Functional Analysis, Approximation and Computation 6 (1) (2014), 35–40

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

Essentially (λ, μ) –Hankel operators

Gopal Datt^a, Ritu Aggarwal^b

^aDepartment of Mathematics, PGDAV College, University of Delhi, Delhi - 110065 (INDIA). ^bDepartment of Mathematics, University of Delhi, Delhi - 110007 (INDIA).

Abstract.The notion of essentially (λ, μ) –Hankel operators has been introduced and some of its properties have been discussed. We also form a connection bridge between the classes of essentially (λ, μ) –Hankel operators and essentially λ –Hankel operators.

1. Introduction

We denote the Hardy space of analytic functions on the unit disc by H^2 . The set $e_n(z) = z^n$ for all $n \ge 0$ is an orthonormal basis for H^2 and is called the canonical basis of H^2 . The unilateral shift U on the space H^2 is an isometry, it is just multiplication by z, that is, U(f(z)) = zf(z) for all $f \in H^2$. Also, U is essentially unitary, that is, it is invertible in the Calkin algebra $\mathfrak{B}(H^2)/\mathcal{K}(H^2)$, where $\mathcal{B}(H^2)$ is the space of all operators on H^2 and $\mathcal{K}(H^2)$ is the set of all compact operators on H^2 .

The classes of Hankel and Toeplitz operators form two important classes of operators. In terms of operator equations, Hankel and Toeplitz operators are characterized as solutions of the operator equations $U^*H = HU$ and $U^*TU = T$ respectively.

Mathematicians had always a keen interest in the essential commutant of the unilateral shift and it has sometimes been referred to as the set of essentially Toeplitz operators denoted by *essToep*. In [4], Barría and Halmos studied some of the properties of essential commutant of the unilateral shift. Obviously, *essToep* is the set of all those operators *T* satisfying $U^*TU-T = K$ for some compact operator *K* on H^2 . A generalization of the operator equation $U^*TU = T$ was studied by S.Sun [14], where he completely solved the operator equation $U^*TU = \lambda T$, for complex number λ .

In [2], Avendaño came out with a generalization of the operator equation $U^*H = HU$ and considered the operator equation $U^*X - XU = \lambda X$, for arbitrary complex number λ . He called the solutions of this equation to be λ -Hankel operators. In reference to the Calkin algebra $\mathfrak{B}(H^2)/\mathcal{K}(H^2)$, *Avendaño* [3] studied another generalization of Hankel operators named as essentially Hankel operators. The class of all essentially Hankel operators on H^2 is denoted by *essHank* and consists of the operators *X* satisfying $U^*X - XU = K$ for

²⁰¹⁰ Mathematics Subject Classification. 47B35

Keywords. Hankel operators; Essentially Hankel operators; Toeplitz operators; Essentially Toeplitz operators; (λ, μ) -Hankel operators.

Received: 10 January 2014; 4 February 2014

Communicated by B. P. Duggal

Email addresses: gopal.d.sati@gmail.com (Gopal Datt), rituaggawaldu@rediffmail.com (Ritu Aggarwal)

some compact operator *K* on H^2 . In [1], operators *X* satisfying $(U^* - \lambda I)X - XU = K$ for some compact operator *K*, are discussed and named as essentially λ -Hankel operators and this class is denoted by *essHank*_{λ}.

Motivated by the work of these mathematicians, the class of (λ, μ) -Hankel operators that can be characterized as solutions to the operator equation $(\mu U^* - \lambda I)X = XU, \lambda, \mu \in \mathbb{C}$ was introduced and discussed in [7].

For the last few years, many interesting results have been obtained about various generalizations of Hankel operators. We refer [5, 6, 11, 12, 15] and the references therein to provide a nice survey over the historical growth, details and applications of these operators. This paper extends the study further and introduce the notion of essentially (λ, μ) –Hankel operators on the space H^2 and investigate some of its properties. For fixed λ, μ in complex plane, we denote the set of all essentially (λ, μ) –Hankel operators on the space H^2 by *essHank*_(λ,μ). At the end, we present a bridge connecting this class with the class of essentially λ –Hankel operators. Throughout the paper, operator is used in reference to a bounded linear transformation on a Hilbert space.

