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Eigenvalues for a Schréodinger operator on a closed Riemannian
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Abstract. In this article we consider a closed Riemannian manifold (M, g) and A a subset of M. The purpose
of this article is the comparison between the eigenvalues (Ax(M));s; of a Schrodinger operator P := —A, +V
on the manifold (M, g) and the eigenvalues (A(M — A)),>; of P on the manifold (M — A, g) with Dirichlet
boundary conditions.

1. Introduction

The behaviour of the spectrum of a Riemannian manifold (M, g) under topological perturbation has been
the subject of many research. The most famous exemple is the crushed ice problem [Kac], see also [Ann].
This problem consists to understand the behaviour of Laplacian eigenvalues with Dirichlet boundary on a
domain with small holes. This subject was first studied by M. Kac [Kac] in 1974. Then, ]J. Rauch and M.
Taylor [Ra-Ta] studied the case of Euclidian Laplacian in a compact set M of R” : they showed that the
spectrum of Ag» is invariant by a topological excision of a M by a compact subset A with a Newtonian
capacity zero. Later, S. Osawa, I. Chavel and E. Feldman [Ca-Fel], [Ca-Fe2] treated the Riemmannian
manifold case. They used complex probalistic techniques based on Brownian motion. In [Ge-Zh], F.
Gesztesy and Z. Zhao investigate the study the case of a Schrodinger operator with Dirichlet boundary
conditions R”, they use probabilistic tools. In 1995, in a nice article [Cou] G . Courtois studied the case of
Laplace Beltrami operator on closed Riemannian manifold. He used very simple techniques of analysis.
In [Be-Co] J. Bertrand and B. Colbois explained also the case of Laplace Beltrami operator on compact
Riemannian manifold. In this article we focus on the the Schrédinger operator —A,; + V case on a closed
Riemannian manifold.

Assumption 1. The manifold is closed (i.e. compact without boundary); the function V is bounded on the manifold
M and miny V > 0.
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In this work we show that under “little” topological excision of a part A from the manifold, the spectrum
of —A; + V on M — A is close of the spectrum on M. More precisely, the “good” parameter for measuring
the littleness of A is a type of electrostatic capacity defined by :

cap(A) := inf{Q(u), u e H(M), f udV,=0,u—es € Hé(M —A)}
M

where e; denotes the first eigenfunction of the operator —A, + V on the manifold M, and Q is the following
quadratic form :

Qlp) = f ldo[* dv, + f Vel dv,
M M

and Hé (M — A) is the Sobolev space defined by :

Hy(M — A) := {g € H'(M), g = 0 on a open neighborhood of A }

the closure is for the norm ||. ||y ), H 1(M) is the usual Sobolev space on M.
Indeed, more cap(A) is small, more the spectrum —A; + V on M — A is close of the spectrum on M in the
following sense :

Theorem 1.1. Let (M, g) a closed Riemannian manifold. For all integer k > 1, there exists a constant Cy depending
on the manifold (M, g) and on the potential V such that for all subset A of M we have :

0 < A(M = A) = A(M) < Cy AJeap(A).

The organization of this paper is the following : in the part 2 we start by recall some classicals results in
spectral theory and about usual Sobolev spaces, next we define our specific Sobolev space H}(M — A) and
the notion of Schrodinger capacity. In particular, we explain the link between the functionnal Hilbert space
Hj(M — A) and Schrodinger capacity cap(A). The last part of this paper is a detailed proof of the main
theorem.

2. Spectral problem background

2.1. Schrodinger operator on a Riemannian manifold
We recall here some generality on spectral geometry. In Riemannian geometry, the Laplace Beltrami
n

operator is the generalisation of Laplacian A = Z ;—; onR". For a C? real valued function f on a Riemannian
=1

manifold and for a local chart ¢ : U ¢ M — R of the manifold M, the Laplace Beltrami operator is given

by the local expression :

_ 1y -kc?(foqu))
Agf— \/yﬂcz_:l&x](\/yg] 8xk

where g = det(g;;) and g/* = (g;5)7".

The spectrum of this operator is a nice geometric invariant, see Berger, Gauduchon and Mazet [BGM] and
[Be-Be]. The spectrum of Laplace Beltrami operator has many applications in geometry topology, physics
setc ...

