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Abstract. Let A be a Hilbert - Schmidt operator in a separable Hilbert space, A∗ is the adjoint to A, and
N2(A) = [Trace (AA∗)]1/2. It is proved that

∞∑
k=1

(Im λk)2 ≤ N2
2(AI) −

1
8

(
ζ(A) −

√
ζ2(A) + 2

√
2N2([A,A∗])

)2

,

where AI = (A−A∗)/(2i), λk (k = 1, 2, ...) are the eigenvalues of A, ζ(A) := sup j,k=1,2,...; j,k |λ j −λk| is the spread
of the eigenvalues and [A,A∗] = AA∗ − A∗A. That result refines the classical inequality

∞∑
k=1

(Im λk)2 ≤ N2
2(AI).

1. Introduction and statement of the main result

Let H be a separable Hilbert space with a scalar product (., .), the norm ∥.∥ =
√

(., .) and unit operator I.
For a linear operator A in H, A∗ is the adjoint of A; AI := (A−A∗)/2i; λk (k = 1, 2, ...) are the eigenvalues of A
taken with their multiplicities and enumerated as |λk| ≥ |λk+1|; sk(A) (k = 1, 2, ...) are the singular values of
A, enumerated with their multiplicities in the non-increasing order. In addition,

ζ(A) := sup
j,k=1,2,...; j,k

|λ j − λk| is the spread of the eigenvalues of A and K := [A,A∗] = AA∗ − A∗A

is the self-commutator. By SN2 we denote the Hilbert-Schmidt ideal of compact operators A with the finite
norm N2(A) := [Trace (AA∗)]1/2.

The aim of this paper is to prove the following result.
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Theorem 1.1. Let A ∈ SN2. Then
∞∑

k=1

(Im λk)2 ≤ N2
2(AI) −

1
8

(
ζ(A) −

√
ζ2(A) + 2

√
2N2(K)

)2

. (1.1)

This theorem is proved in the next section.
Inequality (1.1) refines the well-known inequality

∞∑
k=1

(Im λk)2 ≤ N2
2(AI),

cf. [4, Theorem II.6.1], [6, Section III.1.4.2].
Multiplying and deleting the right-hand part of (1.1) by

(ζ(A) + (ζ2(A) + 2
√

2N2(K))1/2)2,

we get
∞∑

k=1

(Im λk)2 ≤ N2
2(AI) −

N2
2(K)(√

ζ2(A) + 2
√

2N2(K) + ζ(A)
)2 . (1.2)

For any selfadjoint operator T ∈ SN2 whose entries in an orthogonal normal basis are t jk ( j, k = 1, 2, ...) we
have

∞∑
k=1

|λk(T)|2 ≥
∞∑

k=1

|tkk|2,

where λk(T) are the eigenvalues of T taken with their multiplicities, cf. [4, Section II.4.3]. Therefore, if c jk
( j, k = 1, 2, ...) are the entries of K = [A,A∗] in an orthogonal normal basis, then Theorem 1.1 implies

∞∑
k=1

(Im λk)2 ≤ N2
2(AI) −

1
8

(
ζ(A) −

√
ζ2(A) + 2

√
2τ(K)

)2

, (1.3)

where

τ(K) = (
∞∑

k=1

|ckk|2)1/2.

Obviously,
ζ(A) ≤ sup

j,k=1,2,...; j,k
(|λ j| + |λk|) ≤ s1(A) + s2(A) ≤ 2∥A∥. (1.4)

From (1.2) and (1.4) it follows

∞∑
k=1

(Im λk)2 ≤ N2
2(AI) −

N2
2(K)(√

(s1(A) + s2(A))2 + 2
√

2N2(K) + s1(A) + s2(A)
)2 ≤ (1.5)

N2
2(AI) −

N2
2(K)(√

4∥K∥2 + 2
√

2N2(K) + 2∥K∥
)2 .

Besides, one can replace N2(K) by τ(K).
Note that in [2] and [3] bounds for sums of the the absolute values of eigenvalues of Schatten - von

Neumann operators were established. About other interesting recent investigations of compact operators
see [5], [7]-[10].
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2. Proof of Theorem 1.1

Lemma 2.1. For any operator A ∈ SN2 one has N2
2(K) ≤ 2N4

2(A).

Proof. Clearly,

(AA∗ − A∗A)2 = (AA∗ − A∗A)(AA∗ − A∗A) = (AA∗)2 + (A∗A)2 − A(A∗)2A − A∗A2A∗.

But
Trace A∗A2A∗ = Trace A2(A2)∗ ≥ 0,Trace A(A∗)2A = Trace A2(A2)∗ ≥ 0.

Thus
Trace (AA∗ − A∗A)2 ≤ Trace (AA∗)2 + Trace (A∗A)2 ≤ 2N2

2(A∗A) ≤ 2N4
2(A),

as claimed. �

As it is proved in [1, Lemma 6.5.1], for any quasinilpotent Hilbert - Schmidt operator V one has

N2
2(V − V∗) = 2N2

2(V). (2.1)

Replacing V by iV,we obtain
N2

2(V + V∗) = 2N2
2(V). (2.2)

Furthermore, let A be finite dimensional. Then due to the Schur theorem it admits the triangular represen-
tation

A = D + V, (2.3)

where D is a normal matrix and V is a nilpotent (strictly upper triangular) one, having the same invariant
subspaces. Besides, V and D are called the nilpotent part and diagonal one of A, respectively.

Lemma 2.2. For any finite dimensional operator A, whose nilpotent part is V one has

N2(K) ≤
√

2(N2
2(V) + ζ(A)N2(V)). (2.4)

Proof. According to (2.3) we can write

K = (D + V)(D + V)∗ − (D + V)∗(D + V) =

VD∗ +DV∗ + VV∗ −D∗V − V∗D − V∗V.

Hence, due to Lemma 2.1

N2(K) ≤ N2(V∗V − VV∗) +N2(D∗V − VD∗ + V∗D −DV∗) ≤
√

2N2
2(V) +N2(C + C∗), (2.5)

where C = D∗V − VD∗ is a nilpotent operator; so by (2.2) N2(C + C∗) =
√

2N2(C). Now (2.5) implies

N2(K) ≤
√

2(N2
2(V) +N2(C)). (2.6)

Let A be reduced to the upper triangular form with the entries a jk ( j, k = 1, ..., n),where n = dim ran1e A < ∞.
Then

N2
2(C) =

n∑
k=2

k−1∑
j=1

|a jk|2|λk − λ j|2 ≤ ζ2(A)N2
2(V).

Therefore (2.6) yields the required inequality. �

Proof of Theorem 1.1: First assume that A is n-dimensional.
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We need the equality

2
n∑

k=1

(Im λk)2 = 2N2(AI) −N2
2(V), (2.7)

proved in [1, Lemma 6.5.2], where V is the nilpotent part of A.
Solving (2.4) , we obtain

N2(V) ≥ 1
2

(
−ζ(A) +

√
ζ2(A) + 2

√
2N2(K)

)
.

Now (2.7) yields

2
n∑

k=1

(Im λk)2 ≤ 2N2
2(AI) −

1
4

(
−ζ(A) +

√
ζ2(A) + 2

√
2N2(K)

)2

.

This proves Theorem 1.1 in the finite dimensional case. Now let A ∈ SN2 be infinite dimensional. Since
Hilbert-Schmidt operators are limits of finite dimensional operators in the N2-norm, we obtain the required
result. �
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