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Abstract. In this paper, we study the convergence of SP-iterative scheme for generalized Z-type con-
dition introduced by Bosede in [4] which is more general than Zamfirescu operator and establish strong
convergence theorems for above said iteration scheme and condition in the framework of normed linear
spaces.

1. Introduction and Preliminaries

There is a close relationship between the problem of solving a nonlinear equation and that of approx-
imating fixed points of a corresponding contractive type operator. Consequently, there is a theoretical
and practical interest in approximating fixed points of different contractive type operators. Let (X, d) be a
complete metric space and T : X→ X a self mapping of X. Suppose that F(T) = {p ∈ X : Tp = p} is the set of
fixed points of T. There are several iteration schemes in the literature for which the fixed points of operators
have been approximated over the years by various authors. In a complete metric space, the Picard iteration
scheme for {xn}∞n=0 defined by

xn+1 = Txn, n = 0, 1, 2, . . . . (1.1)

has been employed to approximate the fixed point of mappings satisfying the inequality

d(Tx,Ty) ≤ a d(x, y) (1.2)

for all x, y ∈ X and a ∈ [0, 1). Condition (1.2) is called the Banach’s contraction condition.

The mapping T is called Kannan mapping [8] if there exists b ∈ (0, 1
2 ) such that

d(Tx,Ty) ≤ b [d(x,Tx) + d(y,Ty)] (1.3)

for all x, y ∈ X.
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The mapping T is called Chatterjea mapping [5] if there exists c ∈ (0, 1
2 ) such that

d(Tx,Ty) ≤ c [d(x,Ty) + d(y,Tx)] (1.4)

for all x, y ∈ X.

In 1953, W.R. Mann defined the Mann iteration [9] as

un+1 = (1 − an)un + anTun, (1.5)

where {an} is a sequence of positive numbers in [0,1].

In 1974, S. Ishikawa defined the Ishikawa iteration [7] as

sn+1 = (1 − an)sn + anTtn,

tn = (1 − bn)sn + bnTsn, (1.6)

where {an} and {bn} are sequences of positive numbers in [0,1].

In 2009, S. Thianwan defined the new two step iteration [13] as

νn+1 = (1 − an)wn + anTwn,

wn = (1 − bn)νn + bnTνn, (1.7)

where {an} and {bn} are sequences of positive numbers in [0,1].

In 2001, M.A. Noor defined the three step Noor iteration [10] as

pn+1 = (1 − an)pn + anTqn,

qn = (1 − bn)pn + bnTrn,

rn = (1 − cn)pn + cnTpn, (1.8)

where {an}, {bn} and {cn} are sequences of positive numbers in [0,1].

Recently, Phuengrattana and Suantai defined the SP iteration [11] as

xn+1 = (1 − an)yn + anTyn,

yn = (1 − bn)zn + bnTzn,

zn = (1 − cn)xn + cnTxn, (1.9)

where {an}, {bn} and {cn} are sequences of positive numbers in [0,1].

Remark 1.1. (1) If cn = 0, then (1.8) reduces to the Ishikawa iteration (1.6).

(2) If bn = cn = 0, then (1.8) reduces to the Mann iteration (1.5).

(3) If bn = 0, then (1.7) reduces to the Mann iteration (1.5).

(4) If bn = cn = 0, then (1.9) reduces to the Mann iteration (1.5).

(5) If cn = 0, then (1.9) reduces to the new two step iteration (1.7).



G. S. Saluja / FAAC 6 (1) (2014), 55–62 57

In 1972, Zamfirescu [15] obtained the following interesting fixed point theorem.

Theorem Z. Let (X, d) be a complete metric space and T : X → X a mapping for which there exists the
real number a, b and c satisfying a ∈ (0, 1), b, c ∈ (0, 1

2 ) such that for any pair x, y ∈ X, at least one of the
following conditions holds:

(Z1) d(Tx,Ty) ≤ a d(x, y)

(Z2) d(Tx,Ty) ≤ b [d(x,Tx) + d(y,Ty)]

(Z3) d(Tx,Ty) ≤ c [d(x,Ty) + d(y,Tx)].

Then T has a unique fixed point p and the Picard iteration {xn}∞n=0 defined by

xn+1 = Txn, n = 0, 1, 2, . . .

converges to p for any arbitrary but fixed x0 ∈ X.

