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Abstract. In this paper we study the stability of Browder-type theorems for direct sums. Counterexam-
ples show that in general the properties (Bw), (Bb), (Baw) and (Bab) are not preserved under direct sums.
Moreover, we characterize the stability of the property (Bb) under direct sum via union of B-Weyl spectra
of its summands. We also obtain analogous results for the properties (Baw), (Bab) and (Bw) with extra
assumptions. The theory is exemplified in the case of some special classes of operators.

1. Introduction

We begin by setting the terminology used in this paper. Let X and Y be complex Banach spaces, let
L(X,Y) denote the set of bounded linear operators from X to Y, and abbreviate the Banach algebra L(X,X) to
L(X). For T ∈ L(X), let ker(T), n(T),R(T), d(T), σ(T), σa(T), σp(T) and σ0

p(T) denote respectively, the null space,
the nullity, the range, the defect, the spectrum, the approximate point spectrum, the point spectrum (the set
of all eigenvalues of T) and the set of all eigenvalues of finite multiplicity of T. IfR(T) is closed and n(T) < ∞
then T is called an upper semi-Fredholm operator, while T is called a lower semi-Fredholm operator if R(T) is
closed and d(T) < ∞. If T ∈ L(X) is either upper or lower semi-Fredholm, then T is called a semi-Fredholm
operator, and the index of T is defined by ind(T) = n(T) − d(T). T ∈ L(X) is said to be a Fredholm operator
if n(T) and d(T) are both finite. For a bounded linear operator T and a nonnegative integer n define T[n] to
be the restriction of T to R(Tn) viewed as a map from R(Tn) into R(Tn) (in particular T[0] = T). If for some
integer n the range space R(Tn) is closed and T[n] is an upper (resp. a lower) semi-Fredholm operator, then
T is called an upper (resp. a lower) semi-B-Fredholm operator. In this case the index ind(T) of T is defined as
the index of the semi-Fredholm operator T[n], see [4], [8]. Moreover, if T[n] is a Fredholm operator, then T is
called a B-Fredholm operator, and T ∈ L(X) is called B-Weyl if it is a B-Fredholm operator of index zero. The
B-Weyl spectrum σBW(T) of T is defined: σBW(T) = {λ ∈ C : T − λI is not a B-Weyl operator}.

The ascent a(T) of an operator T is defined by a(T) = inf{n ∈N : ker(Tn) = ker(Tn+1)}, and the descent δ(T)
of T is defined by δ(T) = inf{n ∈N : R(Tn) = R(Tn+1)},with inf ∅ = ∞. According to [16], a complex number
λ ∈ σ(T) is a pole of the resolvent of T if T − λI has a finite ascent and finite descent, and in this case they
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are equal. According to [7], a complex number λ ∈ σa(T) is a left pole of T if a(T − λI) < ∞ and R(Ta(T−λI)+1)
is closed.

An operator T ∈ L(X) is called upper semi-Browder if it is upper semi-Fredholm operator of finite ascent,
and is called Browder if it is Fredholm of finite ascent and descent. The upper semi-Browder spectrum σub(T)
of T is defined by σub(T) = {λ ∈ C : T − λI is not an upper semi-Browder}, and the Browder spectrum σb(T) of
T is defined by σb(T) = {λ ∈ C : T − λI is not Browder}. The following property named SVEP has relevant
role in local spectral theory. For more details see the recent monographs [1] and [17].

Definition 1.1. [17] An operator T ∈ L(X) is said to have the single valued extension property at λ0 ∈ C
(abbreviated SVEP at λ0), if for every open neighborhoodU of λ0, the only analytic function f : U −→ X
which satisfies the equation (T−λI) f (λ) = 0 for all λ ∈ U is the function f ≡ 0. An operator T ∈ L(X) is said
to have SVEP if T has SVEP at every point λ ∈ C.