2. Essentially (λ, μ) -Hankel Operators

We recall the definition of the (λ, μ) –Hankel operator, where $\lambda, \mu \in \mathbb{C}$.

Definition 2.1. Let $\lambda, \mu \in \mathbb{C}$ be fixed. A bounded linear operator X on H^2 is said to be (λ, μ) -Hankel operator if it satisfies

$$\mu U^* X - X U = \lambda X.$$

A (0, 1)–Hankel operator is a Hankel operator and a (λ , 1)–Hankel operator is just a λ –Hankel operator. We now introduce the notion of essentially (λ , μ)–Hankel operators on the space H^2 as

Definition 2.2. For fixed complex numbers λ and μ , a bounded linear operator X on H^2 is said to be an essentially (λ, μ) -Hankel operator if $(\mu U^* - \lambda I)X - XU \in \mathcal{K}(H^2)$.

We denote the set of all essentially (λ, μ) –Hankel operators as $essHank_{(\lambda,\mu)}$. Thus, every Hankel operator is in $essHank_{(0,1)}$. Also, $essHank_{(0,1)} = essHank$ and $essHank_{(\lambda,1)} = essHank_{\lambda}$. Further, we have the following facts about $essHank_{(\lambda,\mu)}$, which follow directly from the definition.

Proposition 2.3. For $\lambda, \mu \in \mathbb{C}$, we have the following

- 1. Every compact operator is in $essHank_{(\lambda,\mu)}$.
- 2. Every (λ, μ) -Hankel operator is in essHank $_{(\lambda, \mu)}$.
- 3. $I \notin essHank_{(\lambda,\mu)}$.

As *U* is essentially unitary, it is evident to prove that if *X* is a (λ, μ) –Hankel operator and *K* is a compact operator then *X* + *K* is an essentially (λ, μ) –Hankel operator. However, we find that converse may fail to hold, i.e. if $X \in essHank_{(\lambda,\mu)}$ then *X* may not be a compact perturbation of a (λ, μ) Hankel operator. For $\mu = 1$ and $\lambda = 0$, the Cesaro operator is an essentially Hankel operator and hence essentially (0, 1)–Hankel operator but it is not a compact perturbation of (0, 1)–Hankel operator (= Hankel operator)[3].

It is known that *essToep* forms a *C*^{*}-algebra, however *essHank* is not even an algebra [3]. Evidentally, *essHank*_(0,1) = *essHank* is not an algebra implies that *essHank*_(λ,μ) is not always an algebra. We provide a result, which gives a necessary and sufficient condition for the product of two essentially (λ, μ)–Hankel operators to be an essentially (λ, μ)–Hankel operator.

Theorem 2.4. Let $X_1, X_2 \in essHank_{(\lambda,\mu)}$. Then $X_1X_2 \in essHank_{(\lambda,\mu)}$ if and only if $X_1(UX_2 - X_2U)$ is compact.

Proof. If $X_1, X_2 \in essHank_{(\lambda,\mu)}$. Then a simple and straight forward computation shows that

$$(\mu U^* - \lambda I)X_1X_2 - X_1X_2U = (X_1UX_2 - X_1X_2U) + K$$

for some compact operator *K* on H^2 . As a consequence of this, we get the result. \Box

In the next result we show that no non-zero Toeplitz operator is in $essHank_{(\lambda,\mu)}$. For this, we first prove the following.

Lemma 2.5. A non-zero Toeplitz operator can not be (λ, μ) -Hankel operator.

Proof. Let *T* be a non-zero Toeplitz operator. Then $U^*TU = T$. Let, if possible, *T* be a (λ, μ) -Hankel operator. Then $(\mu U^* - \lambda I)T = TU$. This provides $(\mu U^* - \lambda I)TU - TUU = 0$, which gives that $T(\mu I - \lambda U - U^2) = 0$. Since both *T* and $(\mu I - \lambda U - U^2)$ are Toeplitz so we get that either T = 0 or $(\mu I - \lambda U - U^2) = 0$ [9]. *T* being non-zero we get $(\mu I - \lambda U - U^2) = 0$. Thus $\mu e_n = \lambda e_{n+1} + e_{n+2}$ for all $n \ge 0$. This is a contradiction. Hence *T* is not a (λ, μ) -Hankel operator. \Box

It is evident that the zero operator is a Toeplitz operator and is also in $essHank_{(\lambda,\mu)}$ for every $\lambda, \mu \in \mathbb{C}$. Using Lemma 2.5, we have the following.

