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Abstract.
The purpose of this work is to provide a streamlined approach to some classical results of Fredholm

theory, together an extension of these, by using some tools of local spectral theory, in particular through a
localized version of the single-valued extension property.

Introduction

The contents may be thought as a first orientation and the material is expository in the style, most of the
results are given without proof, but are appropriately referred by giving suitable references. The material
has been arranged in six sections:

• Section 1: The single-valued extension property.

• Section 2: Classes of operators in Fredholm theory.

• Section 3: The localized SVEP and Fredholm theory.

• Section 4: The localized SVEP under commuting perturbations.

• Section 5: Weyl and Browder spectra under perturbations.

• Section 6: Polaroid type operators.

It is clear from the organization of this work, that our main purpose is of showing the interaction
between the Fredholm theory and the single-valued extension property. Some of the results established are
very new.
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1. Single-valued extension property

The single-valued extension property, and more generally, the local spectral theory, arises from the
substantial attempts to transfer some of the important properties of the spectral theory of normal operators
on Hilbert spaces to the more general setting of Banach spaces. The early studies of local spectral theory
were initiated by Dunford, and treated in a more systematic way in the monographs by Dunford and
Schwartz [46], and I. Colojoară, C. Foiaş [38]. In the last years an increasing role in local spectral theory,
especially in connection with Fredholm theory, has been assumed by a localized version of the single-valued
extension property. To introduce this property we first introduce some typical tools of local spectral theory,
and in order to give a first motivation, we begin with some considerations on spectral theory. The spectrum
of T ∈ L(X), where L(X) denotes the Banach algebra of all bounded linear operators on a complex infinite
dimensional Banach space, is defined as

σ(T) := {λ ∈ C : λI − T is not bijective}.

It is well-known that the spectrum is a compact subset of C and σ(T) = σ(T∗) for all T ∈ L(X). Since X is a
complex Banach space then every T ∈ L(X) has non-empty spectrum. The complement ρ(T) := C \ σ(T) is
called the resolvent of T. It is well known that the resolvent function R(λ,T) := (λI − T)−1 of T ∈ L(X) is an
analytic operator-valued function defined on the resolvent set ρ(T). Evidently, the vector-valued analytic
function fx : ρ(T)→ X defined as

fx(λ) := R(λ,T)x for any x ∈ X,

satisfies the equation

(λI − T) fx(λ) = x for all λ ∈ ρ(T). (1)

Suppose that T ∈ L(X) has an isolated point λ0. Let P0 denote the spectral projection of T associated
with λ0 defined by the classical functional calculus. Then the spectrum of the restriction T0 := T|P0(X) is
{λ0}, thus λI − T0 is invertible for all λ , λ0. Let x ∈ P0(X). Obviously, the equation (1) has the analytic
solution

1x(λ) := (λI − T0)−1x for all λ ∈ C \ {λ0}.
This shows that it is possible to find analytic solutions of the equation (λI − T) fx(λ) = x for some, and
sometimes even for all, values of λ that are in the spectrum of T.

These considerations property lead the following concept:

Definition 1.1. Given an arbitrary operator T ∈ L(X), X a Banach space, let ρT(x) denote the set of all λ ∈ C for
which there exists an open neighborhoodUλ of λ in C and an analytic function f :Uλ → X such that the equation

(µI − T) f (µ) = x holds for all µ ∈ Uλ. (2)

If the function f is defined on the set ρT(x) then it is called a local resolvent function of T at x. The set ρT(x)
is called the local resolvent of T at x. The local spectrum σT(x) of T at the point x ∈ X is defined to be the set
σT(x) := C \ ρT(x).

Evidently ρT(x) is the open subset of C given by the union of the domains of all the local resolvent
functions. Moreover,

ρ(T) ⊆ ρT(x) and σT(x) ⊆ σ(T).

It is immediate to check the following elementary properties of σT(x):
(a) σT(0) = ∅;
(b) σT(αx + βy) ⊆ σT(x) ∪ σT(y) for all x, y ∈ X;
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(c) For every F ⊆ C, σλI+T(x) ⊆ F if and only if σT(x) ⊆ F − λ, In particular, σ(λI−T)(x) ⊆ {0} if and only if
σT(x) ⊆ {λ}.

(d) If T,S ∈ L(X) commutes then σT(Sx) ⊆ σT(x) .
It is well known that given two operators R,S ∈ L(X), the spectra σ(RS) and σ(SR) may be different only

at 0. The following theorem, due to Benhida and Zerouali [23] shows a local spectral version of this result.

Theorem 1.2. Let X and Y be Banach spaces and consider two operators S ∈ L(X,Y) and R ∈ L(Y,X). Then we have:

(i) For every x ∈ X the following inclusions hold:

σSR(Sx) ⊆ σRS(x) ⊆ σSR(Sx) ∪ {0}.

If S is injective then σRS(x) = σSR(Sx) for all x ∈ X.
(ii) For every y ∈ Y the following inclusions hold:

σRS(Ry) ⊆ σSR(y) ⊆ σRS(Ry) ∪ {0}.

If R is injective then σRS(Ry) = σSR(y) for all y ∈ Y.

Proof. (i) Let λ < σRS(x) and f : U → X an analytic function defined in a neighborhood U of λ such that
(µI−RS) f (µ) = x for allµ ∈ U. Then Sx = (µI−SR)S f (µ) = Sx, henceλ < σSR(Sx), so the first inclusion in (i) is
proved. To show the second inclusion, let λ < σSR(Sx)∪{0} and denote by 1(µ) an Y-valued analytic function
defined on a neighborhoodU of λ such that (µI − SR)1(µ) = Sx for all µ ∈ U. If we set h(µ) := 1

µ (x − R1(µ))
it is easy to check that (µI − RS)h(µ) = x, so λ < σRS(x).

To show the second statement, assume that λ < σSR(Sx). There is no harm if we assume λ = 0. Thus,
assume 0 < σSR(Sx). and let 1(µ) an Y-valued analytic function defined in a neighborhoodU of 0 such that
(µI − SR)1(µ) = Sx. For µ = 0 we have −SR1(0) = Sx and from the injectivity of S it follows that x = R1(0).
Moreover,

µ1(µ) = Sx + SR1(µ) = S(x + R1(µ))

so 1(µ) = S[ 1
µ (x + R1(µ)]. Note that

SR1′(0) = lim
µ→0

SR1(µ) − SR1(0)
µ

= lim
µ→0

SR1(µ) + Sx
µ

= lim
µ→0
1(µ) = 1(0).

Set

h(µ) :=


1
µ

(x − R1(µ)) if µ , 0,

R1′(0) if µ = 0,

We have S[(µI − RS)h(µ) − x] = 0 for all U. Indeed, we have seen in the first part of the proof that for
µ , 0 we have (µI − RS)h(µ) − x = 0, while for µ = 0 we have

S[−RSR1′(0) − x] = −SR(SR1′(0) − Sx = −SR1(0) − Sx = Sx − Sx = 0.

