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Abstract. In this paper, we discuss the decomposability of weighted composition operator uCϕ on Lp(X)(1 ≤
p < ∞) of a σ-finite atomic measure space (X,S, µ) with the assumption that u ∈ L∞(X) and |u| has positive ess
inf. We prove that if the analytic core of uCϕ is zero and uCϕ is not quasinilpotent, then it is not decomposable.
We also show that if ϕ is either injective almost everywhere or surjective almost everywhere but not both,
then uCϕ is not decomposable. Finally, we give a necessary condition for decomposability of uCϕ.

1. Introduction

In 1952 Nelson Dunford ([9], [10]) introduced the notion of the Single Valued Extension Property
(abbreviated as SVEP) for bounded linear operators on Banach spaces. His idea of SVEP gave rise to
evolution of the local spectral theory of bounded linear operators. The local spectral theory in its present
form was shaped by Colojoara, Foias, Lange, Erdelyi, Laursen, Neumann and others (see [2], [3], [7]). It
includes many properties such as Dunford’s condition (C), Bishop’s property (β), decomposition property
(δ), decomposability etc. The SVEP is fundamental among these properties while properties (β) and (δ) are
dual in nature. The decomposability of an operator is governed by both the properties (β) and (δ). For
detailed study of the local spectral theory, we refer the reader to [2], [3], [7] and [11].

A composition operator is a bounded linear operator on the Banach space of functions on a set A,
which is induced by a self- map ϕ on A. The theory of composition operators bridges the gap between
operator theory and function theory. These operators also constitute diverse and illuminating examples in
the framework of local spectral theory as mentioned by Laursen et al ([7]). The composition operators on
the Lp(X)(1 ≤ p ≤ ∞) spaces were extensively studied by Nordgren, Singh, Manhas and others. For further
details about the composition operators, we refer to [1], [18]. The local spectral theory of composition
operators on Hp spaces was studied by Shapiro [5] and Smith [16].

In this paper, we study the decomposability of the weighted composition operators on Lp(X)(1 ≤ p < ∞),
where (X,S, µ) is a σ-finite atomic measure space, with the assumption that the weight u ∈ L∞(X) has ess
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inf |u| > 0. Under these assumptions we establish the equality between the hyper-range and the analytic
core of uCϕ and, with the help of this equality, we obtain a sufficient condition for non-decomposability of
uCϕ. In addition, we show that if the self-map ϕ on X is either surjective almost everywhere or injective
almost everywhere but not both, then uCϕ is not decomposable. We also give a necessary condition for the
decomposability of uCϕ when ϕ is bijective almost everywhere.
Notations: Throughout the paper N,Z and C denote the set of positive integers, the set of integers and
the set of complex numbers respectively. The spaces Lp(X) are considered for σ-finite atomic measure space
(X,S, µ) and 1 ≤ p < ∞. The symbol ϕ denotes a non-singular transformation of X into X and ϕn denotes
the n-th iterate of ϕ. That is, ϕn = ϕ ◦ ϕ ◦ · · · ◦ ϕ︸           ︷︷           ︸

n times

. The notations σ(T), σp(T) and B respectively, are used to

denote the spectrum, point spectrum of the operator T and closure of the set B. The symbols f |A and χA

denote the restriction of the function f on the set A and the characteristic function of the set A respectively.

2. Preliminaries

In this section we collect some definitions and basic results of the local spectral theory and composition
operators. Most of these results can be found in [7], [11], [12], [18] and [19].

Let X be a complex Banach space and B(X) denote the Banach algebra of bounded linear operators on
X.

Definition 2.1. (1) An operator T ∈ B(X) is said to have the SVEP if for every open set G ⊆ C, the only analytic
solution f : G −→ X, of the equation (λ − T) f (λ) = 0, for all λ ∈ G, is the zero function on G.

(2) An operator T is said to have Bishop’s property (β) if for every open subset G ofC and every sequence of analytic
functions fn : G −→ X with the property that (λ − T) fn(λ) −→ 0 as n −→ ∞, locally uniformly on G, then
fn(λ) −→ 0 as n −→ ∞, locally uniformly on G.

From the above definitions, it is easy to see that property (β) implies SVEP, and also, it is clear that an
operator whose point spectrum has empty interior has SVEP. The localized versions of SVEP and property
(β) were studied by [13] and [17] respectively. There is another property which lies in between (β) and SVEP,
named as Dunford’s property (C). The property (C) includes the idea of local spectral subspaces, which are
defined as follows.