Theorem 2.6. The only Toeplitz operator in essHank_{(λ,μ)} is the zero operator.

Avendaño in [3], has shown that $essToep \cap essHank$ forms an algebra without identity. We generalize this result and show that the intersection of $essHank_{(\lambda,\mu)}$ and essToep is an algebra of operators on H^2 without identity.

Theorem 2.7. *essToep* \cap *essHank*(λ, μ) *is an algebra without identity.*

Proof. Let $X, T \in essToep \cap essHank_{(\lambda,\mu)}$. Then $U^*XU - X$, $(\mu U^* - \lambda I)X - XU$, $U^*TU - T$ and $(\mu U^* - \lambda I)T - TU$ are compact. These facts can be used to get that $(\mu U^* - \lambda I)XT - XTU$ is compact, which means that $XT \in essHank_{(\lambda,\mu)}$. Since essToep is an algebra we get $essToep \cap essHank_{(\lambda,\mu)}$ is an algebra.

As identity is a non-zero Toeplitz operator and if it is in $essToep \cap essHank_{(\lambda,\mu)}$, we get a contradiction in reference to Lemma 2.5. This completes the proof. \Box

It is easy to prove that *essHank*_(λ,μ) is a norm closed vector subspace of $\mathfrak{B}(H^2)$.

Theorem 2.8. *essHank*_(λ,μ) *is a norm closed vector subspace of* $\mathfrak{B}(H^2)$ *.*

Proof. Proof follows by applying the same techniques as in case of *essHank* or *essHank*_{λ} in [3, 1]. \Box

Since $\mathcal{K}(H^2)$ is self adjoint and contained in $essHank_{(\lambda,\mu)}$ for $\lambda, \mu \in \mathbb{C}$ so for a compact operator X on H^2 , $essHank_{(\lambda,\mu)}$ contains both X and X^* . Next lemma deals with the case of non-compact operators and helps to provide information regarding the self adjoint nature of $essHank_{(\lambda,\mu)}$.

Lemma 2.9. Let $0 \neq \mu$ and X be a non-compact operator on H^2 . Then $X \in essHank_{(\lambda,\mu)}$ if and only if $X^* \in essHank_{(\alpha,\beta)}$, where $\alpha = -\overline{\lambda}/\overline{\mu}$, $\beta = 1/\overline{\mu}$.

Proof. Let *X* be a non-compact operator on H^2 . Then

$$\begin{split} X \in essHank_{(\lambda,\mu)} \Leftrightarrow (\mu U^* - \lambda I)X - XU \text{ is compact} \\ \Leftrightarrow X^*(\overline{\mu}U - \overline{\lambda}I) - U^*X^* \text{ is compact} \\ \Leftrightarrow (1/\overline{\mu})U^*X^* - (-\overline{\lambda}/\overline{\mu})X^* - X^*U \text{ is compact} \\ \Leftrightarrow X^* \in essHank_{(\alpha,\beta)} , \end{split}$$

where $\alpha = -\overline{\lambda}/\overline{\mu}$, $\beta = 1/\overline{\mu}$. \Box

It is clear from here that if $\lambda = 0$ and $\mu = 1$ then $(\alpha, \beta) = (\lambda, \mu) = (0, 1)$ so that $essHank_{(0,1)}$ is self adjoint, which is proved by *Avendaño* in [3].

Remark 2.10. If λ and μ are complex numbers such that $\lambda \neq 0$ and $\mu = -\lambda/\overline{\lambda}$ then the class essHank_(λ,μ) is self adjoint.

Remark 2.11. For any $\mu \in \mathbb{C}$ with $|\mu| = 1$, there exists a line *L* passing through origin in the complex plane such that essHank_(λ, μ) is self adjoint for $\lambda \in L$.

