

Hence, the use of Corollary 3.5 is a delightful way of showing the existence and uniqueness of solutions
for the following class of integral equations:

q+ f K(x(u), u)du = x(t) € C([p, ql, IR”),
4

In Huang and Zhang [8] and Rezapour and Hamlbarani [19] proved the following various form of
Banach contraction principle in a normal cone metric space and in a cone metric space.

Theorem 1[8] and Theorem 2.3 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T: X — X satisfies the contractive condition

d(Tx, Ty) < kd(x, y),

for all x, y € X, where k € [0, 1) is a constant. Then T has a unique fixed point in X. And for any x € X, the
iterative sequence {T"x} converges to the fixed point.

Theorem 3[8] and Theorem 2.6 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T: X — X satisfies the contractive condition

d(Tx, Ty) < k[d(x, Tx) + d(y, Ty)],

for all x, y € X, where k € [0,1/2) is a constant. Then T has a unique fixed point in X. And for any x € X, the
iterative sequence {T"x} converges to the fixed point.

Theorem 4[8] and Theorem 2.7 [19]. Let (X, d) be a complete cone metric space. Suppose the mapping
T: X — X satisfies the contractive condition

d(Tx, Ty) < k[d(y, Tx) + d(x, Ty)],
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forall x, y € X, where k € [0,1/2) is a constant. Then T has a unique fixed point in X. And for any x € X, the
iterative sequence {T"x} converges to the fixed point.

Remark 3.7. Above Theorems of [8] and [19] follows from Theorem 3.3 of this paper by taking:
(i)b=c=0anda =k,
(i)a=c=0and b =k,
(fii)a=b=0andc =k,

respectively in it.

Precisely, Theorem 3.3 synthesizes and generalizes all the results of [8] and [19] for a non-normal cone
metric space. Theorem 3.2 is a generalized form of Banach contraction principle in a complete cone metric
space which is not necessarily normal.

Remark 3.8. Our results also generalize the corresponding results of Jain et al. [13].

We conclude with an example.

Example 3.9. (of Theorem 2.3) Let E = R?, the Euclidean plane, and P = {(x, y) € R* : x, y > 0} a normal cone in
P. Let X ={(x,0) € R*: 0 <x <1}U{(0,x) € R*: 0 < x < 1}. The mapping d: X x X — E is defined by

40,0 = (3 -yl le - ),
2
4((0,), 0, y)) = (I = yl, 3 b = yl),

d((x,0),(0,v)) = d((0, y), (x,0)) = (§ Xryx+ % v)

Then (X, d) is a complete cone metric space.

Let mapping T: X — X with

T((x,0)) = (0,x) and T((O,x)):(% x,o).

Then T satisfies the generalized contractive condition

(TGN, Ty, y)) < ad((x,x), (1, y) +b[d(x, ), TG ) + d(@, y), Ty, 1))
e [d(Gex), T(w, y')) +d((y, v, T, x))|

forall (x,x"), (y,y') € X with the constant A = a +2b + 2c < 1, where a,b,c are such thata =b =c = %. Then it is
obvious that T has a unique fixed point (0,0) € X, where A = 2 € [0, 1).

Acknowledgement. The authors would like to thank the referee for his careful reading and useful sug-
gestions on the manuscript.
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