Definition 2.2. For x ∈ X, the local resolvent of T at x, denoted by ρT(x), is defined as the union of all open subsets
G of C for which there is an analytic function f : G −→ X satisfying (λ − T) f (λ) = x for all λ ∈ G. The complement
of ρT(x) is called the local spectrum of T at x and is denoted by σT(x). For a closed subset F ⊆ C, the local spectral
subspace of T, denoted by XT(F), is defined as XT(F) = {x ∈ X : σT(x) ⊆ F}.

An operator T is said to have Dunford’s property (C) if XT(F) is closed for every closed subset F of C.

Proposition 2.3. If T ∈ B(X), then

T has property (β)⇒ T has property (C)⇒ T has SVEP.

For T ∈ B(X) and a closed set F ⊆ C, the glocal spectral subspace XT(F) is defined as the set of all x ∈ X
such that there is an analytic function f : C \ F −→ X satisfying (λ − T) f (λ) = x. It is well known that
XT(F) = XT(F) if and only if T has SVEP.

Definition 2.4. An operator T is said to have the decomposition property (δ) if for every open cover {U,V} of C,
X = XT(U) +XT(V).

The properties (β) and (δ) are dual in nature. That is, if one of the T and T∗ has property (β), then other has
property (δ).
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Definition 2.5. An operator T is said to be decomposable if for every open cover {U,V} of C there exist T-invariant
closed subspaces Y and Z of X such that σ(T|Y) ⊆ U, σ(T|Z) ⊆ V and X = Y + Z.

Theorem 2.6. Let T ∈ B(X), then T is decomposable if and only if T has both the properties (β) and (δ).

Definition 2.7. Let S be the σ−algebra of all Borel subsets of the complex plane C. A map E : S −→ B(X) is called
a spectral measure if

(1) E(∅)=0,

(2) E(C)=I,

(3) E(A ∩ B)=E(A)E(B) for all A,B ∈ S and

(4) E(
∞∪

n=1

Bn)x =
∞∑

n=1

E(Bn)x for every countable family of pairwise disjoint Borel sets Bn and for all x ∈ X.

An operator T ∈ B(X) is called a spectral operator if there exists a spectral measure E on S which satisfies

E(B)T = TE(B) and σ(T|E(B)(X)) ⊆ B f or all B ∈ S.

Proposition 2.8. Every spectral operator is decomposable.

Definition 2.9. Let T ∈ B(X). The analytic core of T is the set K(T) of all x ∈ X such that there exists a sequence
(xn)∞n=0 in X and a constant δ > 0 such that

(a) x = x0, and Txn+1 = xn for every n ≥ 0,

(b) ∥xn∥ ≤ δn∥x∥ for every n ≥ 0.

It is well-known that K(T) is a subspace of X and can be easily seen that K(T) ⊆ T∞(X), where T∞(X) =
∞∩

n=1

Tn(X) is called the hyper-range of T. Following result establishes a connection between analytic core

and local spectral subspace of an operator. The proof of this result can be found in [8] or [15].

Theorem 2.10. Let T ∈ B(X), then for each λ ∈ C, K(λI − T) = XT(C \ {λ}).

Definition 2.11. Let A be a non-empty set and V(A) denote the vector space of complex functions on A. If ϕ is a
self-map on A, then ϕ induces a linear transformation Cϕ from V(A) to V(A), defined as

Cϕ f = f ◦ ϕ f or all f ∈ V(A).

If V(A) is a Banach space and Cϕ is bounded, we say that Cϕ is a composition operator.

Definition 2.12. Let (X,S, µ) be a measure space. A measurable set E is called an atom if µ(E) , 0 and for each
measurable subset F of E either µ(F) = 0 or µ(F) = µ(E). A measure space (X,S, µ) is called atomic if each measurable
subset of non-zero measure contains an atom.

Let (X,S, µ) be a σ-finite atomic measure space. Then X =
∪∞

n=1 An, where An’s are disjoint atoms of finite
measure [19]. These atoms are unique in the sense that if X =

∪∞
n=1 Bn, where Bn’s are disjoint atoms of finite

measure, then An = Bn up to a nullset for each n ≥ 1. A measurable transformation ϕ : X −→ X is called
non-singular if the measure µϕ−1 is absolutely continuous with respect to µ. If ϕ is non-singular, then ϕ
maps atoms into atoms. A non-singular transformation ϕ of X into X is called injective almost everywhere
if the inverse image of every atom under ϕ contains at most one atom. It is called surjective almost
everywhere if the inverse image of every atom under ϕ contains at least one atom. If ϕ is both injective and
surjective almost everywhere, then it is called bijective almost everywhere. Also each f ∈ Lp(X) (1 ≤ p ≤ ∞)
is constant almost everywhere on each atom.
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Theorem 2.13. Let (X,S, µ) be a σ-finite measure space. A necessary and sufficient condition that a non-singular
transformation ϕ of X into X induces a composition operator on Lp(X)(1 ≤ p < ∞) is that there is a K > 0 such that

µϕ−1(E) ≤ Kµ(E) for each E ∈ S.