For every Riemannian manifold (M, g) with dimension n > 1 we have the “natural” Hilbert space L?>(M) =
L*(M,dV,), ‘V, is the Riemannian volume form associated to the metric g. For V a function from M to R,
we define the Schrédinger operator on the manifold (M, g) by the linear unbounded operator on the set of
smooth compact supports real valued functions C*(M) c L2 (M) by : —=A, + V.
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2.2. Sobolev spaces

Let us denotes by C;°(M) the set of smooth functions with compact support in M. The set C°(M) is also
called the set of test functions in the language of distributions. Recall first that the Lebesgue space L>(M) on
the manifold (M, g) is defined by :

L*(M) := {f : M — R measurable such that f |f)2 av, < +oo}.
M

This space is a Hilbert space for the scalar product :

(U, )2 := f uvdV,.
M
Next the Sobolev space H' (M) is defined by :
HY(M) := C>(M)
where the closure is for the norm ||.||g : ||ullg = 1Hlulli2 + IIdulliz.
An other point of view to define the space H'(M) is the following :
H' (M) = {u € LA(M); du € LX(M)]
where the derivation is the sense of distribution.
The space H'(M) is a Hilbert space for the scalar product :
(U, vy = U, V)2 + {du, dv);a .

For finish, the Sobolev space H}(M, g) is defined by :

Hy(M) := C>(M)

the closure is for the norm ||.||g1 ) -
So we have :

C>(M) C Hy(M) ¢ H' (M) c LA(M).
Recall that, for the norm ||.||;2) we have :
C®(M) = LA(M).

2.3. Spectral problem
The spectral problem is the following : find all pairs (A, u) with A € R and u € L*(M) such that :

—Agu+ Vu = Au

(with u € L2(M) in the non-compact case).
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In the case of manifold with boundary, we need boundary conditions on the functions u, for example

the Dirichlet conditions : # = 0 on the boundary of M, or Neumann conditions : % = 0 on the boundary of

M. In the case of closed manifolds (compact without boundary) we don’t have conditions.
For our context (the closed case) the natural space to look here is the Sobolev space H'(M).
Recall here a classical theorem of spectral theory (see for example [Re-Si]) :

Theorem 2.1. For the above problems, the operator —A,; + V' is self-adjoint, the spectrum of the operator —A; +V
consists of a sequence of infinite increasing eigenvalues with finite multiplicity :

AMM) < AH(M) <+ S A (M) £ -+ — +oo.
Moreover, the associate eigenfunctions (ex)iso is @ Hilbert basis of the space L*(M).

Definition 2.2. We define the quadradic form Q with domain D(Q) := H'(M) by :

Qlp) = f |0Z(P|2 d(Vngf V|§0|2 dvVy.
M M

Recall also (see for example [Co-Hi]) the minimax variational characterization for eigenvalues : forall k > 1

Ar(M) = min maxR
k( ) ECH'(M) @<E ((P)
dim(E)=k  @#0

where R(@) is the Rayleigh quotient of the function ¢ :

Qlp)
R(p) := —=1"
(®) [ v,

In our context, a consequence of the minimax principle is :

Proposition 2.3. The first eigenvalue A1(M) and e, the first eigenfunction of the operator —A,; + V on the manifold
(M, g) satisfy A1(M) > miny V > 0and e; > 0ore; <0in M.

Proof. It’s clear that

2 2 . 2
f]\;ldell d"Vg+fA;V|ell d(VmeNlInVHellle(M)

and on the other hand

f \de1|* dV, + f Vel dv, = - f Agerer dV, + f Viell* dV,
M M M M

2
- fM (g + V) ererdVy = 1M ller oy

so A1(M) > miny V. Next, suppose the function e; changes sign into M, since e; € H'(M), the function
f := le1| belongs to H'(M) and |d f ) = |de;| (see for example [Gi-Tr]), hence R(f) = R(e1). So, the function
f is a first eigenfunction of —A; + V on the manifold M which satisfies f > 0 on M, f vanish into M
and (—Ay + V) f = AMM)f > 0 on M. Using the maximum principle [Pr-We], the function f can not
achieved it minimum in an interior point of the manifold M, hence f does not vanish on M, so we obtain a
contradiction. [J
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3. Proof of the main theorem

3.1. Somes other usefull spaces
We define on the space H'(M) the x-norm by :

llull5 :=f|du|2 d(Vg+fV|u|2 dv,
M M

so, without difficulty we have :

Proposition 3.1. The application ||.||, is a norm on the space H*(M); moreover this norm is equivalent to the Sobolev
norm ||.[lgp vy In particular HY(M), |||l is a Banach space.