Since S is injective then we have (µI − RS)h(µ) = x for all µ ∈ U, hence 0 < σRS(x).
(ii) The proof is analogous.

Takeing S = T and R = I in Theorem 1.2, we obtain

Corollary 1.3. Let T ∈ L(X) and x ∈ X. Then we have
(i) σT(Tx) ⊆ σT(x) ⊆ σT(Tx) ∪ {0}.
(ii) If T is injective then σT(Tx) = σT(x).
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The following example shows that if S in not injective we may have σRS(x) , σSR(Sx).

Example 1.4. Let S denote the shift operator defined in the usual Hardy space H and R := S∗ the adjoint
of S. Then, RS is the identity operator, while SR is the projection of X onto the range S(H). In particular,
σRS(x) = {1} for all 0 , x ∈ H, σSR(x) = {1} if x ∈ S(H), σSR(x) = {0} if x ∈ ker R and σSR(x) = {0, 1} otherwise.
In this case, σRS(Sx) is strictly contained in σSR(x).

Definition 1.5. Let X be a complex Banach space and T ∈ L(X). The operator T is said to have the single-valued
extension property at λ0 ∈ C, abbreviated T has the SVEP at λ0, if for every neighborhoodU of λ0 the only analytic
function f :U → X which satisfies the equation

(λI − T) f (λ) = 0

is the constant function f ≡ 0.
The operator T is said to have the SVEP if T has the SVEP at every λ ∈ C.

Remark 1.6. In the sequel we collect some basic properties of the SVEP.
(a) The SVEP ensures the consistency of the local solutions of the equation (2), in the sense that if x ∈ X

and T has the SVEP at λ0 ∈ ρT(x) then there exists a neighborhoodU of λ0 and an unique analytic function
f :U → X satisfying the equation (λI − T) f (λ) = x for all λ ∈ U.

The SVEP also ensures the existence of a maximal analytic extension f̃ of R(λ,T)x := (λI − T)−1x to the
set ρT(x) for every x ∈ X. This function identically verifies the equation

(µI − T) f̃ (µ) = x for every µ ∈ ρT(x)

and, obviously,
f̃ (µ) = (µI − T)−1x for every µ ∈ ρ(T).

(b) It is immediate to verify that the SVEP is inherited by the restrictions on invariant closed subspaces.
Moreover,

σT(x) ⊆ σT|M(x) for every x ∈M.

(c) Obviously, an operator T ∈ L(X) has SVEP at every point of the resolvent ρ(T) := C \ σ(T). From the
identity theorem for analytic function it easily follows that an operator always has SVEP at every point of
the boundary ∂σ(T) of the spectrum σ(T). In particular, T has SVEP at every isolated point of the spectrum
σ(T). Since σ(T∗) = σ(T), where T∗ denotes the dual of T, it then follows that also T∗ has SVEP at every
isolated point of the spectrum σ(T).

(d) Let σp(T) denote the point spectrum of T ∈ L(X), i.e.,

σp(T) := {λ ∈ C : λ is an eigenvalue of T}.

It is easy to see that if σp(T) has empty interior then T has SVEP, in particular every operator with real
spectrum has SVEP. A rather immediate argument shows the following implication:

σp(T) does not cluster at λ0 ⇒ T has the SVEP λ0.

Indeed, suppose that σp(T) does not cluster at λ0. Then there is an open neighborhoodU U of λ0 such
that λI − T is injective for every λ ∈ U, λ , λ0. Let f : V → X be an analytic function defined on another
neighborhoodV of λ0 such that the equation (λI − T) f (λ) = 0 holds for every λ ∈ V. We may assume that
V ⊆ U. Then f (λ) ∈ ker (λI − T) = {0} for every λ ∈ V, λ , λ0, so f (λ) = 0 for every λ ∈ V, λ , λ0. Since f
is continuous at λ0 we then conclude that f (λ0) = 0. Hence f ≡ 0 inV and therefore T has the SVEP at λ0.

Observe that T may have SVEP, although σp(T) , ∅. For instance, if X := B(Ω) the Banach algebra of all
bounded complex-valued functions on a compact Hausdorff spaceΩ, endowed with pointwise operations
and supremum norm, the operator T ∈ L(X), defined by the assignment

(T f )(λ) := λ f (λ) for all λ ∈ Ω,
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has σp(T) , ∅, while T has SVEP since the ascent p(µI − T) ≤ 1 for all µ ∈ C, and this, as we shall see later,
entails SVEP.

(e) The SVEP is transmitted under translations, i.e. T ∈ L(X) has SVEP if and only if λI − T has SVEP.
(f) Let x ∈ X and U an open subset of C. Suppose that f : U → X is an analytic function for which

(µI − T) f (µ) = x for all µ ∈ U. ThenU ⊆ ρT( f (λ)) for all λ ∈ U. Moreover,

σT(x) = σT( f (λ)) for all λ ∈ U. (3)

Now we introduce an important class of subspaces which play an important role in local theory.

Definition 1.7. For every subset F of C the local spectral subspace of an operator T ∈ L(X) associated with F is
the set

XT(F) := {x ∈ X : σT(x) ⊆ F}.

Obviously, if F1 ⊆ F2 ⊆ C then XT(F1) ⊆ XT(F2) and obviously XT(F) = XT(F∩σ(T)). Indeed XT(F)∩σ(T)) ⊆
XT(F). Conversely, if x ∈ XT(F) then σT(x) ⊆ F∩ σ(T), and hence x ∈ XT(F∩ σ(T)). Moreover, it is easily seen
from the basic properties of the local spectrum that XλI+T(F) = XT(F − λ). Further basic properties of local
spectral subspaces are collected in the sequel (see [68, Chap.1] for a proof) .

Theorem 1.8. Let T ∈ L(X) and F every subset of C. Then the following properties hold:
(i) XT(F) is a linear hyper-invariant subspace for T, i.e., for every bounded operator S such that TS = ST we have

S(XT(F)) ⊆ XT(F);
(ii) If λ < F, then (λI − T)(XT(F)) = XT(F);
(iii) Suppose that λ ∈ F and (λI − T)x ∈ XT(F) for some x ∈ X. Then x ∈ XT(F);
(iv) For every family (F j) j∈J of subsets of C we have

XT(
∩
j∈J

F j) =
∩
j∈J

XT(F j);

(v) If Y is an invariant closed subspace for T such that σ(T |Y) ⊆ F, then Y ⊆ XT(F). In particular, Y ⊆ XT(σ(T |Y))
holds for every closed T-invariant closed subspace of X.