Let u ∈ L∞(X) and ϕ be a non-singular transformation of X into X such that Cϕ is a composition operator
on Lp(X)(1 ≤ p < ∞), then weighted composition operator uCϕ on Lp(X)(1 ≤ p < ∞) is defined as

(uCϕ) f = u f (ϕ) for all f ∈ Lp(X).

So a “weighted composition operator” is just the product MuCϕ of a multiplication operator Mu and a
composition operator Cϕ.

3. Decomposability

In this section we take Lp(X)(1 ≤ p < ∞) of a σ-finite atomic measure space (X,S, µ), where X =
∪∞

n=1 An
and An’s are disjoint atoms of finite measure. We start our main results with the following easy observations.

Proposition 3.1. Let u ∈ L∞(X) and uCϕ be a weighted composition operator on Lp(X). If u|An → 0, then uCϕ is
decomposable.

Proof. It can be easily seen that if u|An → 0, then uCϕ is compact. Now the proof follows from the fact that
every compact operator is decomposable.

Proposition 3.2. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Then
range of uCϕ is given by

(uCϕ)(Lp) =
{

f ∈ Lp :
f
u

∣∣∣∣ϕ−1(An) is constant almost everywhere for each n ≥ 1
}
.

Proof. The proof is similar to that of [14, Theorem 2.1.1].

Proposition 3.3. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Then
range of uCϕ is closed.

Proof. The proof is similar to that of [14, Theorem 2.1.2].

Proposition 3.4. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Then
the analytic core K(uCϕ) = (uCϕ)∞(Lp(X)), the hyper-range of uCϕ.

Proof. The inclusion K(uCϕ) ⊆ (uCϕ)∞(Lp(X)) follows from the definition of K(uCϕ). Also from the preceding
Proposition 3.2, we have

(uCϕ)k(Lp(X)) =
{

f ∈ Lp(X) :
f

u.(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣ϕ−1
k (An) is constant for each n ≥ 1

}
.

Hence

(uCϕ)∞(Lp(X)) =

∞∩
k=1

(uCϕ)k(Lp(X))

=
{

f ∈ Lp(X) :
f

u.(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣ϕ−1
k (An) is constant

for each n ≥ 1 and for each k ≥ 1
}
.



Shailesh Trivedi, Harish Chandra / FAAC 7 (1) (2015), 1–13 5

Suppose that f ∈ (uCϕ)∞(Lp(X)). Then for each n ∈N, define

f (n)|Am =
f

u.(u ◦ ϕ) . . . (u ◦ ϕn−1)

∣∣∣∣ϕ−1
n (Am) for each m ≥ 1.

(This f (n) has nothing to do with the n-th derivative.)
Since f

u.(u◦ϕ)...(u◦ϕn−1) |ϕ−1
n (Am) is constant for each n ≥ 1 and for each k ≥ 1, therefore each f (n)|Am is well-defined

and f (n) ∈ Lp(X) for each n ≥ 1. Now for n ≥ 0,

(uCϕ) f (n+1) = (uCϕ)
∞∑

m=1

( f (n+1)|Am)χAm

=

∞∑
m=1

(
u|Am

f
u.(u ◦ ϕ) . . . (u ◦ ϕn)

∣∣∣∣ϕ−1
n+1(ϕ(Am))

)
χAm
.

Note thatϕ−1
n (Am) ⊆ ϕ−1

n+1(ϕ(Am)), therefore if Ak ⊆ ϕ−1
n (Am), thenϕn(Ak) = Am. Since u|Am

f
u.(u◦ϕ)...(u◦ϕn) |ϕ−1

n+1(ϕ(Am))
is constant, so we get

u|Am
f

u.(u ◦ ϕ) . . . (u ◦ ϕn)

∣∣∣∣ϕ−1
n+1(ϕ(Am)) =

u|Am. f |Ak

u|Ak.u|ϕ(Ak) . . .u|ϕn(Ak)

=
u|Am. f |Ak

u|Ak.u|ϕ(Ak) . . .u|Am

=
f |Ak

u|Ak.u|ϕ(Ak) . . .u|ϕn−1(Ak)

=
f

u.(u ◦ ϕ) . . . (u ◦ ϕn−1)

∣∣∣∣ϕ−1
n (Am)

= f (n)|Am.