Let us denotes by C°(M — A) the set of smooth functions with compact support on M — A. For a compact
subset A of the manifold M the usual Sobolev space Hy(M — A) is defined by the closure of CZ*(M — A) for
the norm ||.|[g1 ) :

H}(M - A) :=C>(M - A).

What happens when the set A is not compact ? For example if A is a dense and countable subset of points
of the manifold M, the space of test functions C;°(M — A) is reduced to {0}. Therefore we cannot define the
space Hy(M — A). In this case, we propose a definition of Hj(M — A) for any subset A of M.

Definition 3.2. We define the Sobolev spaces Hj (M — A) and Hy(M — A) by :
Hy(M—-A) = {g € H' (M), g = 0 on a open neighborhood of A };

Hy(M — A) := H}(M - A)
where the closure is for the norm ||.||gn v -
We have the :
Proposition 3.3. If the set A is compact, the previous definition of the space H)(M — A) coincides with the usal ones.
Proof. Let f € Hy(M — A) := Hj (M — A), then by definition : for all ¢ > 0 there exists g € Hy (M — A) such

that || f— g” oy S € So, we will show that we can write g as a limit of sequence from the space C*(M — A)

and conclude. Since g € H;(M — A) there exists an open set U D A such that gy = 0. Consider two open
sets U; and U, of the manifold M such that :

AclU, M-UclW, UNnU, =0;
and consider also a function ¢ € D(M) such that :
o, =0, pu, = 1.

Of course, the function ¢ belongs to the space C*(M —A). Next, since g € Hy (M —A) c H'(M) and as the set
of smooth functions C*(M) is dense in H' (M) : there exists a sequence (g,), in C*(M) such that lim g, = g

for the norm ||| a1 - Therefore we claim that : lim ¢g, = g for the norm ||.||g1ap). Indeed, start by, for all
n—+oo
integer n :

”909” - 9“2](1\4) < ”57” - g“f—ll(M—U) + “qogn - 9”1211(U)

2 2
< lgn = 9lliz gy + leo7s = 9l 01 -
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Next, we observe that, for all integer 7 :

2 2
g = gl = gl
=L|(pgn)2 d(Vg+f;[|d(pgn+(pdg,,|2 dv,
< f lpga|* dV, + f ldpga| dv, + f lpdga| dv, +2 f \dpgupdg.| dV,
u u u u
o 1 % [
+ ol agallso + 2l il fu |9udga| dV

< “90”50 ||-‘7”Hi2(w + ”d(P”i ”9"“22@

ol Mgl + 2 8@l Il n N9l 140l 2 -

by Cauchy-Schwarz inequality.
Finally we get for all integer 7 :

g = ol < Il (2l + el + 2 el el )
As a consequence, we have for all integer n :
oz = gl < 195 = ol i

el (2l + ol + 2ol )

Now, it suffices to note that “gn“iﬂ(u

have finally :

”@gﬂ - g“ill(M) =

s = ol (1 + 2llell. + Nl +2 gl .-

48

)= ”gn - g”;(u) < Hgn - 9”12{1(1\4) (since g = 0 on the open set U) and we

The sequence (¢g,), belong to C=(M—A)N,and since liIP gn = g for thenorm ||| uy) the previous inequality

implies ngTngn = g for the norm ||.||g1 ) -

So we have shown that every function f € Hé(M —-A) = 7—(& (M = A) is a limit (for the norm ||.[[;1(a1) of @

sequence of CZ°(M — A).
Conversely, since C2°(M — A) C 7{(} (M —A) we get:

Hy(M - A) := C(M — A) C Hy(M — A) := H} (M - A).
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Let us also denote the spaces HL (M) and Sx(M) by :

HL(M) := {feHl(M),ffd(Vg=O};
M

and

Sa(M) 1= {u € Hy(M), u—e; € Hy(M - A)}.

In the definition of the space HL (M) the condition fM fdV, = 0 is analog to a boundary condition. We
observe that the space H. (M) is a Hilbert space for the norm :

] == f dul® dV, + f VP dv,;
M M

and S4(M) is just an affine closed subset of H!(M).
3.2. Schridinger capacity
Next, we introduce the Schrédinger capacity of the set A ;

Definition 3.4. Let us consider the Schrodinger capacity cap(A) of the set A defined by

cap(A) = inf{ fM \dul* dV, + fM Viul dV,, ue SA(M)}.