(vi) ker (λI − T)n ⊆ XT({λ} for all λ ∈ C and n ∈N;
(vii) If T ∈ L(X) has the SVEP and F1 and F2 are two closed and disjoint subsets of C then

XT(F1 ∪ F2) = XT(F1) ⊕ XT(F2),

where the direct sum is in the algebraic sense.

We have already observed that 0 has an empty local spectrum shows that if T has the SVEP then 0 is the
unique element of X having empty local spectrum.

Theorem 1.9. [68, Prop.1.2.16]If T ∈ L(X) the following statements are equivalent :
(i) T has the SVEP;
(ii) XT(∅) = {0};
(iii) XT(∅) is closed.

We now introduce a somewhat variant of the concept of analytic subspace XT(Ω). These subspaces are
more appropriate for certain general questions of local spectral theory than the analytic subspace XT(F),
and in particular these subspaces are more useful if T does not have SVEP.

Definition 1.10. Let F ⊆ C be a closed subset. If T ∈ L(X) the glocal local subspace XT(F) is defined as the set of
all x ∈ X such that there is an analytic function f : C \ F→ X such that

(λI − T) f (λ) = x for all λ ∈ C \ F.
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It is easy to verify that XT(F) is a linear subspace of X. Clearly

XT(F) ⊆ XT(F) for every closed subset F ⊆ C . (4)

In the following theorem we show few basic properties of the glocal subspaces. Some of these properties
are rather similar to those of local spectral subspaces. The interested reader may be found further results
on glocal spectral subspaces in Laursen and Neumann [68].

Theorem 1.11. For an operator T ∈ L(X), the following statements hold:
(i) XT(∅) = {0} and XT(σ(T)) = X;
(ii) XT(F) = XT(F ∩ σ(T)) and (λI − T)XT(F) = XT(F) for every closed set F ⊆ C and all λ ∈ C \ F;
(iii) If (λI − T)x ∈ XT(F) for some λ ∈ F, then x ∈ XT(F).
(iv) XT(F1 ∪ F2) = XT(F1) +XT(F2) for all disjoint closed subsets F1 and F2 of C;
(v) T has the SVEP if and only if XT(F) = XT(F), for every closed subset F ⊆ C, and this happens if and only if

XT(F) ∩ XT(G) for all disjoint closed subsets F and G of C.
(vi) Let σ(T) = F1 ⊕ F2, where F1 and F2 are disjoint closed subsets of C. Then the subspaces XT(Fi), i = 1, 2, are

closed and X = XT(F1) ⊕ XT(F2).

A very important class of operators is given by the class of all bounded below operators, i.e. the injective
operators having closed range. A classical result shows that the properties to be bounded below or to
be surjective are dual each other. Two important parts of the spectrum σ(T) are defined as follows: The
approximate point spectrum of T ∈ L(X) defined as

σap(T) := {λ ∈ C : λI − T is not bounded below}

and the the surjectivity spectrum of T defined as

σs(T) := {λ ∈ C : λI − T is onto.}

These two spectra are non-empty closed subset of σ(T) and

σap(T) = σs(T∗) and σap(T∗) = σs(T).

Evidently,XT(F) = X for a closed subset F of C implies that σs(T) ⊆ F. The next result shows that reverse
implication holds. This result is based on a deep result of Leiterer [70] and we refer to [68, Theorem 3.3.12]
for a proof.

Theorem 1.12. If T ∈ L(X) and F ⊆ C is closed then the following assertions hold:
(i) XT(F) = X if and only if σs(T) ⊆ F.
(ii) XT(F) = {0} if and only if σap(T) ∩ F = ∅.

The next theorem shows that the glocal spectral subspaces behave canonically under the functional
calculus.

Theorem 1.13. [68, Theorem 3.3.6]) If T ∈ L(X), and f : U → X is analytic on an open neighborhood of the
spectrum σ(T) then

X f (T)(F) = XT( f−1(F)) for all closed subsets F ⊆ C.

The glocal spectral subspace XT(D(0, ε)) associated with the closed disc D(0, ε) may be characterized as
follows, see [1, Theorem 2.20] :

Theorem 1.14. If T ∈ L(X) then

XT(D(0, ε)) =
{

x ∈ X : lim sup
n→∞

∥Tnx∥1/n ≤ ε
}
. (5)
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We now introduce an important subspace in Fredholm theory.

Definition 1.15. The quasi-nilpotent part H0(T) of an operator T ∈ L(X) is defined as H0(T) = XT({0}).

The quasi-nilpotent part of an operator may be characterized as follows:

Corollary 1.16. For every T ∈ L(X) we have

H0(T) = {x ∈ X : lim sup
n→∞

∥Tnx∥1/n = 0}. (6)

Moreover, if T has SVEP then H0(T) = XT({0}).

Proof. Clearly, the equality (6) is obtained by taking ε = 0 in Theorem 1.14. If T has SVEP then
XT({0}) = XT({0}), by part (iv) of Theorem 1.11.

The following example shows that, the quasi-nilpotent part H0(T) need not be closed, also if T has SVEP.

Example 1.17. Let X := ℓ2 ⊕ ℓ2 · · · be provided with the norm

∥x∥ :=

 ∞∑
n=1

∥xn∥2


1/2

for all x := (xn) ∈ X,

and define

Tnei :=

 ei+1 if i = 1, · · · ,n ,
ei+1

i − n
if i > n.

It is easily seen that
∥Tn+k

n ∥ = 1/k! and (1/k!)1/n+k as k→∞.,
from which we obtain that σ(Tn) = {0}. Moreover, every Tn is injective and the point spectrum σp(Tn) = ∅,
thus Tn has the SVEP.

Let us define T := T1 ⊕ · · · ⊕ Tn ⊕ · · · . From the estimate ∥Tn∥ = 1 for every n ∈ N, we easily obtain
∥T∥ = 1. Moreover, since σp(Tn) = ∅ for every n ∈N, it also follows that σp(T) = ∅, hence T has SVEP.

Consider the sequence x = (xn) ⊂ X defined by xn := e1/n for every n. We have

∥x∥ =
 ∞∑

n=1

1
n2


1
2

< ∞ ,

which implies that x ∈ X. Moreover,

∥Tnx∥1/n ≥ ∥Tn
n

e1

n
∥1/n = (1/n)1/n

and the last term does not converge to 0. From this it follows that σT(x) contains properly {0} and therefore,
x < XT({0}) = H0(T).
Finally,

ℓ2 ⊕ ℓ2 · · · ⊕ ℓ2 ⊕ {0} · · · ⊂ H0(T),

where the non-zero terms are n. This holds for every n ∈N, so H0(T) is dense in X. Since H0(T) , X it then
follows that H0(T) is not closed.