Thus (uCϕ) f (n+1) = f (n) for each n ≥ 0, where f (0) = f . Further, for any n ≥ 0,

∥ f (n)∥p =

∞∑
k=1

∥∥∥ f (n)|Ak

∥∥∥p

=

∞∑
k=1

∥∥∥∥∥∥ f
u.(u ◦ ϕ) . . . (u ◦ ϕn−1)

∣∣∣∣ϕ−1
n (Ak)

∥∥∥∥∥∥p

≤ 1
αnp

∞∑
k=1

∥∥∥ f |ϕ−1
n (Ak)

∥∥∥p
, α = ess in f |u|

=
1
αnp

∞∑
k=1

 ∑
Am⊆ϕ−1

n (Ak)

∣∣∣∣ f |Am

∣∣∣∣pµ(Am)


=
∥ f ∥p
αnp .

That is, ∥ f (n)∥ ≤ 1
αn ∥ f ∥. Now taking δ = 1

α , the sequence ( f (n))∞n=0 satisfies all the conditions of K(uCϕ).
Consequently, (uCϕ)∞(Lp(X)) ⊆ K(uCϕ). Hence, K(uCϕ) = (uCϕ)∞(Lp(X)).

Corollary 3.5. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Then the
analytic core of uCϕ on Lp(X) is closed.

Proof. The proof is evident from the above proposition and the foregoing Proposition 3.3.
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Corollary 3.6. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). If ϕ is
injective almost everywhere, then K(uCϕ) = Lp(X).

Proof. If ϕ is injective almost everywhere and ess inf |u| > 0, then uCϕ is surjective. Therefore from above
Proposition 3.4, K(uCϕ) = Lp(X).

The proof of next lemma can be found in [20]. We state it for the sake of completeness.

Lemma 3.7. Let X be a complex Banach space and T ∈ B(X). Suppose that σ(T) is not a singleton and
∩
x∈X
x,0

σT(x) , ∅,

then T has SVEP but does not have decomposition property (δ) and hence, T is not decomposable.

Corollary 3.8. Let X be a complex Banach space and T ∈ B(X). Suppose that σ(T) is not a singleton and K(T) = {0}.
Then T has SVEP but does not have decomposition property (δ).

Proof. The proof follows from Theorem 2.10 and Lemma 3.7 above.

Proposition 3.9. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). If uCϕ
is not quasinilpotent and K(uCϕ) = {0}, then uCϕ has SVEP but does not have decomposition property (δ).

Proof. If K(uCϕ) = {0}, then from Theorem 2.10 above, we get Lp
uCϕ

(X)(C\{0}) = {0}. That is, 0 ∈
∩

x∈Lp(X)
x,0

σuCϕ (x).

Also, since uCϕ is not quasinilpotent, therefore σ(uCϕ) is not a singleton. Hence, from Lemma 3.7, it follows
that uCϕ has SVEP but does not have decomposition property (δ).

Proposition 3.10. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). If ϕ is
injective but is not surjective almost everywhere, then uCϕ does not have SVEP.

Proof. Let n0 ∈ N be such that ϕ−1(An0 ) = ∅. For each positive integer k, put Ank = ϕk(An0 ). Since ϕ is
injective almost everywhere, all Ank ’s are disjoint. Suppose that α = ess in f |u|. Let G = {λ ∈ C : |λ| < α}.
Now define a map f : G −→ Lp(X) by f (λ) = fλ, where

fλ|An =


1, if n = n0

λk

u(u◦ϕ)...(u◦ϕk−1)

∣∣∣∣An0 , if n = nk, k ≥ 1

0, otherwise.

Then for each λ ∈ G,

(λ − uCϕ) fλ = (λ − uCϕ)
∞∑

k=0

( fλ|Ank )χAnk

= λχAn0
+

∞∑
k=1

(
λk+1

u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0

)
χAnk

−λχAn0
−
∞∑

k=1

(u|Ank )( fλ|Ank+1 )χAnk

=

∞∑
k=1

(
λk+1

u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0

)
χAnk

−
∞∑

k=1

(
(u|Ank )

λk+1

u(u ◦ ϕ) . . . (u ◦ ϕk)

∣∣∣∣An0

)
χAnk

= 0.

Clearly, f is a non-zero analytic function. Hence uCϕ does not have SVEP.
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The following corollary easily follows from above proposition.

Corollary 3.11. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). If ϕ is
injective but is not surjective almost everywhere, then {λ ∈ C : |λ| ≤ α} ⊆ σp(uCϕ), where α = ess in f |u|.