Evidently, T ∈ L(X) has SVEP at every isolated point of the spectrum. We also have

a(T − λ0I) < ∞ =⇒ T has SVEP at λ0,

and dually

δ(T − λ0I) < ∞ =⇒ T∗ has SVEP at λ0,

where T∗ denotes the dual of T, see [1, Teorem 3.8]. Furthermore, if T−λ0I is an upper semi-Fredholm then
the implications above are equivalences.

Definition 1.2. [1] Let T ∈ L(X). Then
(i) T is said to be relatively regular if there exists an operator S ∈ L(X) for which T = TST and STS = S.
(ii) T is said to be isoloid if every isolated point of σ(T) is an eigenvalue of T; while T is said to be reguloid
if for every isolated point λ of σ(T) the operator T − λI is relatively regular. T is said to be polaroid if every
isolated point of σ(T) is a pole of the resolvent of T.

Note that if T ∈ L(X) is reguloid then T is isoloid. To see this, suppose that T is reguloid and let
λ ∈ isoσ(T). If n(T − λI) = 0 then T − λI is an upper semi-Fredholm, since R(T − λI) is closed. But T∗ has
SVEP at λ, so δ(T − λI) < ∞ and consequently λ < σ(T), a contradiction. Hence λ is an eigenvalue of T.
Note also that an isoloid operator may not be reguloid. Let T be defined on the Hilbert space ℓ2(N) by
T(x1, x2, x3, ...) = (x2/2, x3/3, ....), then T is isoloid since 0 is the unique isolated point and eigenvalue in σ(T).
But T is not reguloid since T is not relatively regular. Observe that R(T) is not closed.

Definition 1.3. [9] Let T ∈ L(X) and S ∈ L(Y). We will say that T and S have a shared stable sign index if for
each λ < σSBF(T) and µ < σSBF(S), ind(T − λI) and ind(S − µI) have the same sign, where σSBF(T) = {λ ∈ C :
T − λI is not a semi-B-Fredholm operator}.

For example, from [5, Proposition 2.3] two hyponormal operators T and S acting on a Hilbert space
have a shared stable sign index, since ind(S − λI) ≤ 0 and ind(T − µI) ≤ 0 for every λ < σSBF(S) and
µ < σSBF(T). Recall that T ∈ L(H),H Hilbert space, is said to be hyponormal if T∗T−TT∗ ≥ 0 (or equivalently
∥T∗x∥ ≤ ∥Tx∥ for all x ∈ H). The class of hyponormal operators includes also subnormal operators and
quasinormal operators, see [10].

We summarize in the following list the usual notations and symbols needed later.
Π(T): poles of T,
Π0(T): poles of T of finite rank,
Π0

a(T): left poles of T of finite rank,
E(T): eigenvalues of T that are isolated in σ(T),
E0(T): eigenvalues of T of finite multiplicity that are isolated in σ(T),
E0

a(T): eigenvalues of T of finite multiplicity that are isolated in σa(T),
σ(T) \ σBW(T) = Π(T)⇐⇒ generalized Browder’s theorem holds for T,
isoA (resp., accA) is the set of all isolated (resp., accumulation) points of a given subset A of C.



A. Arroud, H. Zariouh / FAAC 7 (1) (2015), 77–84 79

In this paper, we focus on the problem of giving conditions on the direct summands to ensure that
Browder-type properties (introduced very recently in [19]) hold for the direct sum. More recently, several
authors have worked in this direction, see for examples [9], [14], [13], [18]. The results obtained are
summarized as follows. In the second section, we prove that in general the property (Bw) is not transmitted
from the direct summands to the direct sum. Moreover, we prove that if S ∈ L(X) and T ∈ L(Y) are isoloid
and satisfy property (Bw), then S ⊕ T satisfies property (Bw) if and only if σBW(S ⊕ T) = σBW(S) ∪ σBW(T),
and with no restrictions on S and T we obtain an analogous characterization for property (Bb). In the third
section, we give counterexamples which show that property (Bab) is not stable under direct sum S ⊕ T.
Nonetheless, and under the assumption that Π0

a(S) ∩ ρa(T) = Π0
a(T) ∩ ρa(S) = ∅ with T and S both satisfy

property (Bab), then S ⊕ T satisfies property (Bab) if and only if σBW(S ⊕ T) = σBW(S) ∪ σBW(T). We also
characterize the stability of property (Baw) under direct sum via union of B-Weyl spectra of its components,
and under the assumption of equality of their point spectrum.