The conditions (Z1) − (Z3) can be written in the following equivalent form

d(Tx,Ty) ≤ h max
{
d(x, y),

d(x,Tx) + d(y,Ty)
2

,
d(x,Ty) + d(y,Tx)

2

}
(1.10)

for all x, y ∈ X and 0 < h < 1, has been obtained by Ciric [6] in 1974.

A mapping satisfying (1.10) is called Ciric quasi-contraction. It is obvious that each of the conditions
(Z1) − (Z3) implies (1.10).

An operator T satisfying the contractive conditions (Z1) − (Z3) in the theorem Z is called Z-operator.

In 2004, Berinde [1] proved the strong convergence of Ishikawa iterative process defined by: for x0 ∈ C,
the sequence {xn}∞n=0 given by

xn+1 = (1 − αn)xn + αnTyn,

yn = (1 − βn)xn + βnTxn, n ≥ 0,

to approximate fixed points of Zamfirescu operator in an arbitrary Banach space E. While proving the
theorem, he made use of the condition,∥∥∥Tx − Ty

∥∥∥ ≤ δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥ (1.11)

which holds for any x, y ∈ E where 0 ≤ δ < 1.

In this paper, inspired and motivated by [1, 15], we employ a condition introduced in [4] which is
more general than condition (1.11) and establish some fixed point theorems in normed linear space. The
condition is defined as follows:

Let C be a nonempty, closed, convex subset of a normed space E and T : C → C a self map of C. There
exists a constant L ≥ 0 such that for all x, y ∈ C, we have∥∥∥Tx − Ty

∥∥∥ ≤ eL ∥x−Tx∥
(
δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥
)

(1.12)

where 0 ≤ δ < 1 and ex denotes the exponential function of x ∈ C.

Throughout this paper, we call this condition as generalized Z-type condition.
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Remark 1.2. If L = 0, in the above condition, we obtain∥∥∥Tx − Ty
∥∥∥ ≤ δ ∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥ ,

which is the Zamfirescu condition used by Berinde [1] where

δ = max
{
a,

b
1 − b

,
c

1 − c

}
, 0 ≤ δ < 1,

while constants a, b and c are as defined in Theorem Z.

Example 1.3. Let X be the real line with the usual norm ∥.∥ and suppose K = [0, 1]. Define T : K→ K by Tx = x+1
2

for all x, y ∈ K. Obviously T is self-mapping with a unique fixed point 1. Now we check that condition (1.12) is true.
If x, y ∈ [0, 1], then

∥∥∥Tx − Ty
∥∥∥ ≤ eL ∥x−Tx∥

[
δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥
]

where 0 ≤ δ < 1. In fact∥∥∥Tx − Ty
∥∥∥ = ∥∥∥∥∥x − y

2

∥∥∥∥∥
and

eL ∥x−Tx∥
[
δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥
]
= eL∥ x−1

2 ∥
[
δ
∥∥∥x − y

∥∥∥ + δ ∥x − 1∥
]
.

Clearly, if we chose x = 0 and y = 1, then contractive condition (1.12) is satisfied since∥∥∥Tx − Ty
∥∥∥ = ∥∥∥∥∥x − y

2

∥∥∥∥∥ = 1
2

and for L ≥ 0, we chose L = 0, then

eL ∥x−Tx∥
[
δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥
]
= eL∥ x−1

2 ∥
[
δ
∥∥∥x − y

∥∥∥ + δ ∥x − 1∥
]

= e0(1/2)(2δ) = 2δ, where 0 < δ < 1.

Therefore∥∥∥Tx − Ty
∥∥∥ ≤ eL ∥x−Tx∥

[
δ
∥∥∥x − y

∥∥∥ + 2δ ∥x − Tx∥
]
.

Hence T is a self mapping with unique fixed point 1 and satisfying the contractive condition (1.12).

Example 1.4. Let X be the real line with the usual norm ∥.∥ and suppose K = {0, 1, 2}. Define T : K→ K by{
Tx = 1, if x = 0
= 2, otherwise.

Let us take x = 0, y = 1 and L = 0. Then from condition (1.12), we have

1 ≤ e0(1)[δ(1) + 2δ(1)]
≤ 1(3δ) = 3δ

which implies δ ≥ 1
3 . Now if we take 0 < δ < 1, then condition (1.12) is satisfied and 2 is of course a unique fixed

point of T.
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Iteration procedures in fixed point theory are lead by the considerations in summability theory. For
example, if a given sequence converges, then we don’t look for the convergence of the sequence of its
arithmetic means. Similarly, if the sequence of Picard iterates of any mapping T converges, then we don’t
look for the convergence of other iteration procedures.