Proposition 3.12. Let u ∈ L∞(X) and uCϕ be a weighted composition operator on Lp(X). If there is a positive integer
N such that ϕN(An) = An up to a null set for all n ≥ 1, then uCϕ is decomposable.

Proof. Note that if ϕN(An) = An up to a null set for all n ≥ 1, then (uCϕ)N is a multiplication operator
induced by the function v = u(u ◦ϕ)(u ◦ϕ2) . . . (u ◦ϕN−1). As observed by Rho and Yoo ([4], Example1), the
multiplication operator Mv, induced by the function v, is spectral. In fact, the spectral measure E is given
by

E(B) =MχB◦v for all Borel sets B of C.

Hence (uCϕ)N =Mv is decomposable. If U is any open disk containing σ(uCϕ), then f : U −→ C, defined as

f (λ) = λN for all λ ∈ U,

is non-constant analytic function. Hence by [7, Theorem 3.3.9], uCϕ is decomposable.

If ϕ is bijective and (Ank )
∞
k=−∞ is a cycle of infinite length with ϕ(Ank ) = Ank+1 , we put ap = lim inf

k→∞
µ(Ank )

1
kp

and bp = lim inf
k→∞

µ(An−k )
1
kp . In view of Theroem 2.13, it is easy to see that ap > 0 and bp < ∞. Henceforth, we

assume that ap < ∞ and bp > 0.

Proposition 3.13. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Suppose
that ϕ is bijective almost everywhere. If each atom lies in a cycle of finite length, then uCϕ has SVEP. If there is an
atom An0 which lies in a cycle of infinite length, say (Ank )

∞
k=−∞ with ϕ(Ank ) = Ank+1 , then uCϕ has SVEP if and only if

1
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k ≤ bp lim sup

k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k

for each such An0 .

Proof. Suppose that each atom lies in a cycle of finite length. For each k ≥ 1, put

Bk = {λ ∈ C : λk = (u|An1 )(u|An2 ) . . . (u|Ank ) for n1,n2, . . . , nk ∈N}.

Then Bk is countable for each k ≥ 1. Let λ ∈ σp(uCϕ). Then

(λ − uCϕ) f = 0 for some non-zero f ∈ Lp(X). (1)

Hence there is an atom An1 such that f |An1 , 0. Suppose that An1 lies in a cycle (An1 ,An2 , . . . ,Ank ) of length
k. Then from (1) we have,

λ f |An1 = (u|An1 )( f |An2 )
λ f |An2 = (u|An2 )( f |An3 )

. . .

λ f |Ank−1 = (u|Ank−1 )( f |Ank )
λ f |Ank = (u|Ank )( f |An1 ).

Thus, (λk − (u|An1 )(u|An2 ) . . . (u|Ank )) f |An1 = 0. Since f |An1 , 0, therefore λk = (u|An1 )(u|An2 ) . . . (u|Ank ). That

is, λ ∈ Bk. Hence σp(uCϕ) ⊆
∞∪

k=1

Bk. Thus, in this case, the eigenvalues of uCϕ are countable and consequently

uCϕ has SVEP.
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Suppose that there is an atom An0 which lies in a cycle of infinite length, say (Ank )
∞
k=−∞withϕ(Ank ) = Ank+1 .

Let C denote the collection of all such atoms. Let λ ∈ σp(uCϕ). Then there is a non-zero f ∈ Lp(X) such that

(λ − uCϕ) f = 0. (2)

Since f , 0, there is an atom Am such that f |Am , 0. If Am lies in a cycle of finite length, then, as above,

λ ∈
∞∪

k=1

Bk. If Am lies in a cycle of infinite length, then without loss of generality we may assume that

Am = An0 . Then from (2) we have

. . .

λ f |An−1 = (u|An−1 )( f |An0 )
λ f |An0 = (u|An0 )( f |An1 )
λ f |An1 = (u|An1 )( f |An2 )

. . .

Solving above we get

f |Ank =
λk f

u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0 for each k ≥ 1 (3)

and

f |An−k =
(u ◦ ϕ−1)(u ◦ ϕ−1

2 ) . . . (u ◦ ϕ−1
k ) f

λk

∣∣∣∣An0 for each k ≥ 1. (4)

Also, we must have
∞∑

k=0

∣∣∣ f |Ank

∣∣∣pµ(Ank ) < ∞, which gives that

∞∑
k=0

∣∣∣∣∣∣ λk f
u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0

∣∣∣∣∣∣
p

µ(Ank ) < ∞. The radius of convergence R1 of the series

∞∑
k=0

(
λk f

u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0

)p

µ(Ank )

is given by,

1
R1

= lim sup
k→∞

∣∣∣∣∣∣ f
u(u ◦ ϕ) . . . (u ◦ ϕk−1)

∣∣∣∣An0

∣∣∣∣∣∣
1
k

µ(Ank )
1
kp

≥ lim sup
k→∞

∣∣∣∣∣∣ 1
u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣∣∣∣
1
k

lim inf
k→∞

µ(Ank )
1
kp

=
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k

.