Remark 2.12. For any $\lambda \in \mathbb{C}$, $\lambda \neq 0$, we find unique μ on the unit circle such that $essHank_{(\lambda,\mu)}$ is self adjoint.

It is known that $\mathcal{K}(H^2) \subseteq essHank_{(\lambda,\mu)}$ for each $\lambda, \mu \in \mathbb{C}$. We find that if $|\lambda - \alpha| \neq |\mu - \beta|$ then the set of compact operators becomes the common portion between $essHank_{(\lambda,\mu)}$ and $essHank_{(\alpha,\beta)}$.

Lemma 2.13. If (α, β) and (λ, μ) are distinct pairs of complex numbers satisfying $|\lambda - \alpha| \neq |\mu - \beta|$ then essHank $_{(\lambda,\mu)} \cap essHank_{(\alpha,\beta)} = \mathcal{K}(H^2)$.

Proof. We only need to show that $essHank_{(\lambda,\mu)} \cap essHank_{(\alpha,\beta)} \subseteq \mathcal{K}(H^2)$. Let $X \in essHank_{(\lambda,\mu)} \cap essHank_{(\alpha,\beta)}$ then $(\mu U^* - \lambda I)X - XU$ and $(\beta U^* - \alpha I)X - XU$ are compact. As a consequence we find that $((\mu - \beta)U^* - (\lambda - \alpha)I)X$ is compact. Now we divide the proof into two cases.

Case (1): $|\lambda - \alpha| > |\mu - \beta|$.

Subcase(1): Let $\mu = \beta$. Then $\lambda \neq \alpha$ and $-(\lambda - \alpha I)X$ is compact, which implies X is compact.

<u>Subcase(2)</u>: Let $\mu \neq \beta$. As $|\lambda - \alpha| > |\mu - \beta|$, so $(U^* - (\lambda - \alpha)/(\mu - \beta)I)$ is invertible. Hence the compactness of $(\overline{(\mu - \beta)U^*} - (\lambda - \alpha)I)X$ yields the compactness of *X*.

Case (2): $|\lambda - \alpha| < |\mu - \beta|$.

Subcase(1): If $\lambda = \alpha$ then $\mu \neq \beta$ and $(\mu - \beta)U^*X$ is compact. Since U^* is essentially unitary, we get that X is compact.

<u>Subcase(2)</u>: Let $\lambda \neq \alpha$. Now using the facts that *U* is essentially unitary and $((\mu - \beta)U^* - (\lambda - \alpha)I)X$ is compact, we get that $((\mu - \beta)I - (\lambda - \alpha)U)X$ is compact. The condition $|\lambda - \alpha| < |\mu - \beta|$ provides that $((\mu - \beta)I - (\lambda - \alpha)U)$ is invertible, which yields that *X* is compact.

In each case we have seen that *X* is compact and hence we have the desired conclusion. \Box

It is immediate from Lemma 2.13 that for a given $\lambda \neq 0$, if we take any complex number μ not lying in the circle centered at 1 and radius $|\lambda|$, then $essHank \cap essHank_{(\lambda,\mu)} = \mathcal{K}(H^2)$. Also, if $\mu \neq 1$, then $essHank_{\lambda} \cap essHank_{(\lambda,\mu)} = \mathcal{K}(H^2)$ for any complex number λ . Existence of some non-compact (λ, μ) -Hankel operators is shown for some specific choices of λ and μ in [7]. Therefore, we have some classes $essHank_{(\lambda,\mu)}$, for $\lambda, \mu \in \mathbb{C}$, containing non-compact operators. Without any extra efforts, we obtain the following results using Lemma 2.13.

Theorem 2.14. If $essHank_{(\lambda,\mu)}$ contains a non-compact operator X for $\lambda, \mu \in \mathbb{C}$ then $X \notin essHank_{(\alpha,\beta)}$, for α, β satisfying $|\lambda - \alpha| \neq |\mu - \beta|$.

Theorem 2.15. If $\lambda, \mu \in \mathbb{C}$ are such that $|\lambda + \frac{\overline{\lambda}}{\mu}| \neq |\mu - \frac{1}{\mu}|$ and $essHank_{(\lambda,\mu)}$ contains a non-compact operator X then neither X is self adjoint nor $essHank_{(\lambda,\mu)}$ is self adjoint.