2. Properties (Bw) and (Bb) for direct sums of operators

We recall that an operator T ∈ L(X) is said to satisfy property (Bw) if σ(T) \ σBW(T) = E0(T) and is said
to satisfy property (Bb) if σ(T) \ σBW(T) = Π0(T). The properties (Bw) and (Bb) have been introduced very
recently in [15] and [19] respectively, as variants of Weyl’s theorem and Browder’s theorem. We show in the
next example (Example 2.3) that property (Bw) may or may not hold for a direct sum of operators for which
this property holds. Before that, we include the following two lemmas in order to give a global overview
of the subject.

Lemma 2.1. [9] Let S ∈ L(X) and T ∈ L(Y). Then σBW(S ⊕ T) ⊆ σBW(S) ∪ σBW(T).
Moreover, if S and T have a shared stable sign index then σBW(S ⊕ T) = σBW(S) ∪ σBW(T).

Lemma 2.2. [9] Let S ∈ L(X) and T ∈ L(Y). If S⊕T satisfies generalized Browder’s theorem then σBW(S⊕T) =
σBW(S) ∪ σBW(T).

Example 2.3. Let R be the unilateral right shift operator defined on ℓ2(N) and L its adjoint, then property
(Bw) holds for R and L, since σ(R) = σBW(R) = D(0, 1) (here and hereafter, D(0, 1) denotes the closed unit
disc in C), E0(R) = ∅, σ(L) = σBW(L) = D(0, 1) and E0(L) = ∅. But it does not hold for R ⊕ L. In fact
σ(R ⊕ L) = D(0, 1), and as n(R ⊕ L) = d(R ⊕ L) = 1 then 0 < σBW(R ⊕ L). So σBW(R ⊕ L) ( σ(R ⊕ L).We also
remark that E0(R⊕ L) = ∅. Thus σ(R⊕ L) \ σBW(R⊕ L) , E0(R⊕ L) and this proves that R⊕ L does not satisfy
property (Bw). Note that S and T are isoloid and σBW(R ⊕ L) ( σBW(R) ∪ σBW(L) = D(0, 1).

Nonetheless, and under the assumption that S and T are isoloid, we give in the following result a
characterization of stability of property (Bw) under direct sum.

Theorem 2.4. Let S ∈ L(X) and T ∈ L(Y). If S and T satisfy property (Bw) and are isoloid, then the following
assertions are equivalent:
(i) S ⊕ T satisfies property (Bw);
(ii) σBW(S ⊕ T) = σBW(S) ∪ σBW(T).

Proof. (i) =⇒ (ii) The property (Bw) for S ⊕ T implies with no other restriction on either S or T that
σBW(S ⊕ T) = σBW(S) ∪ σBW(T). Indeed, from [15, Theorem 2.4], S ⊕ T satisfies generalized Browder’s
theorem and hence by Lemma 2.2 we have σBW(S ⊕ T) = σBW(S) ∪ σBW(T).
(ii) =⇒ (i) Suppose that σBW(S ⊕ T) = σBW(S) ∪ σBW(T). As S and T are isoloid then

E0(S ⊕ T) = [E0(S) ∩ ρ(T)] ∪ [E0(T) ∩ ρ(S)] ∪ [E0(S) ∩ E0(T)] (see also [18, equality10.2]),

where ρ(.) = C \ σ(.). On the other hand, since S and T satisfy property (Bw), i.e. σ(S) \ σBW(S) = E0(S) and
σ(T) \ σBW(T) = E0(T),we then have

[σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)] = [(σ(S) \ σBW(S)) ∩ ρ(T)] ∪ [(σ(T) \ σBW(T)) ∩ ρ(S)]
∪[(σ(S) \ σBW(S)) ∩ (σ(T) \ σBW(T))]

= [E0(S) ∩ ρ(T)] ∪ [E0(T) ∩ ρ(S)] ∪ [E0(S) ∩ E0(T)].
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Hence

E0(S ⊕ T) = [σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)]
= σ(S ⊕ T) \ σBW(S ⊕ T),

and this shows that property (Bw) is satisfied by S ⊕ T.