Hence |λ| ≤ 1
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k . Again, since

∞∑
k=1

∣∣∣ f |An−k

∣∣∣pµ(An−k ) < ∞ or

∞∑
k=1

∣∣∣∣∣∣ (u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )

λk

∣∣∣∣An0

∣∣∣∣∣∣
p

µ(An−k ) < ∞, therefore, the radius of convergence R2 of the series

∞∑
k=1

 (u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )

λk

∣∣∣∣An0

p

µ(An−k )
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is given by, R2 ≤ 1
bp

1

lim sup
k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k

. Hence |λ| ≥ bp lim sup
k→∞

∣∣∣(u ◦ ϕ−1)(u ◦

ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k . Thus

σp(uCϕ) ⊆
∪

An0∈C

{
λ : bp lim sup

k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k ≤ |λ| ≤

1
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k
}
∪ (

∞∪
k=1

Bk).

Now if 1
ap

lim inf
k→∞

∣∣∣u(u ◦ϕ) . . . (u ◦ϕk−1)|An0

∣∣∣ 1
k ≤ bp lim sup

k→∞

∣∣∣(u ◦ϕ−1)(u ◦ϕ−1
2 ) . . . (u ◦ϕ−1

k )|An0

∣∣∣ 1
k for each An0 ∈ C,

then σp(uCϕ) has empty interior and hence uCϕ has SVEP.
Conversely, suppose that there is an atom An0 lying in a cycle (Ank )

∞
k=−∞ of infinite length for which

bp lim sup
k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k <

1
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k .

Put G =
{
λ : bp lim sup

k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k < |λ| < 1

ap
lim inf

k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k
}

and

define f : G −→ Lp(X) by f (λ) = fλ for each λ ∈ G, where

fλ|An =


1, if n = n0

λk

u(u◦ϕ)...(u◦ϕk−1)

∣∣∣∣An0 , if n = nk, k ≥ 1,
(u◦ϕ−1)(u◦ϕ−1

2 )...(u◦ϕ−1
k )

λk

∣∣∣∣An0 , if n = n−k, k ≥ 1

0, otherwise.

Then it is easy to see that f (λ) is a non-zero analytic function which satisfies (λ − uCϕ) f (λ) = 0 for each
λ ∈ G. Hence uCϕ does not have SVEP.

Lemma 3.14. Let u ∈ L∞(X) and uCϕ be a weighted composition operator on Lp(X)(1 < p < ∞). Then (uCϕ)∗ :
Lq(X) −→ Lq(X) ( 1

p +
1
q = 1) is given by

(uCϕ)∗
∞∑

n=1

( f |An)χAn =

∞∑
n=1

 ∑
Ak∈ϕ−1(An)

(u|Ak)( f |Ak)

χAn

for each f ∈ Lq(X).

Proof. Let f ∈ Lq(X). Then for each 1 ∈ Lp(X), we have(uCϕ)∗
∞∑

n=1

( f |An)χAn

 ∞∑
n=1

(1|An)χAn =

∞∑
n=1

( f |An)χAn (uCϕ)
∞∑

n=1

(1|An)χAn

=

∞∑
n=1

( f |An)(u|An)(1|ϕ(An))

=

 ∞∑
n=1

( ∑
Ak∈ϕ−1(An)

(u|Ak)( f |Ak)
)
χAn

 ∞∑
n=1

(1|An)χAn

 .
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Therefore, (uCϕ)∗
∞∑

n=1

( f |An)χAn =

∞∑
n=1

 ∑
Ak∈ϕ−1(An)

(u|Ak)( f |Ak)

χAn .

Proposition 3.15. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X)(1 < p <
∞). Suppose that ϕ is bijective almost everywhere. If each atom lies in a cycle of finite length, then (uCϕ)∗ has SVEP.
If there is an atom An0 which lies in a cycle of infinite length, say (Ank )

∞
k=−∞ with ϕ(Ank ) = Ank+1 , then (uCϕ)∗ has

SVEP if and only if

1
bq

lim inf
k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k ≤ aq lim sup

k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k

for each such An0 .

