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Abstract. Let A be a Hilbert - Schmidt operator in a separable Hilbert space, A* is the adjoint to A, and
Ny(A) = [Trace (AA")]Y2. It is proved that
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D m A < NXA) - 5 (C(A) - ey +2VaN (14,4 |,
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where A; = (A - A")/(2i), Ak (k = 1,2,...) are the eigenvalues of A, {(A) = SUP k1o jsk |A; — Al is the spread
of the eigenvalues and [A4, A*] = AA* — A*A. That result refines the classical inequality

S}

Z(Im Ao < N2(A)).

k=1

1. Introduction and statement of the main result

Let H be a separable Hilbert space with a scalar product (.,.), the norm ||.|| = \/m and unit operator I.
For a linear operator A in H, A" is the adjoint of A; A; := (A — A)/2i; Ax (k = 1,2, ...) are the eigenvalues of A
taken with their multiplicities and enumerated as [Ax| > |Ax]; sk(A) (k = 1,2,...) are the singular values of
A, enumerated with their multiplicities in the non-increasing order. In addition,

C(A):= sup [|Aj— Ag|is the spread of the eigenvalues of A and K := [A,A"] = AA" - A"A
k=12, j#k

is the self-commutator. By SN, we denote the Hilbert-Schmidt ideal of compact operators A with the finite
norm N,(A) := [Trace (AA*)]V/2.
The aim of this paper is to prove the following result.
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Theorem 1.1. Let A € SN,. Then

2

Z(Im A < N3(A) - %(C(A) - \/C2(A) +2 \/ENQ(K)) . (1.1)
k=1

This theorem is proved in the next section.
Inequality (1.1) refines the well-known inequality

(]

Y (m A? < N3(AY),
k=1

cf. [4, Theorem I1.6.1], [6, Section 111.1.4.2].
Multiplying and deleting the right-hand part of (1.1) by

(L(A) + ([(A) + 2 V2N, (K)) /22,

we get
N3(K)

(1.2)

Z(Im A)* < N3(A) - 2"
p \/(;Z(A) +2V2No(K) + C(A)

For any selfadjoint operator T € SN, whose entries in an orthogonal normal basis are tj (j,k = 1,2,...) we
have

(o9

Y AP 2 i i,
k=1

k=1
where Ay(T) are the eigenvalues of T taken with their multiplicities, cf. [4, Section 11.4.3]. Therefore, if cj
(jk=1,2,..) are the entries of K = [A, A*] in an orthogonal normal basis, then Theorem 1.1 implies
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Y (m A < N2(A) - % (C(A) - Jew+2 \57(10) : (13)
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where .
T(K) = () lewl)"2.
k=1
Obviously,
CA) < sup (Al + D) < s1(A) +52(A) < 2JJAll (14)
jk=12,..; j#k
From (1.2) and (1.4) it follows
(o) 2
Y (I A < N2(A) - 50 S < (1.5)
= ( V61(4) + 52(A))2 + 2 VEN(K) + 51(4) + Sz(A))
N3(K)

N3(Ap) -

.
( \/4||1<||2 +2V2N,(K) + 2||I<II)

Besides, one can replace N>(K) by 7(K).

Note that in [2] and [3] bounds for sums of the the absolute values of eigenvalues of Schatten - von
Neumann operators were established. About other interesting recent investigations of compact operators
see [5], [7]-[10].
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2. Proof of Theorem 1.1
Lemma 2.1. For any operator A € SN, one has N3(K) < 2N;(A).
Proof. Clearly,
(AA* — A*A)? = (AA" — AA)(AA* — A"A) = (AA")? + (A*A)? — A(AY)PA — A*A%A"

But
Trace A*A?A* = Trace A*(A?)* > 0, Trace A(A*)*A = Trace A*(A%)* > 0.

Thus
Trace (AA* — A*A)? < Trace (AA*)* + Trace (A*A)* < 2N3(A*A) < 2N5(A),

as claimed. O

As it is proved in [1, Lemma 6.5.1], for any quasinilpotent Hilbert - Schmidt operator V one has
N3(V = V*) = 2N3(V). (2.1)

Replacing V by iV, we obtain
N3(V + V*) = 2N4(V). (2.2)

Furthermore, let A be finite dimensional. Then due to the Schur theorem it admits the triangular represen-
tation
A=D+V, (2.3)

where D is a normal matrix and V is a nilpotent (strictly upper triangular) one, having the same invariant
subspaces. Besides, V and D are called the nilpotent part and diagonal one of A, respectively.

Lemma 2.2. For any finite dimensional operator A, whose nilpotent part is V one has
Na(K) < V2(N3(V) + C(A)No(V). 24)
Proof. According to (2.3) we can write
K=D+WD+V)y-—D+V)(D+V)=

VD*+ DV +VV*-D'V-V'D-V*'V.

Hence, due to Lemma 2.1
N (K) S Np(V'V = VV)+ Np(D'V - VD" + V'D - DV*) < \/ENg(V) + Np(C+CY), (2.5)
where C = D'V — VD" is a nilpotent operator; so by (2.2) N»(C + C*) = V2N, (C). Now (2.5) implies
N»(K) < V2(N2(V) + N»(Q)). (2.6)

Let A be reduced to the upper triangular form with the entries aj (j, k = 1, ..., n), where n = dimrange A < co.
Then

n

k-1
NAC) = ) Y laulidk - Ajl2 < CLANAW).

k=2 j=1

Therefore (2.6) yields the required inequality. O

Proof of Theorem 1.1: First assume that A is n-dimensional.
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We need the equality

2 Z(Im Ao = 2N2(A}) - NA(V), .7)
k=1

proved in [1, Lemma 6.5.2], where V is the nilpotent part of A.

Solving (2.4) , we obtain

NV 2 3 (—qA) N ﬁNzao).

Now (2.7) yields

2

2)" (Im A? < 2N3(A)) - 411 (—C(A) +2(4) +2 xszz(K))
k=1

This proves Theorem 1.1 in the finite dimensional case. Now let A € SN, be infinite dimensional. Since
Hilbert-Schmidt operators are limits of finite dimensional operators in the N>-norm, we obtain the required
result. O
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