In the next theorem we see that an essentially (λ, μ) -Hankel operator can not be essentially invertible.

Theorem 2.16. Let $X \in essHank_{(\lambda,\mu)}$. Then $0 \in \sigma_e(X)$, where $\sigma_e(X)$ denotes the essential spectrum of the operator X.

Proof. Let $X \in essHank_{(\lambda,\mu)}$. Then $(\mu U^* - \lambda I)X - XU$ is compact. Now we prove the result by considering the following cases.

Case (1): $\lambda = 0, \mu = 0$. This case is trivial to prove.

Case (2): $\lambda = 0, \mu = 1$. In this case X is an essentially Hankel operator. Using [3, Lemma 3.1], $0 \in \sigma_e(X)$.

Case (3): $\lambda = 1, \mu = 0$. In this case X satisfies that -X - XU is compact. Now, if possible, $0 \notin \sigma_e(X)$ then X is essentially invertible operator and this yields that (I + U) is compact. This provides a contradiction as (I + U) is a non-zero Toeplitz operator. Therefore $0 \in \sigma_e(X)$.

Case(4): $\lambda = 1, \mu = 1$. Then $0 \notin \sigma_e(X)$ implies that $(\mu U^* - \lambda I) = XUX^{-1} + K$ for some compact operator *K*. This provides that $(\mu U^* - \lambda I)$ and *U* are essentially similar which is not true. Therefore $0 \in \sigma_e(X)$.

Case(5): For any complex numbers $\lambda, \mu \notin \{0, 1\}$, the proof follows along the lines of proof of case (4).

It has been shown that a non-zero Toeplitz operator can not be in $essHank_{(\lambda,\mu)}$. However, the invariance of $essHank_{(\lambda,\mu)}$ operators under multiplication by a Toeplitz operator can be proved.

Theorem 2.17. If X is in essHank_(λ,μ) and T is any Toeplitz operator on H² then XT and TX both are in essHank_(λ,μ).

Proof. Let *T* be a Toeplitz operator. Therefore $U^*TU = T$, which on premultiplying by *U* and using the fact that *U* is essentially unitary yields that UT - TU is a compact operator. Now if *X* is an operator in $essHank_{(\lambda,\mu)}$ then $(\mu U^* - \lambda I)X - XU$ is a compact operator on H^2 . A simple computation shows that $(\mu U^* - \lambda I)XT - XTU$ is a compact operator so that $XT \in essHank_{(\lambda,\mu)}$. Therefore $XT \in essHank_{(\lambda,\mu)}$.

On similar lines, we can show that $TX \in essHank_{(\lambda,\mu)}$.

It is easy to observe the following.

Theorem 2.18. If X is in $essHank_{(\lambda,\mu)}$ and T is in essToep then XT and TX both are in $essHank_{(\lambda,\mu)}$.

It is known that the Rhaly matrix R_a induced by a sequence $a = \{a_n\}$ of scalars, represents a bounded linear operator on the Hardy space H^2 if $\{na_n\}$ is bounded [10,13].

In [3], R.A.M. Avendaño proved that if R_a is bounded then $R_a \in essToep$ if and only if $R_a \in essHank = essHank_{(0,1)}$. This may not be true for general $\lambda, \mu \in \mathbb{C}$. However, it is immediate to see that $R_a \in essToep \cap essHank_{(\lambda,\mu)}$ if and only if $R_a \in essHank \cap essHank_{(\lambda,\mu)}$.

With simple computations we can prove the following.

Theorem 2.19. If $\lambda \neq 1$, $\mu \neq 0$ and $|\lambda| \neq |\mu - 1|$ then $R_a \in essHank \cap essHank_{(\lambda,\mu)}$ if and only if R_a is compact.

Corollary 2.20. Let $R_a \in essToep$ be a Rhaly operator with determining sequence $a = \{a_n\} \in \ell^2$. Then $R_a \in essHank_{(\lambda,\mu)}$, $\lambda \neq 1$, $\mu \neq 0$ and $|\lambda| \neq |\mu - 1|$, if and only if $\lim_{n\to\infty} (n+1)|a_n| = 0$.