Proof. From Lemma 3.14 above, (uCϕ)∗ : Lq(X) −→ Lq(X) takes the form

(uCϕ)∗
∞∑

n=1

( f |An)χAn =

∞∑
n=1

(u|ϕ−1(An))( f |ϕ−1(An))χAn

for each f ∈ Lq(X). Now rest of the proof is similar to that of Proposition 3.13.

Theorem 3.16. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X)(1 < p < ∞).
Suppose that ϕ is bijective almost everywhere. If uCϕ is decomposable, then for each cycle (Ank )

∞
k=−∞ of infinite length,

we have

1
ap

lim inf
k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k ≤ bp lim sup

k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k

and

1
bq

lim inf
k→∞

∣∣∣(u ◦ ϕ−1)(u ◦ ϕ−1
2 ) . . . (u ◦ ϕ−1

k )|An0

∣∣∣ 1
k ≤ aq lim sup

k→∞

∣∣∣u(u ◦ ϕ) . . . (u ◦ ϕk−1)|An0

∣∣∣ 1
k .

Proof. Combining Proposition 3.13 and Proposition 3.15 and using the fact that an operator T is decompos-
able if and only if both T and T∗ have Bishop’s property (β) , we get the proof.

The conditions in Theorem 3.16 are not sufficient. For example, let Lp(X) = lp(N), the sequence spaces,
and ϕ :N −→N be defined as

ϕ(1) = 2
ϕ(2n) = 2(n + 1) for each n ≥ 1

ϕ(2n + 1) = 2n − 1 for each n ≥ 1.

Taking n0 = 1, we get nk = 2k and n−k = 2k + 1 for each k ≥ 1. Now u = (unk )
∞
k=−∞ ∈ l∞(N) is defined as

un−1 un−2 . . .un−k =
1

2m , if m ≤ k < 2m, m ∈N and

unk = η for each k ≥ 0,where η ∈
(1
2
,

1√
2

)
.

Then ap = aq = bp = bq = 1, lim sup
k→∞

|un−1 un−2 . . . un−k |
1
k =

1√
2

and lim inf
k→∞

|un−1 un−2 . . . un−k |
1
k =

1
2

. Hence both

the conditions of Theorem 3.16 are satisfied. Since, for χ{n0} ∈ lp(N), ∥(uCϕ)kχ{n0}∥
1
k = |un−1 un−2 . . .un−k |

1
k

does not converge, therefore from [21, Proposition 1.5], uCϕ does not have property (β) and hence it is not
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decomposable.

Let (X,S, µ) be a σ-finite atomic measure space and ϕ : X −→ X be surjective almost everywhere. For
each atom An, put

Ank = ϕk(An) for each k ≥ 0,

where ϕ0(An) = An0 = An. For k < 0, let An−k be an atom in ϕ−1
k (An). Now define the set E as

E = {An : Ank ’s are disjoint for all k ∈ Z}.

Now we have the following result.

Theorem 3.17. Let u ∈ L∞(X) with ess inf |u| > 0 and uCϕ be a weighted composition operator on Lp(X). Suppose
that ϕ is surjective almost everywhere but is not injective almost everywhere. Then uCϕ does not have decomposition
property (δ). Further, if

1
ap

lim inf
k→∞

∣∣∣(u|An0 )(u|An1 ) . . . (u|Ank−1 )
∣∣∣ 1

k < bp lim sup
k→∞

∣∣∣(u|An−1 )(u|An−2 ) . . . (u|An−k )
∣∣∣ 1

k (5)

for each An ∈ E, then uCϕ has SVEP.

Proof. Since ϕ is surjective almost everywhere, ess in f |u| > 0 and range of uCϕ is closed, therefore (uCϕ)∗

is surjective. But (uCϕ)∗ can not have SVEP. For, if it has SVEP, it would imply that (uCϕ)∗ is invertible [6].
This contradicts the fact that uCϕ is not invertible. Thus uCϕ does not have decomposition property (δ).

Further, assume that uCϕ does not have SVEP. Then there exist an open set G and a non-zero analytic
function f : G −→ Lp(X), defined as

f (λ) = fλ for each λ ∈ G

which satisfies (λ − uCϕ) f (λ) = 0 for each λ ∈ G. Without loss of generality, we may assume that f is never

zero on G. Choose λ0 ∈ G such that λ0 <
∞∪

k=1

Bk ∪ {0}, where Bk’s are as defined in Proposition 3.13. Since

f (λ0) , 0, therefore there is an atom An0 such that fλ0 |An0 , 0. We claim that An0 ∈ E. For, if An0 < E,
then there are distinct integers i and j such that Ani = An j . Let i < j. Then i + k = j for some k > 0. Since
(λ0 − uCϕ) fλ0 = 0, therefore we have

λ0 fλ0 |Ani = (u|Ani )( fλ0 |Ani+1 )
. . .