In the following we collect some basic properties of H0(T).
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Lemma 1.18. [1, Lemma 1.67] For every T ∈ L(X), X a Banach space, we have:
(i) ker (Tm) ⊆ N∞(T) ⊆ H0(T) for every m ∈N;
(ii) x ∈ H0(T)⇔ Tx ∈ H0(T);
(iii) ker (λI − T) ∩H0(T) = {0} for every λ , 0;
(iv) T ∈ L(X) is quasi-nilpotent if and only if H0(T) = X.

The following subspace has been introduced by Vrbová [97] and studied in several papers by Mbekhta
([73], [72], [75]. This subspace is, in a certain sense, the analytic counterpart of the algebraic core C(T) which
is defined as the greatest linear subspace F for which T(F) = F, see [1, Chap. 1] .

Definition 1.19. Let X be a Banach space and T ∈ L(X). The analytical core of T is the set K(T) of all x ∈ X such
that there exists a sequence (un) ⊂ X and a constant δ > 0 such that:

(1) x = u0, and Tun+1 = un for every n ∈ Z+;
(2) ∥un∥ ≤ δn∥x∥ for every n ∈ Z+.

It is easily seen that K(T) is a linear subspace of X and T(K(T)) = K(T). Moreover, if λ , 0 then
ker (λI − T) ⊆ K(T). Observe that in general K(T)is not closed.

Theorem 1.20. [1, Theorem 1.22] Suppose that T ∈ L(X). If F is a closed subspace of X such that T(F) = F then
F ⊆ K(T).

The next result, owed to Vrbová [97] and Mbekhta [72], shows that the analytical core K(T) is the local
spectral subspace associated to the set C \ {0}.

Theorem 1.21. [1, Theorem 2.18] For every T ∈ L(X) we have

K(T) = XT(C \ {0}) = {x ∈ X : 0 < σT(x)}.

Definition 1.22. A bounded operator T ∈ L(X), X a Banach space, is said to be a semi-regular if T has closed range
T(X) and ker T ⊆ Tn(X) for every n ∈ N.

Clearly, bounded below as well as surjective operators are semi-regular. Note that the product of two
semi-regular operators, also commuting semi-regular operators, need not be semi-regular. On the other
hand, if T,S ∈ L(X) are two commuting operators such that TS semi-regular, then both T and S are semi-
regular. T ∈ L(X) is semi-regular if and only if T⋆ ∈ L(X∗) is semi-regular. The reduced minimal modulus of T
is defined to be

γ(T) := inf
x<ker T

∥Tx∥
dist(x,ker T)

.

Theorem 1.23. [1, Theorem 1.31] Let T ∈ L(X) be semi-regular. Then λI − T is semi-regular for all |λ| < γ(T),
where γ(T) denotes the reduced minimal modulus.

The semi-regular spectrum defined as

σse(T) := {λ ∈ C : λI − T is not semi-regular}.

In literature σse(T) is sometime called the Kato spectrum or the Apostol spectrum. From Theorem 1.23 we
see that ρse(T) := C \ σse(T) is an open subset of C, so σse(T) is a closed subset of C. Clearly, we have
σse(T) ⊆ σap(T) and σse(T) ⊆ σs(T).

Theorem 1.24. Let T ∈ L(X) and consider a connected component Ω of ρse(T). If λ0 ∈ Ω is arbitrarily fixed then

K(λI − T) = K(λ0I − T) for every λ ∈ Ω.
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The surjectivity spectrum of an operator is closely related to the local spectra:

Theorem 1.25. For every operator T ∈ L(X) we have

σsu(T) =
∪
x∈X

σT(x).

Proof. If λ <
∪

x∈X σT(x) then λ ∈ ρT(x) for every x ∈ X and hence, directly from the definition of ρT(x),
we conclude that (λI − T)y = x always admits a solution for every x ∈ X, so λI − T is surjective and hence
λ < σsu(T).

Conversely, suppose λ < σsu(T). Then λI − T is surjective and therefore X = K(λI − T). From Theorem
1.21 it follows that 0 < σλI−T(x) for every x ∈ X, and consequently λ < σT(x) for every x ∈ X.

For an isolated point λ0 of σ(T) the quasi-nilpotent part H0(λ0I − T) and the analytical core K(λ0I − T)
may be precisely described as a range or a kernel of the spectral projection P0 associated with the spectral
subset {λ0}.

We now give a characterization of the isolated points of σs(T). The following result is taken from [52].

Theorem 1.26. If T ∈ L(X) then X = H0(λI − T) + K(λI − T) if and only if σs(T) does not cluster at λ.

Proof. We can take λ = 0. The equivalence is obvious if 0 < σs(T), since K(λI − T) = X in this case. Suppose
that 0 ∈ σs(T). By Theorem 1.12 and Theorem 1.11 we have

X = XT(σs(T)) = XT({0}) +XT(σs(T) \ {0}).

But, by Theorem 1.21, we have
XT(σs(T) \ {0}) ⊆ XT(C \ {0}) = K(T),

from which we obtain H0(T) + K(T) = X.
Conversely, suppose that 0 ∈ σs(T) and H0(T) + K(T) = X. Then every x ∈ X may be written x = x1 + x2,

where x1 ∈ H0(T) and x2 ∈ K(T). Clearly, from the definition of H0(T), we have σT(x1) ⊆ {0}, while 0 < σT(x2),
by Theorem 1.11. Therefore,

σT(x) ⊆ σT(x1) ∪ σT(x2) ⊆ {0} ∩ σT(x2),

and this implies, since σT(x2) is closed, that 0 is isolated in σT(x) ⊆ {0}. Since, by Theorem 1.25, there exists
x0 ∈ X for which σT(x0) = σs(T), we then conclude that 0 is isolated in σs(T).

The next corollary is an obvious consequence of Theorem 1.26, once observed that equality σap(T) =
σs(T∗).

Corollary 1.27. If T ∈ L(X) then X∗ = H0(λI − T∗) + K(λI − T∗) if and only if σap(T) does not cluster at λ

Theorem 1.26 has some other interesting consequences:

Corollary 1.28. If T ∈ L(X) the following assertions hold:
(i) X = H0(λI − T) + K(λI − T) if and only if σT(x) does not cluster at λ for every x ∈ X.
(ii) X = H0(λI − T) + K(λI − T) for all λ ∈ C if and only if σ(T) is finite.

Proof. (i) The direct implication is clear from the proof of Theorem 1.26. For the converse, note that if
λ < σs(T) then K(λI−T) = X. Moreover, σT(x) ⊆ σs(T) for all x ∈ X. The converse implication then is a direct
consequence of Theorem 1.26.

(ii) Since a compact set consisting of isolated points is a finite set, then Theorem 1.26 entails that σs(T) is
finite, and hence also σ(T) is finite.
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Remark 1.29. Since the condition X = H0(λI − T) + K(λI − T) may be thought of as being dual to the
condition H0(λI − T) ∩ K(λI − T) = {0}, one is tempting to conjecture that λ is isolated in σap(T) if and only
if H0(λI − T) ∩ K(λI − T) = {0} and H0(λI − T) ∩ K(λI − T) is closed. The following example shows that this
is not true. Recall that the injectivity modulus of T ∈ L(X) is defined as

j(T) := inf
∥x∥=1
∥Tx∥ = inf

x,0

∥Tx∥
∥x∥ .