Let us remark that : there exists an unique function us € S4(M) such that

cap(A) = f ldual® dV, + f Vlual® dV,.
M M

Indeed : here the capacity cap(A) is just the distance between the function 0 and the closed space S4(M).
This distance is equal to ||ual, where 14 is the orthogonal projection of 0 on S4(M) :

cap(A) = dy (0, 5a(M)) := inf{|lull, , u € SAM)} = lluall, -

In the following lemma we give the relationships between the capacity cap(A), the functions 14, e; and the
Sobolev spaces Hy(M — A), H'(M).

Lemma 3.5. For all subset A of the manifold M, the following properties are equivalent :
(i) cap(A) = 0;
(i) ua = 0;
(iii) e, € Hy(M — A);
(iv) HY(M — A) = H{(M).

Proof. 1t is clear from the formula (3.1) that (i) & (ii) & (iii). Next, suppose the property (iii) holds : so

there exists a sequence (v,), € 7—(& (M — A)N such that lirP v, = e1 for the norm ||| ap) - So, for all smooth
n—+oo

function ¢ € C*(M) we have lirP (pvn)/e1 = @ for the norm ||.||1(ar), indeed for all integer 7 :

2 2
¢ =f d(Vg+f’d((Pvn)—d(p
H'(M) M M 1

PV

€1

oy

€1

2
-@ av,.
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First, we have for all integer n :

1.

<

2

Py

€1

1 2
d(ngf—zl(p(vn—el)l v,
M le1]

2 2
2
Oy — €
el 0OH(P”DO” n 1||L2(M)

so, since lim v, = e; for the norm ||.|[1 5y we have
n—+oo

P,

€1

lim -
n—+eo Jy,

2
p| dV,=0.

On the other hand, for all integer n :

n 2 d n - nd g
f'd(% )—d<P d(vg:fl (pon) e1 — Quude ~dg| dv,
M €1 M

2
€

_ fM %] ld(@) vae1 + pd () €1 — puud (e1) — d (@) & AV,
< é i |dpvner — dpe? + pdvger - (Pvndelniz(M)

= é i (Hd@vnel - d@e%“Lz(M) + ldose: - qDv”del||L2(1\4>)2
< é : [llde]|. sl lfo = exll 2 gy +

”(PHw lley (dvy, — dey) + erdey — vadenll 2, i
o)
1 2
: HZH [ldeol|.. lexluo llo = exll 2y +

2
]| lewles lldon = deall 2 + [l Iderllas ller = a2 ] 5

so, since lim v, = ¢; for the norm ||.||;np) we have
n—+o0o

. POy
Jim [ (%) g

2
AV, =0.

Therefore, for all function ¢ € C*(M) we have 11111 (Pe—ll)” = ¢ for the norm ||| s
Next, by density of C*(M) in H!(M) : for all function f € H'(M) we have lirP f:" = f . Since the
n—-+oo 1

sequence (%”)n € Hy(M - A)N we get finally that f belongs to space Hy(M — A). Finally, it is easy to see that
(iv) = (iif). O
An obvious consequence of this lemma is the following result :

Proposition 3.6. The spectrum of —A, + V on the manifold (M, g) and on the manifold (M — A, g) are equal if and
only if cap(A) = 0.
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3.3. The Poincaré inequality
Now, let introduce the Poincaré inequality :

Theorem 3.7. If A1(M) denotes the first eigenvalue of the operator —A,; + V on the manifold (M, g), the following
inequality
cap(A)

2
<7
”uA”LZ(M) = A](M)

holds for all subset A of M.

Proof. The case cap(A) = 0 is an obvious consequence of the lemma in section 3.2. Suppose here that
cap(A) > 0, then [[uall;2py > 0. The first eigenvalue A;(M) of the operator —A,; + V on the manifold (M, g) is
given by :

D = T
EcH'(M) pe av
% g
M

dim(E)=1  ¢#0

L ldel + Vel v,
min 5
Ll e,

@#0

cap(A)
luall,,, =

L2(M)

Since u4 belongs to the space H'(M) we get A1(M) <

3.4. The main theorem
Recall our main result :

Theorem 3.8. Let (M, g) a compact Riemannian manifold. For all integer k > 1, there exists a constant Cy depending
on the manifold of (M, g) and the potential V such that for all subset A of M we have :

0 < A(M = A) = A(M) < Ci yJeap(A).
Remark 3.9. We can easily adapt the proof for a compact Riemannian manifold with boundary.