Remark 2.5. The assumption “S and T are isoloid” is essential in Theorem 2.4. Let X = ℓ2(N), let B = {ei |
ei = (δ j

i ) j∈N, i ∈N} be the canonical basis of X. Let E be the subspace of X generated by the set {ei | 1 ≤ i ≤ n}.
Let P be the operator defined on E by P(x1, x2, x3, ..., xn−1, xn) = (0, x2, x3, ..., xn−1, xn) and let T ∈ L(X) given
by T(x1, x2, x3, ...) = (0, x1, x2/2, x3/3, ...). Then T satisfies property (Bw), since σ(T) = σBW(T) = {0} and
E0(T) = ∅. P satisfies property (Bw), since σ(P) = {0, 1}, σBW(P) = ∅ and E0(P) = {0, 1}. But although
that σBW(T ⊕ P) = σBW(T) ∪ σBW(P) = {0}, T ⊕ P does not satisfy property (Bw), since σ(T ⊕ P) = {0, 1},
σBW(T ⊕ P) = {0} and E0(T ⊕ P) = {0, 1}. Here P is isoloid, but T is not.

Before we state our next corollary as an application of Theorem 2.4 to the class of (H)-operators, we
recall the definition of this class and definitions of some classes of operators which are contained in the
class (H).
According to [1], the quasinilpotent part H0(T) of T ∈ L(X) is defined as the set H0(T) = {x ∈ X : lim

n→∞
∥Tn(x)∥ 1

n =

0}.Note that generally, H0(T) is not closed and from [1, Theorem 2.31] we have if H0(T−λI) is closed then T
has SVEP at λ. We also recall that T is said to belong to the class (H) if for all λ ∈ C there exists p := p(λ) ∈N
such that H0(T − λI) = ker((T − λI)p), see [1] for more details about this class of (H)-operators. Of course,
every operator T which belongs the class (H) has SVEP, since H0(T − λI) is closed. Observe also that
a(T − λI) ≤ p, for every λ ∈ C. The class of operators having the property (H) is rather large. Obviously,
it contains every operator having the property (H1). Recall that an operator T ∈ L(X) is said to have the
property (H1) if H0(T−λI) = ker(T−λI) for all λ ∈ C. Although the property (H1) seems to be rather strong,
the class of operators having the property (H1) is considerably large. In the sequel we give some important
classes of operators which satisfy property (H1). Every totally paranormal operator has property (H1), and in
particular every hyponormal operator has property (H1). Also every transaloid operator or log-hyponormal
has the property (H1). Some other operators satisfy property (H); for example M-hyponormal operators,
p-hyponormal operators, algebraically p-hyponormal operators, algebraically M-hyponormal operators, subscalar
operators and generalized scalar operators. For more details about these definitions and comments which
we cited above, we refer the reader to [1], [11], [17].

Corollary 2.6. Let S ∈ L(X) and T ∈ L(Y) be isoloid operators and have a shared stable sign index. If S and T satisfy
property (Bw), then S⊕T satisfies property (Bw). In particular, if S and T are (H)-operators satisfying property (Bw)
then S ⊕ T satisfies property (Bw).

Proof. Assume that S and T are isoloid and satisfy property (Bw). Since S and T have a shared stable sign
index, from Lemma 2.1 we have σBW(S ⊕ T) = σBW(S) ∪ σBW(T). But this is equivalent by Theorem 2.4, to
say that property (Bw) holds for S ⊕ T. In particular if S and T are (H)-operators, then they are polaroid
and consequently isoloid. But every (H)-operator has SVEP. Thus from [6, Theorem 2.5], we conclude that
ind(T−λI) ≤ 0 and ind(S−µI) ≤ 0, for each λ ∈ ρSBF(T) and µ ∈ ρSBF(S). So S⊕T satisfies property (Bw).