λ0 fλ0 |Ani+k−1 = (u|Ani+k−1 )( fλ0 |Ani+k )
= (u|Ani+k−1 )( fλ0 |An j )
= (u|Ani+k−1 )( fλ0 |Ani )

which gives
(
λk

0 − (u|Ani )(u|Ani+1 ) . . . (u|Ani+k−1 )
)

fλ0 |Ani = 0. Since λ0 <
∞∪

k=1

Bk, so fλ0 |Ani = 0. Again,

λ0 fλ0 |An0 = (u|An0 )( fλ0 |An1 )
. . .

λ0 fλ0 |Ani−1 = (u|Ani−1 )( fλ0 |Ani ) = 0.

Since λ0 , 0, therefore by backward substitution, we get fλ0 |An0 = 0, which is a contradiction. Hence
An0 ∈ E. Now using (λ0 − uCϕ) fλ0 = 0, we get

fλ0 |Ank =
λk

0 fλ0 |An0

(u|An0 )(u|An1 ) . . . (u|Ank−1 )
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and

fλ0 |An−k =
(u|An−1 )(u|An−2 ) . . . (u|An−k fλ0 |An0 )

λk
0

for each k ≥ 1. Now following the steps of Proposition 3.13, we get

bp lim sup
k→∞

|(u|An−1 )(u|An−2 ) . . . (u|An−k )|
1
k ≤ |λ0| ≤

1
ap

lim inf
k→∞

|(u|An0 )(u|An1 ) . . . (u|Ank−1 )| 1k .

That is,

bp lim sup
k→∞

|(u|An−1 )(u|An−2 ) . . . (u|An−k )|
1
k ≤ 1

ap
lim inf

k→∞
|(u|An0 )(u|An1 ) . . . (u|Ank−1 )| 1k .

Thus condition (5) implies that uCϕ has SVEP.

4. Examples

Now we give examples which support preceding results.

Example 4.1. Let X = N, S = the power set of N and µ = counting measure. Let un = 1 + 1
n for all n ∈ N and

define ϕ :N −→N as

ϕ(1) = ϕ(2) = ϕ(3) = 2

and

ϕ(n) = n − 2 for all n ≥ 4.

Then it is easy to see that lim
k→∞
ϕ−1

k (2) =N and consequently, (uCϕ)∞(Lp(X)) = K(uCϕ) = {0}. Hence from Proposition

3.9, uCϕ does not have decomposition property (δ).

Example 4.2. Let X =N, S = the power set ofN and µ = counting measure. Let ϕ :N −→N be defined as

ϕ(1) = 2,

ϕ(2n) = 2n + 2 and ϕ(2n + 1) = 2n − 1 for all n ∈N.
Let n0 = 1 and (un)∞n=1 is given as

un =


1 + 1

n , if n is odd,

2 + 1
n , if n is even.

An easy calculation shows that lim sup
k→∞

|un−1 un−2 . . . un−k |
1
k = 1, whereas

lim inf
k→∞

|un0 un1 . . . unk−1 |
1
k = 2. Therefore, by Theorem 3.16, uCϕ is not decomposable.

In case when ϕ is neither injective nor surjective almost everywhere, uCϕ may or may not be decomposable.
The following examples illustrate our statement.

Example 4.3. Let X =N, S = the power set ofN and µ = counting measure. Let
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un =


1, if n is odd,

−1, if n is even

and ϕ :N −→N is defined as

ϕ(n) =


n, if n is odd,

n − 1, if n is even.

Then it is not difficult to see that uCϕ is a projection. That is, (uCϕ)2 = uCϕ. Hence, from [7, Proposition 1.4.5], uCϕ
is decomposable.

Example 4.4. Let X =N, S = the power set ofN and µ = counting measure. Suppose that ϕ :N −→N is defined
as

ϕ(2n − 1) = ϕ(2n) = 2n + 3 for all n ∈N

and un = 1 for all n ∈N. Let D denote the open unit disc in the complex plane. Now define a map f : D −→ Lp(X) as

f (λ) =
(
x1(λ), x2(λ), . . .

)
for all λ ∈ D,

where

x1(λ) = x2(λ) = x3(λ) = x4(λ) = 1

and

x4n+1(λ) = x4n+2(λ) = x4n+3(λ) = x4(n+1)(λ) = λn for all n ∈N.

Then f is a non-constant analytic function which satisfies (λ − uCϕ) f (λ) = 0 for all λ ∈ D. Thus uCϕ does not have
SVEP and hence uCϕ is not decomposable.
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