Proof. Let us denote by (ex)»1 an orthonormal basis of the space L%(M) with eigenfunctions of the operator
—A,; + V on the manifold (M, g). For all integer k > 1, we consider the sets

Fy :=spanfey, e, ..., el

and

Ey = {f(l— u—f),feFk}.

e
First, observe that E; C H})(M—A). Forall j € {1,..., k} we introduce also the functions ¢; := ¢; (1 - Lg’—?) € E;.

e Step 1: we compute the L*-inner product <cpi, <1)]-> for all pairs (i, j) € {1,...,k}*:

(@09 2 = fMe,-e]- (1 - “_A)z v,

€1

L2(M)
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Thus, for all pair (i, j) € {1,...,k}* we get :

|(¢i,qu>L2(M) ~ o] <2 fM v, + fM

hence, by Cauchy-Schwarz inequality we obtain

2
u
21 dv,,

EiEj
2
51

eie;
ij
—Up
€1

i 2
' < 2max u + max u
\(cp,,cP])Lz(M) 01| < 2max 2| Malizon + max |5 ez
(o] o0
eiej 2
< 21@3}]( Vvol(M) [[uallzy + max 2 ||MA||L2(M)
i)j o

hence by Poincaré 1nequa11ty we have

|<¢)1r ¢]>L2(M) 1]' BkM( Vcap(A) + CaP(A))

where By = By (e1, €, ..., &, A1 (M), M) > 0, and since the eigenfunctions ey, e, ..., ¢ and the eigenvalue A1 (M)
depends only on (M, g) and V, for all integer k the constant By depends only on (M, g) and V, ie : By =
Br (M, V).

Therefore, there exists ¢, €]0, 1[ (depends on the constant By) such that for all A ¢ M we have :

Ia = 1] < D veap(@)

where (and for the same reasons as in the study of By) for all integer k, the constant Dy depends only on M
and V,ie Dk = Dk (M, V)

cap(A) < g = dim(Ey) =k and Vj € {

e Step 2 : Let a function ¢ = f (1 - ”—A) € Ei, with f € F,. Without loss generality we can assume

ey
that “ f ||L2 oM = 1, indeed : we have R(¢) = R(%) and in our context we intererest in the Rayleigh

quotient of ¢ (see the end of the final step of the proof).
Set vy = Lg’—;‘, we have :

f)d¢|2dq/ :f|df—d(va)|2 dv,

M M

=f|df|2 d(Vg+f|dva+fdvA|2 d(Vy—Zfdfd(va) v,
M M M

_ f laf[* dv, + f ldfoal dv, + f |fdoa| dv,
M M M

+2 f dfdvsfo,dV, -2 f || 04 dV, -2 f dfdoafdv,
M M M

- f ldf* dv, + f ldfoal” dv, + f |fdoa|* dv,
M M M

) f laf[" oadV, -2 f dfdoaf (1-0v,) dV,.

duser—uade;
2

Recall we have dus = ,and :

[ viofav,= [ VI av, -2 [ vidfeaav,+ [ vieurf av,
M M M M

1
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hence

2 2 2 2 2
fM)dq)| d(vy+va|¢| v _fM)df| d(Vg+LV|f( d(V5,+fM(dva( v,

=A(f) =B(f)

+f |fdoa| d‘Vg+fV(vAf|2 v, -2 f|df|20Ad(Vg+fV|f(szd‘Vg
M M M M
:=C(f) =D(f)

—2\]1:4 ddeAf (1 - UA) d(Vg

=E(f)

k
¢ Study of A(f) := fM 'df|2 d(VngfM Vv |f|2 dV,; > 0: since f € Fywecanwrite f = Z aje; where (a;); <i< € RF

i=1

K
and with Z a? =1 (since ||f||

i=1

E i K E
A(f) = <Z ajde;, Z aidei> + < VY e, VWY oziei>

jzl i=1 LZ(M) j:] i=1 LZ(M)

= Zaa]( de],del L LVejei d(Vg)
= Za,a,( ej, gel o) + LVejei d(Vg)

_Zala] e], —A, +V)61>L2(M)

2o = 1), thus we get

=Y cidi(M) ey i) o Z 22 Ai(M) < Ak(M).
i ‘
Hence, for all integer k, and for all function f € Fy such that ” f ” 2o = 1 we have
0 < A(f) < A(M).