Set
i(T) := lim

n→∞
j(Tn)1/n.

Let us consider the weighted right shift S ∈ L(X), where X = ℓ2(N), defined by Sen := snen+1, where (en) is the
canonical basis of ℓ2(N), and (sn) is a given weight sequence, with 0 < sn ≤ 1. We may choose the sequence
(sn) such that i(S) = 0 and r(S) > 0, r(S) the spectral radius of S, see [68, Chap. 1, §1.6]. By [68, Prop. 1.6.15]
we have

σap(S) = {λ ∈ C : i(S) ≤ |λ| ≤ r(S)},
so 0 is not isolated in σap(S). Moreover, by [68, Prop. 1.6.16], the subspaces XS(F) are closed for all closed
F ⊆ C, in particular H0(S) = XS({0}) is closed, and

K(S) =
∞∩

n=0

Sn(X) = {0}.

Theorem 1.30. Let T ∈ L(X) and suppose that λ0 is an isolated point of σ(T). If P0 is the spectral projection
associated with {λ0}, then:

(i) P0(X) = H0(λ0I − T);
(ii) ker P0 = K(λ0I − T).
Therefore, X = H0(λ0I − T) ⊕ K(λ0I − T).

Proof. (i) Since λ0 is an isolated point of σ(T) there exists a positively oriented circle Γ := {λ ∈ C : |λ−λ0| = δ}
which separates λ0 from the remaining part of the spectrum. We have

(λ0I − T)nP0x =
1

2πi

∫
Γ

(λ0 − λ)n(λI − T)−1x dλ for all n = 0, 1, · · · .

Now, assume that x ∈ P0(X). We have P0x = x and it is easy to verify the following estimate:

∥(λ0I − T)nx∥ ≤ 1
2π

2πδn+1 max
λ∈Γ
∥(λI − T)−1∥∥x∥.

Obviously this estimate also holds for some δo < δ (since Γ lies in ρ(T)), and consequently

lim sup ∥(λ0I − T)nx∥1/n < δ. (7)

This proves the inclusion P0(X) ⊆ H0(λ0I − T).
Conversely, assume that x ∈ H0(λ0I − T) and hence that the inequality (7) holds. Let S ∈ L(X) denote the

operator

S :=
λ0I − T
λ0 − λ

.

Evidently the Neumann series
∞∑

n=0

Snx =
∞∑

n=0

(
λ0I − T
λ0 − λ

)n

x
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converges for all λ ∈ Γ. If yλ denotes its sum for every λ ∈ Γ, from a standard argument of functional
analysis we obtain that (I − S)yλ = x. A simple calculation also shows that yλ = (λ − λ0)Rλx and therefore

Rλx = −
∞∑

n=0

λ0I − T)nx
(λ0 − λ)n+1 for all λ ∈ Γ.

A term by term integration then yields

P0x =
1

2πi

∫
Γ

Rλx dλ = − 1
2πi

∫
Γ

1
(λ0 − λ)

x dλ = x,

so x ∈ P0(X) and this proves the inclusion H0(λ0I − T) ⊆ P0(X), so the proof of (i) is complete.
(ii) There is no harm in assuming that λ0 = 0. We have σ(T|P0(X)) = {0}, and 0 ∈ ρ(T|ker P0). From

the equality T(ker P0) = ker P0 we obtain ker P0 ⊆ K(T), see Theorem 1.20. It remains to prove the
reverse inclusion K(T) ⊆ ker P0. To see this we first show that H0(T) ∩ K(T) = {0}. This is clear because
H0(T) ∩ K(T) = K(T|H0(T)), and the last subspace is {0} since the restriction of T on the Banach space H0(T)
is a quasi-nilpotent operator, see Corollary 3.7. Hence H0(T) ∩ K(T) = {0}. From this it then follows that

K(T) ⊆ K(T) ∩ X = K(T) ∩ [ker P0 ⊕ P0(X)]
= ker P0 + K(T) ∩H0(T) = ker P0,

so the desired inclusion is proved.

If λ0 is a pole of the resolvent we can say much more:

Corollary 1.31. Let T ∈ L(X) and suppose that λ0 is a pole of the resolvent of T, or equivalently p := p(λI − T) =
q(λI − T) < ∞. Then

H0(λ0I − T) = ker(λ0I − T)p,

and
K(λ0I − T) = (λ0I − T)p(X).

We now consider the isolated points of σap(T). The following two results are from [52].

Theorem 1.32. Suppose that T ∈ L(X) and λ an isolated point of σap(T). Then
(i) Both H0(λI − T) and K(λI − T) are closed subspaces.
(ii) H0(λI − T) ∩ K(λI − T) = {0}.
(iii) The direct sum H0(λI − T) ⊕ K(λI − T) is closed and there exists λ0 , 0 such that

H0(λI − T) ⊕ K(λI − T) = K(λ0I − T) =
∞∪

n=0

T(λ0I − T)n(X).

Proof. We may assume λ = 0. Since 0 an isolated point of σap(T), there exists a δ > 0 such that λI − T is
bounded below for all 0 < |λ| < δ. By Theorem 1.24, the map λ → K(λI − T) is constant on the punctured
discD(0, δ) \ {0}, and fixing λ0 ∈ D(0, δ) \ {0}we have, by Theorem 1.23, that K(λ0I − T) = (λ0I − T)∞(X). Set
X0 := (λ0I−T)∞(X), and denote by T0 : X0 → X0 the operator induced by T on the Banach space X0. Clearly,
λI − T0 is bijective for all λ ∈ D(0, δ) \ {0}. Since T is not onto then K(T) , X, hence H0(T) , 0 by Theorem
1.26. By Theorem 1.11, part (ii), we know that

(λI − T)(H0(T)) = (λI − T)(XT({0}) = XT({0} = H0(T) for all λ , 0,

from which we deduce that

(λI − T)n(H0(T)) = H0(T) ⊆ (λI − T)n(X) for all n ∈N,
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so that H0(T) ⊆ X0, hence 0 ∈ σ(T0), and since λI − T0 is bijective for all λ ∈ D(0, δ) \ {0}, we then have that
0 is an isolated point of σ(T0). By Theorem 1.30, X0 = H0(T0) ⊕ K(T0). Clearly, H0(T) = H0(T0), so to finish
the proof it suffices to prove K(T) = K(T0). Let x0 ∈ K(T), Txn+1 = xn and ∥xn∥ ≤ cn∥x0∥ for all n. Then
ϕ(λ) :=

∑∞
n=0 xn+1λn defines an analytic function on the open discD(0, 1

c ) that satisfies

(λI − T)(ϕ(λ) =
∞∑

n=0

xnλ
n −

∞∑
n=0

xn+1λ
n+1 for all λ ∈ D(0,

1
c

).

In particular, x0 ∈ (λI − T)(X) for all λ ∈ D(0, 1
c ). Therefore, x0 ∈ K(λ0I − T), and hence K(T) ⊆ X0. Note that

ϕ(λ) = (λI − T0)−1x0 ∈ X0 for all λ ∈ D(0,
1
c

).

By continuity, x1 = ϕ(0) ∈ X0. A similar argument shows that xn ∈ X0 for n ≥ 1, thus x0 ∈ K(T0), from which
we conclude that K(T) = K(T0).

Corollary 1.33. Let T ∈ L(X) and suppose that dim K(T) < ∞. Then T has SVEP.

Proof. We know that ker (λI − T) ⊆ K(T) for each λ , 0, hence ker (λI − T) is finite -dimensional. Moreover,
a set of eigenvectors, each of them corresponding to a different eigenvalue of T, is linearly independent, so
our assumption dim K(T) < ∞ implies that the punctual spectrum σp(T) is finite, and consequently T has
SVEP.

The condition dim K(T) < ∞ is clearly satisfied if T∞(X) = {0}, since K(T) ⊆ T∞(X). The condition
T∞(X) = {0}may thought as an abstract shift condition since is satisfied by every unilateral weighted right
shift, see [1, Chapter 2, §5].

It has been observed before, the local spectral subspaces XT(Ω) need not be closed, also in the case that
T has the SVEP. In fact, the operator T of Example 1.17 has the SVEP, its quasi-nilpotent part H0(T) is not
closed and, by Theorem 1.14, H0(T) = XT({0}. On the other hand, for every spectral operator T with spectral
measure E(·), the subspace XT(Ω) is closed, for every closed set F, since it coincides with the range of the
projection E(F), see [68, Corollary 1.2.25].

The following property dates back to the earliest days of local spectral theory, and was introduced first
by Dunford (see [46] and plays an important role in the development of the theory of spectral operators
and more in general in the development of decomposable operators.

Definition 1.34. A bounded operator T ∈ L(X), X a Banach space, is said to have the Dunford’s property (C), shortly
the property (C), if the analytic subspace XT(Ω) is closed for every closed subset Ω ⊆ C.

Trivially, by Theorem 1.9, we have the following relevant fact:

Theorem 1.35. If T ∈ L(X), X a Banach space, has the property (C) then T has the SVEP.

Note that if an operator T has the property (C), and hence the SVEP, then the quasi-nilpotent part H0(T)
is closed since H0(T) = XT({0}), see Theorem 1.14. The operator T considered in Example 1.17 shows that the
implication of Theorem 1.35 cannot be reversed in general. Further examples of operators with the SVEP
but without the property (C) may be found among the class of all multipliers of semi-simple commutative
Banach algebras. These operators have the SVEP, since the quasi-nilpotent part of λI − T coincides the
kernel ker (λI − T) for all λ ∈ C, see [1, Theorem 4.33], while the property (C) plays a distinctive role in this
context, see [68, Chapter 4].

A first example of operators which have the property (C) is given by quasi-nilpotent operators.

Theorem 1.36. Let T ∈ L(X) be a quasi-nilpotent operator on a Banach space X. Then T has the property (C).
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Proof. Consider any closed subset F ⊆ C. Consider first the case 0 < F. Then since T has the SVEP

XT(F) = XT(F ∩ σ(T)) = XT(∅) = {0}

is trivially closed. On the other hand, if 0 ∈ F then, by Theorem 1.18 and Theorem 1.14, we have

XT(F) = XT(F ∩ σ(T)) = XT({0}) = H0(T) = X.

Hence, also in this case XT(F) is closed.

The property (C) is inherited by restrictions to closed invariant subspaces. Note that if T has the property
(C) then so does f (T) for every function f analytic on an open neighborhoodU of σ(T), see Theorem 3.3.6
of Laursen and Neumann [68]. It could be reasonable to expect that the converse is true if we assume that
f is non-constant on each connected component of U, as it happens, by Theorem 3.15, for the SVEP; but
this is not known.

Let X and Y be Banach spaces and consider two operators S ∈ L(X,Y) and R ∈ L(Y,X). The common
spectral properties of the operators RS and SR have been studied by a number of authors. It is known that
the non-zero points of the spectrum of the products RS and SR are the same, the same holds for a number
of its more distinguished parts, see for instance [22]. We have shown in Theorem 1.2 that the local spectrum
RS at x and the local spectrum of SR at Sx have the same non-zero points. In the remaining part of this
section we shall consider some other local spectral properties of SR and RS.

Lemma 1.37. Let S ∈ L(X,Y) and R ∈ L(Y,X). Then SR has SVEP at λ if and only if RS has SVEP at λ.

Proof. The proof is rather easy.

In the final part of this section we give some results from [10] and [98].

Theorem 1.38. Let F be a closed subset of C such that 0 ∈ F. If S ∈ L(X,Y) and R ∈ L(Y,X) then YSR(F) is closed if
and only if XRS(F) is closed.

Proof. Suppose that YSR(F) is closed and let (xn) be a sequence in XRS(F) which converges to x ∈ X. Since
xn ∈ XRS(F) then σRS(xn) ⊆ F for all n ∈ N. Since 0 ∈ F then σRS(xn) ∪ {0} ⊆ F. By Theorem 1.2, part (i), we
have σRS(xn) ∪ {0} = σSR(Sxn) ∪ {0}, so σSR(Sxn) ⊆ F and hence Sxn ∈ YSR(F). But Sxn → Sx and YSR(F) is
closed, thus Sx ∈ YSR(F), that is σSR(Sx) ⊆ F. Again by Theorem 1.2 we have σRS(x) ⊆ σSR(Sx)∪ {0} ⊆ F, thus
x ∈ XRS(F).

The converse implication follows in a similar way, just use part (ii) of Theorem 1.2.

In order to study the case that 0 < F we need two preliminary results:

Lemma 1.39. Suppose that T ∈ L(X) has SVEP, and that F ⊆ C is a closed set for which XT(F) is closed. Then
σ(T|XT(F)) ⊆ F ∩ σ(T).

Proof. Set A := T|XT(F). Clearly, λI −A has SVEP and part (ii) of Theorem 1.8 ensures that λI − S is onto for
all λ ∈ C\F. By Corollary 3.2 then λI−S is invertible for all λ ∈ C\F. on the other hand, part (iii) of Theorem
1.8 shows that λI − S is invertible for all λ ∈ F which belongs to the resolvent, so σ(S) ⊆ (C \ F) ∪ σ(T), and
hence σ(S) ⊆ F ∩ σ(T).

Lemma 1.40. Suppose that T ∈ L(X) has SVEP and let F be a closed subset of C such that Z := XT(F) is closed. If
A := T|XT(F) then XT(K) = ZA(K) for all closed K ⊆ F.

Proof. Note first that A has SVEP, so the glocal subspaceZA(K) coincides with the local subspace ZA(K), and
XT(K) ⊆ XT(F) = Z. The inclusion ZA(K) ⊆ XT(K) is immediate. In order to prove the opposite inclusion,
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suppose that x ∈ XT(K) = XT(K). Then σT(x) ⊆ K and there is an analytic function f : C \ K → X such that
(µI − T) f (µ) = x for all µ ∈ C \ K. We also have

σT( f (µ)) = σT(x) ⊆ K for all µ ∈ C \ K,

thus f (µ) ∈ XT(K) ⊆ Z. Therefore, f is a Z-valued function and hence

(µI − T) f (µ) = (µI − A) f (µ) = x for all µ ∈ C \ K,

i.e. x ∈ ZA(K) = ZA(K).

Theorem 1.41. Let F be a closed subset of C such that λ < F. If T ∈ L(X) has SVEP and XT(F ∪ {λ}) is closed then
XT(F) is closed.

Proof. Let Z := XT(F ∪ {λ}) and S := T|XT(F ∪ {λ}). From Lemma 1.39 we know that σ(S) ⊆ F ∪ {λ}. We
consider two cases: Suppose first that λ < σ(S). Then σ(S) ⊆ F and hence Z = ZS(F). By Lemma 1.40 we
then have ZS(F) = XT(F), so XT(F) is closed. Suppose the other case that λ ∈ σ(S) and set F0 := σ(S) ∩ F.
Then σ(S) = F0 ∪ {λ}. Since λ ∈ σ(S), from part (vi) of Theorem 1.11 we have Z = ZS(F0) ⊕ ZS({λ}. From
Lemma 1.40 it then follows

ZS(F0) = ZF(σ(S) ∩ F) = ZS(F) = XT(F),

and hence XT(F) is closed.

Corollary 1.42. Let S ∈ L(X,Y) and R ∈ L(Y,X) be such that RS has SVEP, and denote by F a closed subset of C
such that 0 < F. Then we have:

(i) If YSR(F ∪ {0}) is closed then XRS(F) is closed.
(ii) If XRS(F ∪ {0}) is closed then YSR(F) is closed.

Proof. Theorem 1.38 ensures that Z := XRS(F ∪ {0}) is closed, since 0 ∈ F ∪ {0}. The SVEP for RS entails the
SVEP for SR, thus by Theorem 1.41 we deduce that XRS(F) is closed. An analogous argument proves (ii).

Corollary 1.43. If S ∈ L(X,Y) and R ∈ L(Y,X) then RS has Dunford’s property (C) if and only if SR has Dunford’s
property (C).

Proof. Suppose that RS has Dunford’s property (C), i.e. XRS(F) is closed for every closed subset F ⊆ C. If
0 ∈ F then YSR(F) is closed, by Theorem 1.38. Obviously, if 0 < F then F ∪ {0} is closed, so XRS(F ∪ {0}) is
closed and hence YSR(F) is closed, by Corollary 1.42. Therefore SR has Dunford’s property (C). The proof
of the opposite implication is similar.

2. Classes of operators in Fredholm theory

This section concerns many classes of operators which arise from the classical Fredholm theory of
bounded operators on Banach spaces. The first part addresses with some preliminary and basic notions,
concerning some important invariant subspaces, the hyper-range, the hyper-kernel, and the analytic core
of an operator. The importance of the role of these subspaces becomes evident when we will study the
special classes of operators treated in the second part.

Given a linear bounded operator T ∈ L(X,Y), the kernel of T is denoted by ker T, while the range of T is
denoted by T(X). In the sequel, for every bounded operator T ∈ L(X,Y), we shall denote by α(T) the nullity
of T, defined as α(T) := dim ker T, while the deficiency β(T) of T is defined β(T) := codim T(X) = dim Y/T(X).

The kernels and the ranges of the iterates Tn, n ∈ N, of a linear operator T defined on a vector space X,
form two increasing and decreasing chains, respectively, i.e. the chain of kernels

ker T0 = {0} ⊆ ker T ⊆ ker T2 ⊆ · · ·
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and the chain of ranges
T0(X) = X ⊇ T(X) ⊇ T2(X) · · · .

The subspace

N∞(T) :=
∞∪

n=1

ker Tn

is called the hyper-kernel of T, while

T∞(X) :=
∞∩

n=1

Tn(X)

is called the hyper-range of T. Note that bothN∞(T) and T∞(X) are T-invariant linear subspace of T, i.e.

T(N∞(T)) ⊆ N∞(T) and T(T∞(X)) ⊆ T∞(X).

In the next result we give some useful connections between the kernels and the ranges of the iterates Tn

of an operator T on a vector space X.

Theorem 2.1. For a linear operator T on a vector space X the following statements are equivalent:
(i) ker T ⊆ Tm(X) for each m ∈N;
(ii) ker Tn ⊆ T(X) for each n ∈N;
(iii) ker Tn ⊂ Tm(X) for each n ∈N and each m ∈N;
(iv) ker Tn = Tm(ker Tm+n) for each n ∈N and each m ∈N.
(v) ker T ⊆ T∞(X);
(vi)N∞(T) ⊆ T(X);
(vii)N∞(T) ⊆ T∞(X).

From Theorem 2.1 we then see that T ∈ L(X) is semi-regular if T(X) is closed and one of the equivalent
conditions (i)-(vii) holds.

The class of all upper semi-Fredholm operators defined by

Φ+(X) := {T ∈ L(X) : α(T) < ∞ and T(X) is closed}

and the class of all lower semi-Fredholm operators, defined by

Φ−(X) := {T ∈ L(X) : β(T) < ∞}

The class of all semi-Fredholm operators is defined as Φ±(X) := Φ+(X)∪Φ−(X), while the class of the Fredholm
operators is defined as Φ(X) := Φ+(X) ∩ Φ−(X). The index of T ∈ Φ±(X) is defined by ind (T) := α(T) − β(T).
The essential spectrum (or the Fredholm spectrum) is defined by

σe(T) := {λ ∈ C : λI − T < Φ(X)}.

The essential spectrum is a non-empty closed subset of C. The classical punctured neighborhood theorem,
see [78, Chap. III, Theorem 7], for semi-Fredholm operators, says that if T ∈ Φ+(X) then there exists ε > 0
such that λI + T ∈ Φ+(X) and α(λI + T) is constant on the punctured neighbourhood 0 < |λ| < ε. Moreover,

α(λI + T) ≤ α(T) for all |λ| < ε , (8)

and
ind (λI + T) = ind T for all |λ| < ε.
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Analogously, if T ∈ Φ−(X) then there exists ε > 0 such that λI + T ∈ Φ−(X), β(λI + T) is constant on the
punctured neighbourhood 0 < |λ| < ε. Moreover,

β(λI + T) ≤ β(T) for all |λ| < ε, (9)

and
ind (λI + T) = ind T for all |λ| < ε.

Definition 2.2. Let T ∈ Φ±(X), X a Banach space. Let ε > 0 as in (8) or (9). If T ∈ Φ+(X) the jump j(T) is defined
by

j(T) := α(T) − α(λI + T), 0 < |λ| < ε,
while, if T ∈ Φ−(X), the jump j(T) is defined by

j(T) := β(T) − β(λI + T), 0 < |λ| < ε.
The continuity of the index ensures that both definitions of the jump coincide whenever T is a Fredholm

operator. In general, semi-Fredholm operators are not semi-regular. In fact we have (see for a proof [1,
Theorem 1.58]):

Theorem 2.3. [1, Theorem 1.58] A semi-Fredholm operator T ∈ L(X) is semi-regular precisely when j(T) = 0.

The following definition from was originated by Kato’s classical treatment [63] of perturbation theory
of semi-Fredholm operators.

Definition 2.4. An operator T ∈ L(X), X a Banach space, is said to admit a generalized Kato decomposition,
abbreviated as GKD, if there exists a pair of T-invariant closed subspaces (M,N) such that X =M⊕N, the restriction
T|M is semi-regular and T|N is quasi-nilpotent.

Evidently, every semi-regular operator has a GKD M = X and N = {0} and a quasi-nilpotent operator
has a GKD M = {0} and N = X.

A relevant case is obtained if we assume in the definition above that T|N is nilpotent, i.e. there exists
d ∈N for which (T|N)d = 0. In this case T is said to be of Kato type of operator of order d.

An operator T ∈ L(X) is said to be essentially semi-regular if it admits a GKD (M,N) such that N is finite-
dimensional. Note that if T is essentially semi-regular then T|N is nilpotent, since every quasi-nilpotent
operator on a finite dimensional space is nilpotent.

Hence we have the following implications:

T semi-regular ⇒ T essentially semi-regular ⇒ T of Kato type
⇒ T admits a GKD.

In the sequel we reassume some results concerning essentially semi-regular operators. The reader may
be found a well-organized exposition of the basic results concerning this class of operators in Müller [78,
§21], where essentially semi-regular operators are called essentially Kato operators.

(i) T ∈ L(X) is essentially semi-regular if and only if T(X) is closed an there exists a finite-dimensional
subspace F of X such that ker T ⊆ T∞(X) + F.

(ii) If T ∈ L(X) is essentially semi-regular then Tn is essentially semi-regular for every n ∈N.
(iii) T ∈ L(X) is essentially semi-regular if and only if T∗ ∈ L(X∗) is essentially semi-regular.
(iii) If T and S commutes and TS is essentially semi-regular then both T and S are essentially semi-regular.

(iv) If T ∈ L(X) is essentially semi-regular there exists ε > 0 such that T + S is essentially semi-regular
for every S ∈ L(X) such that ST = TS and ∥S∥ < ε.

(v) If T ∈ L(X) is essentially semi-regular then T + K is essentially semi-regular for every finite-rank
operator K ∈ L(X).

By Theorem 2.3 we know that semi-Fredholm operators in general are not semi-regular. The following
important result was first observed by Kato [63] , for a proof see [76, Theorem 16.21].
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Theorem 2.5. Every semi-Fredholm operator T ∈ L(X) is essentially semi-regular, in particular is of Kato type.

We now introduce two important notions in operator theory.

Definition 2.6. Given a linear operator T on a vector space X, T is said to have finite ascent if N∞(T) = ker Tk

for some positive integer k. Clearly, in such a case there is a smallest positive integer p = p(T) such that ker Tp =
ker Tp+1. The positive integer p is called the ascent of T. If there is no such integer we set p(T) := ∞. Analogously, T
is said to have finite descent if T∞(X) = Tk(X) for some k. The smallest integer q = q(T) such that Tq+1(X) = Tq(X)
is called the descent of T. If there is no such integer we set q(T) := ∞.

Some important basic properties are reassumed in the following theorem:

Theorem 2.7. [1, Theorem 3.4] If T is a linear operator on a vector space X then the following properties hold:

(i) p(T) ≤ m < ∞ if and only if for every natural n we have Tm(X) ∩ ker Tn = {0}.
(ii) q(T) ≤ m < ∞ if and only if for every n ∈N there exists a subspace Yn ⊆ ker Tm such that X = Yn ⊕ Tn(X).

(iii) If p(T) and q(T) are finite, then p(T) = q(T).
(iv) If p(T) < ∞ then α(T) ≤ β(T).

(v) If q(T) < ∞ then β(T) ≤ α(T).

(vi) If p(T) = q(T) < ∞ then α(T) = β(T) (possibly infinite).

(vii) If α(T) = β(T) < ∞ and if either p(T) or q(T) is finite then p(T) = q(T).

Some special classes of semi-Fredholm operators are given by the class B+(X) of all upper semi-Browder
operators, defined as

B+(X) := {T ∈ Φ+(X) : p(T) < ∞},

and by the class the class B−(X) of all lower semi-Browder operators, defined as

B−(X) := {T ∈ Φ−(X) : q(T) < ∞}.

The class of all Browder operators is defined by B(X) = B+(X) ∩ B−(X). Clearly,

B+(X) := {T ∈ Φ(X) : p(T) = q(T) < ∞}.

Theorem 2.8. [78, §21] For a bounded operator T ∈ L(X), the following conditions are equivalent:

(i) T is essentially semi-regular;

(ii) there exists a closed T-invariant subspace Y of X such that the restriction T|Y is lower semi-Fredholm and the
induced operator T̃ : X/Y→ X/Y is upper semi-Fredholm;

(iii) there exists a closed T-invariant subspace Y of X such that the restriction T|Y is lower semi-Browder and the
induced operator T̃ : X/Y→ X/Y is upper semi-Browder;

(iv) there exists a closed T-invariant subspace Y of X such that the restriction T|Y is onto and the induced operator
T̃ : X/Y→ X/Y is upper semi-Browder;

(v) there exists a closed T-invariant subspace Y of X such that the restriction T|Y is lower semi-Browder and the
induced operator T̃ : X/Y→ X/Y is bounded below.

In the sequel by ∂K we denote the boundary of K ⊆ C.

Theorem 2.9. [1, Theorem 1.75]Let T ∈ L(X), X , {0} a Banach space. Then semi-regular spectrum σse(T) is a
non-empty compact subset of C containing ∂σ(T). In particular, ