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Abstract.The notion of essentially (λ, µ)−Hankel operators has been introduced and some of its properties
have been discussed. We also form a connection bridge between the classes of essentially (λ, µ)−Hankel
operators and essentially λ−Hankel operators.

1. Introduction

We denote the Hardy space of analytic functions on the unit disc by H2. The set en(z) = zn for all n ≥ 0
is an orthonormal basis for H2 and is called the canonical basis of H2. The unilateral shift U on the space
H2 is an isometry, it is just multiplication by z, that is, U( f (z)) = z f (z) for all f ∈ H2. Also, U is essentially
unitary, that is, it is invertible in the Calkin algebra B(H2)/K (H2), where B(H2) is the space of all operators
on H2 andK (H2) is the set of all compact operators on H2.

The classes of Hankel and Toeplitz operators form two important classes of operators. In terms of
operator equations, Hankel and Toeplitz operators are characterized as solutions of the operator equations
U∗H = HU and U∗TU = T respectively.

Mathematicians had always a keen interest in the essential commutant of the unilateral shift and it has
sometimes been referred to as the set of essentially Toeplitz operators denoted by essToep. In [4], Barría and
Halmos studied some of the properties of essential commutant of the unilateral shift. Obviously, essToep is
the set of all those operators T satisfying U∗TU−T = K for some compact operator K on H2. A generalization
of the operator equation U∗TU = T was studied by S.Sun [14], where he completely solved the operator
equation U∗TU = λT, for complex number λ.

In [2], Avendaño came out with a generalization of the operator equation U∗H = HU and considered the
operator equation U∗X−XU = λX, for arbitrary complex number λ. He called the solutions of this equation
to be λ−Hankel operators. In reference to the Calkin algebra B(H2)/K (H2), Avendaño [3] studied another
generalization of Hankel operators named as essentially Hankel operators. The class of all essentially
Hankel operators on H2 is denoted by essHank and consists of the operators X satisfying U∗X −XU = K for
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some compact operator K on H2. In [1], operators X satisfying (U∗−λI)X−XU = K for some compact operator
K, are discussed and named as essentially λ−Hankel operators and this class is denoted by essHankλ.

Motivated by the work of these mathematicians, the class of (λ, µ)-Hankel operators that can be charac-
terized as solutions to the operator equation (µU∗ − λI)X = XU, λ, µ ∈ C was introduced and discussed in
[7].

For the last few years, many interesting results have been obtained about various generalizations of
Hankel operators. We refer [5, 6, 11, 12, 15] and the references therein to provide a nice survey over the
historical growth, details and applications of these operators. This paper extends the study further and
introduce the notion of essentially (λ, µ)−Hankel operators on the space H2 and investigate some of its
properties. For fixed λ, µ in complex plane, we denote the set of all essentially (λ, µ)−Hankel operators
on the space H2 by essHank(λ,µ). At the end, we present a bridge connecting this class with the class of
essentially λ−Hankel operators. Throughout the paper, operator is used in reference to a bounded linear
transformation on a Hilbert space.

2. Essentially (λ, µ)−Hankel Operators

We recall the definition of the (λ, µ)−Hankel operator, where λ, µ ∈ C.

Definition 2.1. Let λ, µ ∈ C be fixed. A bounded linear operator X on H2 is said to be (λ, µ)−Hankel operator if it
satisfies

µU∗X − XU = λX.

A (0, 1)−Hankel operator is a Hankel operator and a (λ, 1)−Hankel operator is just a λ−Hankel operator.
We now introduce the notion of essentially (λ, µ)−Hankel operators on the space H2 as

Definition 2.2. For fixed complex numbers λ and µ, a bounded linear operator X on H2 is said to be an essentially
(λ, µ)−Hankel operator if (µU∗ − λI)X − XU ∈ K (H2).

We denote the set of all essentially (λ, µ)−Hankel operators as essHank(λ,µ). Thus, every Hankel operator
is in essHank(0,1). Also, essHank(0,1) = essHank and essHank(λ,1) = essHankλ. Further, we have the following
facts about essHank(λ,µ), which follow directly from the definition.

Proposition 2.3. For λ, µ ∈ C, we have the following

1. Every compact operator is in essHank(λ,µ).
2. Every (λ, µ)−Hankel operator is in essHank(λ,µ).
3. I < essHank(λ,µ).

As U is essentially unitary, it is evident to prove that if X is a (λ, µ)−Hankel operator and K is a compact
operator then X + K is an essentially (λ, µ)−Hankel operator. However, we find that converse may fail to
hold, i.e. if X ∈ essHank(λ,µ) then X may not be a compact perturbation of a (λ, µ) Hankel operator. For
µ = 1 and λ = 0, the Cesaro operator is an essentially Hankel operator and hence essentially (0, 1)−Hankel
operator but it is not a compact perturbation of (0, 1)−Hankel operator (= Hankel operator)[3].

It is known that essToep forms a C∗-algebra, however essHank is not even an algebra [3]. Evidentally,
essHank(0,1) = essHank is not an algebra implies that essHank(λ,µ) is not always an algebra. We provide a
result, which gives a necessary and sufficient condition for the product of two essentially (λ, µ)−Hankel
operators to be an essentially (λ, µ)−Hankel operator.

Theorem 2.4. Let X1,X2 ∈ essHank(λ,µ). Then X1X2 ∈ essHank(λ,µ) if and only if X1(UX2 − X2U) is compact.

Proof. If X1,X2 ∈ essHank(λ,µ). Then a simple and straight forward computation shows that

(µU∗ − λI)X1X2 − X1X2U = (X1UX2 − X1X2U) + K

for some compact operator K on H2. As a consequence of this, we get the result.
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In the next result we show that no non-zero Toeplitz operator is in essHank(λ,µ). For this, we first prove
the following.

Lemma 2.5. A non-zero Toeplitz operator can not be (λ, µ)−Hankel operator.

Proof. Let T be a non-zero Toeplitz operator. Then U∗TU = T. Let, if possible, T be a (λ, µ)−Hankel operator.
Then (µU∗ − λI)T = TU. This provides (µU∗ − λI)TU − TUU = 0, which gives that T(µI − λU − U2) = 0.
Since both T and (µI − λU −U2) are Toeplitz so we get that either T = 0 or (µI − λU −U2) = 0 [9]. T being
non-zero we get (µI − λU −U2) = 0. Thus µen = λen+1 + en+2 for all n ≥ 0. This is a contradiction. Hence T
is not a (λ, µ)−Hankel operator.

It is evident that the zero operator is a Toeplitz operator and is also in essHank(λ,µ) for every λ, µ ∈ C. Using
Lemma 2.5, we have the following.

Theorem 2.6. The only Toeplitz operator in essHank(λ,µ) is the zero operator.

Avendaño in [3], has shown that essToep∩ essHank forms an algebra without identity. We generalize this
result and show that the intersection of essHank(λ,µ) and essToep is an algebra of operators on H2 without
identity.

Theorem 2.7. essToep ∩ essHank(λ,µ) is an algebra without identity.

Proof. Let X, T ∈ essToep∩ essHank(λ,µ). Then U∗XU −X, (µU∗ − λI)X−XU, U∗TU − T and (µU∗ − λI)T − TU
are compact. These facts can be used to get that (µU∗ − λI)XT − XTU is compact, which means that
XT ∈ essHank(λ,µ). Since essToep is an algebra we get essToep ∩ essHank(λ,µ) is an algebra.

As identity is a non-zero Toeplitz operator and if it is in essToep ∩ essHank(λ,µ), we get a contradiction in
reference to Lemma 2.5. This completes the proof.

It is easy to prove that essHank(λ,µ) is a norm closed vector subspace of B(H2).

Theorem 2.8. essHank(λ,µ) is a norm closed vector subspace of B(H2).

Proof. Proof follows by applying the same techniques as in case of essHank or essHankλ in [3, 1].

Since K (H2) is self adjoint and contained in essHank(λ,µ) for λ, µ ∈ C so for a compact operator X on H2,
essHank(λ,µ) contains both X and X∗. Next lemma deals with the case of non-compact operators and helps
to provide information regarding the self adjoint nature of essHank(λ,µ).

Lemma 2.9. Let 0 , µ and X be a non-compact operator on H2. Then X ∈ essHank(λ,µ) if and only if X∗ ∈
essHank(α,β), where α = −λ/µ, β = 1/µ.

Proof. Let X be a non-compact operator on H2. Then

X ∈ essHank(λ,µ) ⇔ (µU∗ − λI)X − XU is compact

⇔ X∗(µU − λI) −U∗X∗ is compact

⇔ (1/µ)U∗X∗ − (−λ/µ)X∗ − X∗U is compact
⇔ X∗ ∈ essHank(α,β) ,

where α = −λ/µ, β = 1/µ.

It is clear from here that if λ = 0 and µ = 1 then (α, β) = (λ, µ) = (0, 1) so that essHank(0,1) is self adjoint,
which is proved by Avendaño in [3].

Remark 2.10. If λ and µ are complex numbers such that λ , 0 and µ = −λ/λ̄ then the class essHank(λ,µ) is self
adjoint.
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Remark 2.11. For any µ ∈ C with |µ| = 1, there exists a line L passing through origin in the complex plane such
that essHank(λ,µ) is self adjoint for λ ∈ L.

Remark 2.12. For any λ ∈ C, λ , 0, we find unique µ on the unit circle such that essHank(λ,µ) is self adjoint.

It is known that K (H2) ⊆ essHank(λ,µ) for each λ, µ ∈ C. We find that if |λ − α| , |µ − β| then the set of
compact operators becomes the common portion between essHank(λ,µ) and essHank(α,β).

Lemma 2.13. If (α, β) and (λ, µ) are distinct pairs of complex numbers satisfying |λ−α| , |µ−β| then essHank(λ,µ)∩
essHank(α,β) = K (H2).

Proof. We only need to show that essHank(λ,µ) ∩ essHank(α,β) ⊆ K (H2). Let X ∈ essHank(λ,µ) ∩ essHank(α,β) then
(µU∗ −λI)X−XU and (βU∗ − αI)X−XU are compact. As a consequence we find that ((µ− β)U∗ − (λ− α)I)X
is compact. Now we divide the proof into two cases.
Case (1): |λ − α| > |µ − β|.

Subcase(1) : Let µ = β. Then λ , α and −(λ − αI)X is compact, which implies X is compact.
Subcase(2) : Let µ , β. As |λ − α| > |µ− β|, so (U∗ − (λ − α)/(µ − β)I) is invertible. Hence the compactness

of ((µ − β)U∗ − (λ − α)I)X yields the compactness of X.
Case (2): |λ − α| < |µ − β|.

Subcase(1) : If λ = α then µ , β and (µ − β)U∗X is compact. Since U∗ is essentially unitary, we get that X
is compact.

Subcase(2) : Let λ , α. Now using the facts that U is essentially unitary and ((µ − β)U∗ − (λ − α)I)X
is compact, we get that ((µ − β)I − (λ − α)U)X is compact. The condition |λ − α| < |µ − β| provides that
((µ − β)I − (λ − α)U) is invertible, which yields that X is compact.

In each case we have seen that X is compact and hence we have the desired conclusion.

It is immediate from Lemma 2.13 that for a given λ , 0, if we take any complex number µ not lying
in the circle centered at 1 and radius |λ|, then essHank ∩ essHank(λ,µ) = K (H2). Also, if µ , 1, then
essHankλ ∩ essHank(λ,µ) = K (H2) for any complex number λ. Existence of some non-compact (λ, µ)−Hankel
operators is shown for some specific choices of λ and µ in [7]. Therefore, we have some classes essHank(λ,µ),
for λ, µ ∈ C, containing non-compact operators. Without any extra efforts, we obtain the following results
using Lemma 2.13.

Theorem 2.14. If essHank(λ,µ) contains a non-compact operator X for λ, µ ∈ C then X < essHank(α,β), for α, β
satisfying |λ − α| , |µ − β|.

Theorem 2.15. If λ, µ ∈ C are such that |λ+ λµ | , |µ− 1
µ | and essHank(λ,µ) contains a non-compact operator X then

neither X is self adjoint nor essHank(λ,µ) is self adjoint.

In the next theorem we see that an essentially (λ, µ)−Hankel operator can not be essentially invertible.

Theorem 2.16. Let X ∈ essHank(λ,µ). Then 0 ∈ σe(X), where σe(X) denotes the essential spectrum of the operator X.

Proof. Let X ∈ essHank(λ,µ). Then (µU∗ −λI)X−XU is compact. Now we prove the result by considering the
following cases.
Case (1): λ = 0, µ = 0. This case is trivial to prove.
Case (2): λ = 0, µ = 1. In this case X is an essentially Hankel operator. Using [3, Lemma 3.1], 0 ∈ σe(X).
Case (3): λ = 1, µ = 0. In this case X satisfies that −X − XU is compact. Now, if possible, 0 < σe(X) then X
is essentially invertible operator and this yields that (I + U) is compact. This provides a contradiction as
(I +U) is a non-zero Toeplitz operator. Therefore 0 ∈ σe(X).
Case(4): λ = 1, µ = 1. Then 0 < σe(X) implies that (µU∗ − λI) = XUX−1 + K for some compact operator K.
This provides that (µU∗ − λI) and U are essentially similar which is not true. Therefore 0 ∈ σe(X).
Case(5): For any complex numbers λ, µ < {0, 1}, the proof follows along the lines of proof of case (4).



G. Datt, R. Aggarwal / FAAC 6 (1) (2014), 35–40 39

It has been shown that a non-zero Toeplitz operator can not be in essHank(λ,µ). However, the invariance
of essHank(λ,µ) operators under multiplication by a Toeplitz operator can be proved.

Theorem 2.17. If X is in essHank(λ,µ) and T is any Toeplitz operator on H2 then XT and TX both are in essHank(λ,µ).

Proof. Let T be a Toeplitz operator. Therefore U∗TU = T, which on premultiplying by U and using the fact
that U is essentially unitary yields that UT−TU is a compact operator. Now if X is an operator in essHank(λ,µ)
then (µU∗ −λI)X−XU is a compact operator on H2. A simple computation shows that (µU∗ −λI)XT−XTU
is a compact operator so that XT ∈ essHank(λ,µ). Therefore XT ∈ essHank(λ,µ).

On similar lines, we can show that TX ∈ essHank(λ,µ).

It is easy to observe the following.

Theorem 2.18. If X is in essHank(λ,µ) and T is in essToep then XT and TX both are in essHank(λ,µ).

It is known that the Rhaly matrix Ra induced by a sequence a = {an} of scalars, represents a bounded
linear operator on the Hardy space H2 if {nan} is bounded [10,13].

In [3], R.A.M. Avendaño proved that if Ra is bounded then Ra ∈ essToep if and only if Ra ∈ essHank =
essHank(0,1). This may not be true for general λ, µ ∈ C. However, it is immediate to see that Ra ∈
essToep ∩ essHank(λ,µ) if and only if Ra ∈ essHank ∩ essHank(λ,µ).

With simple computations we can prove the following.

Theorem 2.19. If λ , 1, µ , 0 and |λ| , |µ − 1| then Ra ∈ essHank ∩ essHank(λ,µ) if and only if Ra is compact.

Corollary 2.20. Let Ra ∈ essToep be a Rhaly operator with determining sequence a = {an} ∈ ℓ2. Then Ra ∈
essHank(λ,µ) , λ , 1, µ , 0 and |λ| , |µ − 1|, if and only if limn→∞(n + 1)|an| = 0.

Proof. Proof follows by using the fact [10] that Ra is compact if and only if limn→∞(n + 1)|an| = 0.

We have seen that for λ ∈ C and µ , 1 ∈ C, the two classes essHank(λ,µ) and essHankλ, share only compact
operators. By the following theorems we try to construct a two way path between the two classes so that
an operator of one class can generate an operator of the other class. Consider the operator Dµ, µ ∈ C, on
the space H2 given by Dµen = µnen for n ≥ 0. For the boundedness of Dµ, we need |µ| ≤ 1. Dµ satisfies
DµU∗ = 1

µU∗Dµ and UDµ = 1
µDµU. Now we have the following.

Theorem 2.21. Let µ ∈ C and 0 < |µ| ≤ 1.

1. If X is in essHank(λ,µ) then DµX is in essHankλ.
2. If Y is in essHank λ

µ
then YDµ is in essHank(λ,µ).

Proof. If (µU∗ −λ)X−XU = K1 and (U∗ − λµ I)Y−YU = K2 for compact operators K1,K2, then on multiplying
these equations on left and right by Dµ respectively and using the properties of Dµ we get the proof of (1)
and (2).

Analogously, we can show the following.

Theorem 2.22. Let µ ∈ C and |µ| ≥ 1.

1. If X is in essHank(λ,µ) then XD 1
µ

is in essHank λ
µ
.

2. If Y is in essHankλ then D 1
µ
Y is in essHank(λ,µ).
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