¢ Study of B(f) := fM (d(f)vA| dV,: herevy = 24 and dos = d”me—”Adel, so we get B < de”i IIUAII%Z(M) and,
with the Poincar inequality :

2

1| cap(A)
“uA”%Z(M) = (T

1o A1(M)

2
”UA”LZ(M) <=

hence, for all integer k, and for all function f € Fy such that || f ” Lap = Lwe have

0 < B(f) < Excap(A)
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where E; = Ej (e1, A1(M)) > 0, moreover since the eigenfunction e; and the eigenvalue A;(M) depends only
on (M, g) and V, for all integer k the constant E; depends only on (M, g) and V, ie: Ex = Ex (M, V).

¢ Study of C(f) : here C(f) is equal to f }fdvA)Z av, +f Vv |vAf(2 dV,. Let us observe first Cy(f) :
M M

=Ci(f) =Ca(f)
2
Ci(H) < |IFIL doallZz
and
diper — uader ||
do 2 :f Atl — UAUL] d(V
“ A“LZ(M) Ny e% g
1 )
<= |duser — uades|” dV,
61 oo JM
1 2 >
<||— |duA€1| d(vg+2 |duAd€1€1uA| d‘Vg+ |d€1uA| de
€1 |l M M M
1 2 d 2 2 d d 2 2
<o (s et + 2 el el sl a2 Tl

Next we have also :

)= [ Vieasf av, < Wi [ viest v,

<R[ [ vimak v,

Hence we get :

1
€1

1|7 > 2
ZHm [l el

ch < AL

+2|lderllo lleloo daall2qun Wtallizun + Idenl, lealZgp |

2
fvaF dv,
oo JM

112 ) 5
ZHM [||duA||L2(M) lleallZ, + 21Iderlleo llexlloo ldeealliz o leallizgm + liderl, ||“A||§2(M)

+[flL

1
€1

< JAIL

+ f \dual® dV, + f V fual? d(vg]
M M

<|IfI1

2 2
+2||derllo llelloo lduallrz lualliaay + lidenlls ”“A“Lz(M)]}

S0, since ||duA||i2(M) < cap(A) and IIuAIIiZ(M) < CA?EI(\I/IA)) we get for all integer k, and for all function f € Fj such

that ”f”LZ(M) =1:

0 < C(f) < Fxcap(A)

1 2 2 2
a”m [llduA||LZ(M) + ”V“oo ”uAHLZ(M)
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where Fx = F(f,e1,A1(M)) > 0. Here, for k fixed, the constant F; depends also on f, and f depends on
the functions fi, f»,---, fv (which are depends only on M and V) and on the scalars aq,a»,-- -, ax; since
k

2 a? =1, all the (a;);<;< are bounded in R, so finally, for all integer k the constant F; can be bounded by a
i=1

constant (we denotes also by Fy = Fx(M, V)) which depends only on M and V.

¢ Study of |[D(f)| : we have

|D|=U |df)2vAd(vg+fV}f|2vAd(vy
M M

f f|MA| v,
oo JM M

2
v
< max| A2 | 2] i L il dV,

€1 lleo €1

v

€1

Ua
€1

< Jarlf | Yy

2 (|1 V}f|2
< max ”df”m = ,ll— VVol(M) [[uallr2 )

€1 lloo €1

1 VA’ A
< max ”df”i0 el % 1/ Vol(M) Tﬁ](\/l))’

00

Hence, for all integer k, and for all function f € Fy such that ” f ” 2o = 1:

ID(f)] < Gk /cap(A)

where (and for the same reasons as in the study of F, see the constant Fy) for all integer k, the constant Gy
depends only on M and V, ie Gy = G (M, V).
¢ Study of |[E(f)| : recall that E(f) = fM dfdoaf (1 —0v4) dV,, hence

E(f)| < fM |dfdva||f| dV, + fM |dfdva||foa| dV,.
For the first term fM |d fdvA| | f ) dV, we have :
[ lasoallal v, < 1.l VRORE stz

we have see in the study of C(f) that

2
lldvallz>

1P > >
|t e+ 21 e et Bl + e )

sowith K := ||f||_ [|df]l, v/VolM)|| 2] we get

fM \dfdoa| |f| dV,
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2 2 2 2
<K \/”duA”Lz(M) llerllco + 2 liderlleo llexlloo lezealli2u l1allz + lidenllcs Heeallz