Generally, the property (Bb) is also not transmitted from the direct summands to the direct sum. For
instance, the operators R and L defined in Example 2.3 satisfy property (Bb), but their direct sum R ⊕ L
does not satisfy this property, since σ(R ⊕ L) \ Π0(R ⊕ L) = D(0, 1) and σBW(R ⊕ L) ( D(0, 1). Note that
σBW(R ⊕ L) , σBW(R) ∪ σBW(L) = D(0, 1). However, we characterize in the next theorem the stability of
property (Bb) under direct sum via union of B-Weyl spectra of its components.

Theorem 2.7. Let S ∈ L(X) and T ∈ L(Y). If S and T satisfy property (Bb), then the following assertions are
equivalent:
(i) S ⊕ T satisfies property (Bb);
(ii) σBW(S ⊕ T) = σBW(S) ∪ σBW(T).
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Proof. (i) =⇒ (ii) Property (Bb) for S⊕T implies from [19, Theorem 2.4] that generalized Browder’s theorem
holds for T. Thus by Lemma 2.2, σBW(S ⊕ T) = σBW(S) ∪ σBW(T).
(ii) =⇒ (i) Since we know that the Browder spectrum of a direct sum is the union of the Browder spectra of
its components, that is, σb(S ⊕ T) = σb(S) ∪ σb(T), then

Π0(S ⊕ T) = σ(S ⊕ T) \ σb(S ⊕ T)
= [σ(S) ∪ σ(T)] \ [σb(S) ∪ σb(T)]
= [(σ(S) \ σb(S)) ∩ ρ(T)] ∪ [(σ(T) \ σb(T)) ∩ ρ(S)]
∪[(σ(S) \ σb(S)) ∩ (σ(T) \ σb(T))]

= [Π0(S) ∩ ρ(T)] ∪ [Π0(T) ∩ ρ(S)] ∪ [Π0(S) ∩Π0(T)].

As observed in the proof of Theorem2.4 we have

[σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)] = [(σ(S) \ σBW(S)) ∩ ρ(T)] ∪ [(σ(T) \ σBW(T)) ∩ ρ(S)]
∪[(σ(S) \ σBW(S)) ∩ (σ(T) \ σBW(T))].

Since S and T satisfy property (Bb), i.e. σ(S) \ σBW(S) = Π0(S); σ(T) \ σBW(T) = Π0(T), and by hypothesis,
σBW(S ⊕ T) = σBW(S) ∪ σBW(T), then

σ(S ⊕ T) \ σBW(S ⊕ T) = [σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)]
= [Π0(S) ∩ ρ(T)] ∪ [Π0(T) ∩ ρ(S)] ∪ [Π0(S) ∩Π0(T)].

Hence σ(S ⊕ T) \ σBW(S ⊕ T) = Π0(S ⊕ T), i.e. S ⊕ T satisfies property (Bb).

From Theorem 2.7 and Lemma 2.1, we have immediately the following corollary:

Corollary 2.8. If S ∈ L(X) and T ∈ L(Y) have a shared stable sign index and satisfy property (Bb), then S⊕T satisfies
property (Bb). In particular, if S and T are (H)-operators satisfying property (Bb) then S ⊕ T satisfies property (Bb).

3. Properties (Bab) and (Baw) for direct sums of operators

We recall that an operator T ∈ L(X) is said to satisfy property (Baw) if σ(T) \ σBW(T) = E0
a(T) and is said

to satisfy property (Bab) if σ(T) \ σBW(T) = Π0
a(T). The properties (Baw) and (Bab) were introduced very

recently in [19], as variants of property (Bw) and property (Bb). Generally, if T ∈ L(X) and S ∈ L(Y) satisfy
property (Bab), then it is not guaranteed that the direct sum S ⊕ T satisfies property (Bab), as we can see in
the following example.