Proof. Proof follows by using the fact [10] that R_a is compact if and only if $\lim_{n\to\infty} (n+1)|a_n| = 0$. \Box

We have seen that for $\lambda \in \mathbb{C}$ and $\mu \neq 1 \in \mathbb{C}$, the two classes $essHank_{(\lambda,\mu)}$ and $essHank_{\lambda}$, share only compact operators. By the following theorems we try to construct a two way path between the two classes so that an operator of one class can generate an operator of the other class. Consider the operator D_{μ} , $\mu \in \mathbb{C}$, on the space H^2 given by $D_{\mu}e_n = \mu^n e_n$ for $n \ge 0$. For the boundedness of D_{μ} , we need $|\mu| \le 1$. D_{μ} satisfies $D_{\mu}U^* = \frac{1}{\mu}U^*D_{\mu}$ and $UD_{\mu} = \frac{1}{\mu}D_{\mu}U$. Now we have the following.

Theorem 2.21. Let $\mu \in \mathbb{C}$ and $0 < |\mu| \le 1$.

- 1. If X is in essHank_{(λ,μ)} then $D_{\mu}X$ is in essHank_{λ}.
- 2. If Y is in essHank $\underline{\lambda}$ then YD_{μ} is in essHank $_{(\lambda,\mu)}$.

Proof. If $(\mu U^* - \lambda)X - XU = K_1$ and $(U^* - \frac{\lambda}{\mu}I)Y - YU = K_2$ for compact operators K_1, K_2 , then on multiplying these equations on left and right by D_{μ} respectively and using the properties of D_{μ} we get the proof of (1) and (2).

Analogously, we can show the following.

Theorem 2.22. Let $\mu \in \mathbb{C}$ and $|\mu| \ge 1$.

- 1. If X is in essHank_(λ, μ) then XD₁ is in essHank_{$\frac{\lambda}{2}$}.
- 2. If Y is in essHank_{λ} then $D_{\frac{1}{\mu}}$ Y is in essHank_{(λ,μ)}.

References

- [1] S.C. Arora and Jyoti Bhola, Essentially λ -Hankel operators, Journal of Mathematics, vol. 2013, Article ID 865396, 5 pages, 2013.
- [2] Ruben Martínez Avendaño, A generalization of Hankel operators, J. Func. Anal., Vol. 190, 2002, 418–446.
- [3] Ruben Martínez Avendaño, Essentially Hankel operators, J. London Math. Soc., Vol.66(2) (2002) 741-752.
- [4] José Barría and P.R. Halmos, Asymptotic Toeplitz operators, Trans. Amer. Math. Soc., 273, 1982, 621–630.
- [5] Arlen Brown and P.R. Halmos, Algebraic properties of Toeplitz operators, J. Reigne Angew. Math., 213, 1963, 89–102.
- [6] Gopal Datt and Deepak Kumar Porwal, On weighted slant Hankel operators, Filomat 27:2 (2013), 227 243.
- [7] Gopal Datt and Ritu aggarwal, On a generalization of Hankel operators via operator equations, to appear in Extracta Mathematica.
- [8] Ronald G. Douglas, Banach Algebra Techniques in Operator Theory, Academic Press, New York, 1952.
- [9] P.R. Halmos, A Hilbert Space Problem Book, Springer-Verlag, New York, 1982.
- [10] G. Leibowitz, Rhaly matrices, J. Math. Anal. Appl., Vol.128 (1987), 272–286.
- [11] Vladimir Peller, Hankel operators and applications, Springer-Verlag, New York, 2003.
- [12] S.C. Power, Hankel operators on Hilbert space, Pitman Publishing, Boston, 1982.
- [13] H. C. Rhaly, Jr. Terraced matrices, Bull. London math Soc., Vol. 21 (1989), 399–406.
- [14] S. Sun, On the operator equation $U^*TU = \lambda T$, Kexue Tongbao (English ed.), 29, 1984, 298–299.
- [15] O. Toeplitz, Zur theorie der quadratischen und bilinearan Formen von unendlichvielen, Veranderlichen, Math. Ann., Vol. 70, 1911, 351–376.