We need the following useful lemma to prove our main results in this paper.

Lemma 1.5. (See [3]) Let {αn}∞n=0, {βn}∞n=0, {γn}∞n=0 be sequences of nonnegative numbers satisfying the following
condition:

αn+1 ≤ (1 − δn)αn + βn + γn, ∀n ≥ 0,

where {δn}∞n=0 ⊂ [0, 1]. If
∑∞

n=0 δn = ∞, limn→∞ βn = O(δn) and
∑∞

n=0 γn < ∞, then limn→∞ αn = 0.

2. Main Results

In this section, we establish strong convergence theorems of SP-iteration scheme (1.9) to converge to a
fixed point of generalized Z-type condition in the framework of normed linear spaces.

Theorem 2.1. Let C be a nonempty closed convex subset of a normed linear space E. Let T : C→ C be a self mapping
satisfying generalized Z-type condition given by (1.12) with F(T) , ∅. For any x0 ∈ C, let {xn}∞n=0 be the sequence
defined by (1.9). If

∑∞
n=0 an = ∞, then {xn}∞n=0 converges strongly to the unique fixed point of T.

Proof. From the assumption F(T) , ∅, it follows that T has a fixed point in C, say u. Since T satisfies
generalized Z-type condition given by (1.12). Now using the iterative sequence defined by (1.9) and (1.12),
we have

∥xn+1 − u∥ =
∥∥∥(1 − an)yn + anTyn − u

∥∥∥
=
∥∥∥(1 − an)(yn − u) + an(Tyn − u)

∥∥∥
≤ (1 − an)

∥∥∥yn − u
∥∥∥ + an

∥∥∥Tyn − u
∥∥∥

= (1 − an)
∥∥∥yn − u

∥∥∥ + an

∥∥∥Tu − Tyn

∥∥∥
≤ (1 − an)

∥∥∥yn − u
∥∥∥

+an

[
eL∥u−Tu∥(2δ ∥u − Tu∥ + δ

∥∥∥u − yn

∥∥∥)]
= (1 − an)

∥∥∥yn − u
∥∥∥

+an

[
eL∥u−u∥(2δ ∥u − u∥ + δ

∥∥∥u − yn

∥∥∥)]
= (1 − an)

∥∥∥yn − u
∥∥∥

+an

[
eL(0)(2δ (0) + δ

∥∥∥u − yn

∥∥∥)]
= (1 − an)

∥∥∥yn − u
∥∥∥ + anδ

∥∥∥yn − u
∥∥∥

which gives

∥xn+1 − u∥ ≤ (1 − an + anδ)
∥∥∥yn − u

∥∥∥ . (2.1)
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Again from (1.9) and (1.12), we have∥∥∥yn − u
∥∥∥ = ∥(1 − bn)zn + bnTzn − u∥
= ∥(1 − bn)(zn − u) + bn(Tzn − u)∥
≤ (1 − bn) ∥zn − u∥ + bn ∥Tzn − u∥
= (1 − bn) ∥zn − u∥ + bn ∥Tu − Tzn∥
≤ (1 − bn) ∥zn − u∥
+bn

[
eL∥u−Tu∥(2δ ∥u − Tu∥ + δ ∥u − zn∥)

]
= (1 − bn) ∥zn − u∥
+bn

[
eL∥u−u∥(2δ ∥u − u∥ + δ ∥u − zn∥)

]
= (1 − bn) ∥zn − u∥
+bn

[
eL(0)(2δ (0) + δ ∥u − zn∥)

]
= (1 − bn) ∥zn − u∥ + bnδ ∥zn − u∥

which gives∥∥∥yn − u
∥∥∥ ≤ (1 − bn + bnδ) ∥zn − u∥ . (2.2)

Similarly, using the same method as above, we can get

∥zn − u∥ ≤ (1 − cn + cnδ) ∥xn − u∥ . (2.3)

Substituting (2.3) into (2.2), we obtain∥∥∥yn − u
∥∥∥ ≤ (1 − bn + bnδ)(1 − cn + cnδ) ∥xn − u∥ . (2.4)