A
< K\Jcap(f\)llelll - 2lderlc eGP | TR e, T
< Hy +/cap(A)

where (same reasons as above), for all integer k, the constant Hy depends only on M and V, ie Hy = Hx (M, V).
Next, for the second term : fM

j]\; \dfdval|foa| dV, < |df||L IF]l Ndoallizomn loallzan

= “deoo ”f”Oo ||dUA||L2(M) Hé”m ||MA||L2(M)

cap(4)

R Hy +/cap(A)

< sl AL | -

< Hp pcap(A).

where (same reasons as above), for all integer k, the constant Hy depends only on Mand V, ie H = Hy (M, V).
So, for all integer k :

IE(f)| < Hy\, (/eap(A) + cap(4)),
where H; := H; (M, V).
Finally, with the study of A(f), B(f), C(f), ID(f)| and |E(f)|, for all integer k, for any function ¢ = f( - ”*‘) €
Ey, with f € Fy such that ||f||L2(M) =1 we get:

fM o[ dV, + fM V]e|" dV, < ) + I ( eap(A) + cap(4))

where, for all integer k, the constant Iy depends only on M and V, ie: I = I (M, V).

e Step 3 : Now we claim that : for all A ¢ M such that cap(A) < & and for any function ¢ € E; we
have :

”(P”LZ o) = 21- ]kM ycap(A)

where, for all integer k, the constant J, depend onlyon M and V,ie: |\, =], (M, V).
Indeed : let ¢ € E;, we have seen below in step 1 that :

cap(A) < g = dim(Ey) =k and Vj € {

||L2(M | < Dy Vcap(A)

k
therefore, since ¢ € Ey, we can write ¢ = (1 —v,)f with f = Z aie; where ()<< € RF. Asin the step two
i=1
d 2
we can assume that ” f ”LZ o = L hence we have Z a? = 1. Next, compute ”qb”L2 ™
i=1

2 k

Z ch,

=1

Z(l—vA a;e;

ol =

L2(M) L2(M)
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k

= Z o [ ||L2(M + Z aicj ¢”¢]>L2(M)

i,j i#]

And since
k k
Zaf ”‘Pi”;(z\/f) = Zaf [1 2[ e;vadV, + ]A‘Ae?vi d(Vg]
i=1 i=1

hence
k
[l = 1= Y2 [ & 2oa=c8) a¥y+ Y, iy {000y}
i1 i,ji#j

we have seen in step 1 that, for cap(A) small enough :

|<¢i’¢j>L2(M) - (Si,j‘ < By ( ycap(A) + cap(A))

hence, since all the (a;),<; are bounded in R, and for cap(A) small enough, we can find a constant By ,,
which depends only on M and V, ie B = B, (M, V) such that, for cap(A) small enough :

Y ey (90 97),0n

i,ji#]

< By y/cap(A)

and finally, in the same spirit as in the estimations in section 2, there exists a constant B,’(’M which depends
only on M and V, ie B/ =B/ (M, V) such that, for cap(A) small enough :

< By y/cap(A)

2 Mei2 (ZZJA - vi‘) dv,

so finally we obtain :
2 4
“(P”LZ(M) >1-B;" ycap(A)
where the constant B;” depend only on M and V, ie: B;” := B/ (M, V).

o Final step : As a consequence from step 2 and 3, for all function ¢ € Ex we get :

fM )d(p'z AV, + fM V|q5|2 v, . Ar(M) + I (cap(A) + \/cap(A))
fM $?dV, - 1~ B} /cap(A)
hence for cap(A) small enough (ie : cap(A) < &) we have
Ju )d¢|2 dVy+ |, V|¢|2 AV,
J $*dV,

< A(M) + Ly y/cap(A)
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where L; := L; (M, V). Next, since for all k > 1

2 2
do| d 1% d
A (M —A)= min mafo| (P‘ (Vg + fM )(P| (Vﬂ
ECH}(M-A) ¢€E fM (PZ d(Vg

dim(E)=k P#0

and since ¢ € Hy(M — A), we get for all k > 1

[ ldof dv, + [ Ve av,
fM P2dV,

And the statement of the theorem is established. O

MM = A) <

< A(M) + Cy \lcap(A).
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