Example 3.1. Let T ∈ L(Cn) be a quasinilpotent operator and let R ∈ L(ℓ2(N)) be the unilateral right shift
operator. Then σ(T) = {0}, σBW(T) = ∅, Π0

a(T) = {0}. Thus σ(T) \ σBW(T) = Π0
a(T), i.e. the property (Bab)

is satisfied by T. Moreover, σ(R) = D(0, 1), σBW(R) = D(0, 1), Π0
a(R) = ∅. So σ(R) \ σBW(R) = Π0

a(R) and R
satisfies property (Bab). But the direct sum T ⊕ R defined on the Banach space Cn ⊕ ℓ2(N) does not satisfy
property (Bab), because σ(T⊕R) = D(0, 1), σBW(T⊕R) = D(0, 1) andΠ0

a(T⊕R) = {0}. HereΠ0
a(T)∩ρa(R) = {0}

and σBW(T ⊕ R) = σBW(T) ∪ σBW(R); where ρa(.) = C \ σa(.).

However, and under extra assumptions, we characterize in the following theorem the preservation of
property (Bab) under direct sum.

Theorem 3.2. Suppose that S ∈ L(X) and T ∈ L(Y) are such that Π0
a(S) ∩ ρa(T) = Π0

a(T) ∩ ρa(S) = ∅. If S and T
satisfy property (Bab), then the following assertions are equivalent:
(i) S ⊕ T satisfies property (Bab);
(ii) σBW(S ⊕ T) = σBW(S) ∪ σBW(T).
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Proof. (ii) =⇒ (i) we have

[σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)] = [(σ(S) \ σBW(S)) ∩ ρ(T)] ∪ [(σ(T) \ σBW(T)) ∩ ρ(S)]
∪[(σ(S) \ σBW(S)) ∩ (σ(T) \ σBW(T))].

Since S and T satisfy property (Bab), i.e. σ(S) \ σBW(S) = Π0
a(S) and σ(T) \ σBW(T) = Π0

a(T) then

[σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)] = [Π0
a(S) ∩ ρ(T)] ∪ [Π0

a(T) ∩ ρ(S)] ∪ [Π0
a(S) ∩Π0

a(T)].

The assumptionΠ0
a(S)∩ρa(T) = Π0

a(T)∩ρa(S) = ∅ implies thatΠ0
a(S)∩ρ(T) = Π0

a(T)∩ρ(S) = ∅, and therefore

[σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)] = Π0
a(S) ∩Π0

a(T).

On the other hand, as we know that σub(S ⊕ T) = σub(S) ∪ σub(T) for any pair of operators, then

Π0
a(S ⊕ T) = σa(S ⊕ T) \ σub(S ⊕ T)

= [σa(S) ∪ σa(T)] \ [σub(S) ∪ σub(T)]
= [(σa(S) \ σub(S)) ∩ ρa(T)] ∪ [(σa(T) \ σub(T)) ∩ ρa(S)]
∪[(σa(S) \ σub(S)) ∩ (σa(T) \ σub(T))]

= [Π0
a(S) ∩ ρa(T)] ∪ [Π0

a(T) ∩ ρa(S)] ∪ [Π0
a(S) ∩Π0

a(T)].

Since we have Π0
a(T) ∩ ρa(S) = ∅ = Π0

a(S) ∩ ρa(T), then it follows that Π0
a(S ⊕ T) = Π0

a(S) ∩Π0
a(T). Hence

Π0
a(S ⊕ T) = [σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)].

As by hypothesis σBW(S ⊕ T) = σBW(S) ∪ σBW(T), then Π0
a(S ⊕ T) = σ(S ⊕ T) \ σBW(S ⊕ T) and S ⊕ T satisfies

property (Bab).
(i) =⇒ (ii) If S ⊕ T satisfies property (Bab) then from [19, Corollary 2.8], S ⊕ T satisfies property (Bb). We
conclude that σBW(S ⊕ T) = σBW(S) ∪ σBW(T) as seen in the proof of Theorem 2.7.