Now, substituting (2.4) into (2.1), we get

∥xn+1 − u∥ ≤ (1 − an + anδ)(1 − bn + bnδ)(1 − cn + cnδ) ∥xn − u∥
≤ (1 − an + anδ) ∥xn − u∥
= [1 − (1 − δ)an] ∥xn − u∥ , n = 0, 1, 2, . . . . (2.5)

Since 0 ≤ δ < 1, an ∈ [0, 1] and
∑∞

n=0 an = ∞, setting pn = ∥xn − u∥, sn = (1 − δ)an and by applying Lemma 1.5
in (2.5), it follows that

lim
n→∞
∥xn − u∥ = 0.

Thus {xn}∞n=0 converges strongly to a fixed point of T.

To show uniqueness of the fixed point u, assume that u1, u2 ∈ F(T) and u1 , u2.

Applying generalized Z-type condition given by (1.12) and using the fact that 0 ≤ δ < 1, we obtain

∥u1 − u2∥ = ∥Tu1 − Tu2∥
≤ eL∥u1−Tu1∥(2δ ∥u1 − Tu1∥ + δ ∥u1 − u2∥)
≤ eL∥u1−u1∥(2δ ∥u1 − u1∥ + δ ∥u1 − u2∥)
= eL(0)(2δ (0) + δ ∥u1 − u2∥)
= δ ∥u1 − u2∥
< ∥u1 − u2∥ , since 0 ≤ δ < 1,

which is a contradiction. Therefore u1 = u2. Thus {xn}∞n=0 converges strongly to the unique fixed point of T.
This completes the proof.
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Theorem 2.2. Let C be a nonempty closed convex subset of a normed linear space E. Let T : C→ C be a self mapping
satisfying generalized Z-type condition given by (1.12) with F(T) , ∅. For any x0 ∈ C, let {xn}∞n=0 be the sequence
defined by (1.8). If

∑∞
n=0 an = ∞, then {xn}∞n=0 converges strongly to the unique fixed point of T.

Proof. The proof of Theorem 2.2 is similar to that of Theorem 2.1. This completes the proof.

Theorem 2.3. Let C be a nonempty closed convex subset of a normed linear space E. Let T : C→ C be a self mapping
satisfying generalized Z-type condition given by (1.12) with F(T) , ∅. For any x0 ∈ C, let {xn}∞n=0 be the sequence
defined by (1.7). If

∑∞
n=0 an = ∞, then {xn}∞n=0 converges strongly to the unique fixed point of T.

Proof. The proof of Theorem 2.3 immediately follows by putting cn = 0 in Theorem 2.1. This completes the
proof.

Theorem 2.4. Let C be a nonempty closed convex subset of a normed linear space E. Let T : C→ C be a self mapping
satisfying generalized Z-type condition given by (1.12) with F(T) , ∅. For any x0 ∈ C, let {xn}∞n=0 be the sequence
defined by (1.5). If

∑∞
n=0 an = ∞, then {xn}∞n=0 converges strongly to the unique fixed point of T.

Proof. The proof of Theorem 2.4 immediately follows by putting bn = cn = 0 in Theorem 2.1. This completes
the proof.

Corollary 2.5. [[14], Theorem 2.1] Let E be an arbitrary Banach space, C a nonempty closed convex subset of E and
T : C→ C a Zamfirescu operator. For any x0 ∈ C, let {xn}∞n=0 be the sequence defined by (1.7). If

∑∞
n=0 an = ∞, then

{xn}∞n=0 converges strongly to the fixed point of T.

Remark 2.6. Our results extend and improve upon, among others, the corresponding results proved by Berinde [2],
Yildirim et al. [14] and Bosede [4] to the case of SP-iteration scheme [11] and Noor iteration scheme [10] considered
in this paper.

Remark 2.7. Our results also extend and improve the corresponding results of [12] to the case of generalized Z-type
condition, SP-iteration scheme [11] and Noor iteration scheme [10] considered in this paper.

3. Conclusion

The generalized Z-type condition (1.12) is more general than the condition (1.11) which is used by
Berinde in [1]. Thus the results obtained in this paper are good improvement and generalization of several
known results in the existing literature (see, e.g., [2, 4, 12, 14] and some others).

Acknowledgements. The author would like to thanks the referee for careful reading and useful sugges-
tions on the manuscript.
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