Remark 3.3. Generally, we cannot ensure the transmission of the property (Bab) from two operators S and
T to their direct sum even if Π0

a(S) ∩ ρa(T) = Π0
a(T) ∩ ρa(S) = ∅. For this, the shift operators R and L defined

in Example 2.3 satisfy property (Bab), because σ(R) = σBW(R) = D(0, 1), Π0
a(R) = ∅, σ(L) = σBW(L) = D(0, 1)

and Π0
a(L) = ∅. But this property is not satisfied by their direct sum, since Π0

a(R ⊕ L) = ∅, σ(R ⊕ L) = D(0, 1)
and σBW(R ⊕ L) ( D(0, 1). Remark that Π0

a(R) ∩ ρa(L) = Π0
a(L) ∩ ρa(R) = ∅.

A bounded linear operator A ∈ L(X,Y) is said to be quasi-invertible if it is injective and has dense range.
Two bounded linear operators T ∈ L(X) and S ∈ L(Y) on complex Banach spaces X and Y are quasisimilar
provided there exist quasi-invertible operators A ∈ L(X,Y) and B ∈ L(Y,X) such that AT = SA and BS = TB.

Corollary 3.4. If S ∈ L(H) and T ∈ L(H) are quasisimilar hyponormal operators and satisfy property (Bab), then
S ⊕ T satisfies property (Bab).

Proof. As S and T are quasisimilar hyponormal, then by [9, Lemma 2.8] we have Π0(T) = Π0(S). The
property (Bab) for S and for T entails that Π0(T) = Π0

a(T) and Π0(S) = Π0
a(S), see [19]. So Π0

a(S) ∩ ρa(T) =
Π0

a(T) ∩ ρa(S) = ∅. Moreover, since S and T are hyponormal operators then they have a shared stable sign
index. This implies from Lemma 2.1 that σBW(S ⊕ T) = σBW(S) ∪ σBW(T). But this is equivalent by Theorem
3.2, to say that S ⊕ T satisfies property (Bab).

In the next theorem, we characterize the stability of property (Baw) under direct sum via union of B-Weyl
spectra of its summands, which in turn are supposed to have the same eigenvalues of finite multiplicity.
But before this, we recall that σp(S⊕T) = σp(S)∪ σp(T) and n(S⊕T) = n(S)+ n(T) for every pair of operators
so that σ0

p(S⊕ T) = {λ ∈ σ0
p(S)∪ σ0

p(T) : n(S− λI)+ n(T − λI) < ∞}.Moreover, if A and B are bounded subsets
of complex plane C then acc(A ∪ B) = acc(A) ∪ acc(B).
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Theorem 3.5. Let S ∈ L(X) and T ∈ L(Y) be such that σ0
p(S) = σ0

p(T). If S and T satisfy property (Baw), then the
following assertions are equivalent:
(i) S ⊕ T satisfies property (Baw);
(ii) σBW(S ⊕ T) = σBW(S) ∪ σBW(T).

Proof. (ii) =⇒ (i) Suppose that σBW(S ⊕ T) = σSBW(S) ∪ σBW(T). As S and T satisfy property (Baw), i.e.
σ(S) \ σBW(S) = E0

a(S) and σ(T) \ σBW(T) = E0
a(T), then as seen in the proof of Theorem 2.4 we have

σ(S ⊕ T) \ σBW(S ⊕ T) = [σ(S) ∪ σ(T)] \ [σBW(S) ∪ σBW(T)]
= [E0

a(T) ∩ ρ(S)] ∪ [E0
a(S) ∩ ρ(T)] ∪ [E0

a(S) ∩ E0
a(T)].

Since by hypothesis σ0
p(T) = σ0

p(S), then E0
a(T) ∩ ρa(S) = E0

a(S) ∩ ρa(T) = ∅ which implies that E0
a(T) ∩ ρ(S) =

E0
a(S) ∩ ρ(T) = ∅. Thus

σ(S ⊕ T) \ σBW(S ⊕ T) = E0
a(S) ∩ E0

a(T).

On the other hand, since σ0
p(T) = σ0

p(S) then σ0
p(S ⊕ T) = σ0

p(S) = σ0
p(T).We then have

E0
a(S ⊕ T) = {isoσa(S ⊕ T)} ∩ σ0

p(S ⊕ T)

= {iso[σa(S) ∪ σa(T)]} ∩ σ0
p(S)

= {[σa(S) ∪ σa(T)] \ acc[σa(S) ∪ σa(T)]} ∩ σ0
p(S)

= {[σa(S) ∪ σa(T)] \ [accσa(S) ∪ accσa(T)]} ∩ σ0
p(S)

= {[isoσa(S) ∩ ρa(T)] ∪ [isoσa(T) ∩ ρa(S)] ∪ [isoσa(S) ∩ isoσa(T)]} ∩ σ0
p(S)

= [E0
a(S) ∩ ρa(T)] ∪ [E0

a(T) ∩ ρa(S)] ∪ [E0
a(S) ∩ E0

a(T)]
= E0

a(S) ∩ E0
a(T), because E0

a(S) ∩ ρa(T) = E0
a(T) ∩ ρa(S) = ∅.

Hence σ(S ⊕ T) \ σBW(S ⊕ T) = E0
a(S ⊕ T) and S ⊕ T satisfies property (Baw).

(i) =⇒ (ii) If S ⊕ T satisfies property (Baw), then by [19, Corollary 3.5], S ⊕ T satisfies property (Bw).
Consequently, we have the equality σBW(S⊕ T) = σBW(S)∪ σBW(T), as seen in the proof of Theorem 2.4.

Example 3.6. In general, we cannot expect that property (Baw) will be satisfied by the direct sum S ⊕ T
for every two operators S and T satisfying property (Baw). For instance, if we consider the operators T
and R defined in Example 3.1, then T and R satisfy property (Baw), because σ(T) \ σBW(T) = E0

a(T) = {0},
σ(R) \ σBW(R) = E0

a(R) = ∅. They also satisfy the equality σBW(T ⊕ R) = σBW(T) ∪ σBW(R) = D(0, 1). But
T ⊕ R does not satisfy property (Baw), because σ(T ⊕ R) \ σBW(T ⊕ R) = ∅ , E0

a(T ⊕ R) = {0}. Observe that
σ0

p(R) = ∅ , σ0
p(T) = {0}.

Corollary 3.7. Let S ∈ L(X) and T ∈ L(Y) be quasisimilar operators satisfying property (Baw). If S or T has SVEP,
then S ⊕ T satisfies property (Baw).

Proof. The quasisimilarity of S and T implies that σ0
p(S) = σ0

p(T). It implies also from [1, Theorem 2.15] that
S and T have SVEP. So they have a shared stable sign index and hence σBW(S ⊕ T) = σBW(S) ∪ σBW(T). But
this is equivalent from Theorem 3.5, to say that S ⊕ T satisfies property (Baw).

We finish this section by some illustrating examples.

1. A bounded linear operator T ∈ L(H) is said to be p-hyponormal, with 0 < p ≤ 1, if (T∗T)p ≥ (TT∗)p

and is said to be log-hyponormal if T is invertible and satisfies log(T∗T) ≥ log(TT∗). According to [3],
if T ∈ L(H) is invertible and p-hyponormal, there exists S ∈ L(H) log-hyponormal quasisimilar to T.
Then σ0

p(S) = σ0
p(T). As S and T have a shared stable sign index then σBW(S ⊕ T = σBW(S) ∪ σBW(T).

Moreover, if S and T satisfy property (Baw), then S ⊕ T satisfies property (Baw).
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2. A bounded linear operator T ∈ L(H) is said to be paranormal if ||Tx||2 ≤ ||T2x|| ||x||, for all x ∈ H .
According to [2], every paranormal operator has SVEP. Moreover, paranormal operators are polaroid
[12, Lemma 2.3] and hence isoloid. So by Theorem 2.4, if S and T are paranormal operators and satisfy
property (Bw), then S⊕T satisfies property (Bw). We notice that a paranormal operator may not be in
the class of (H)-operators, for instance see [2, Example 2.3].
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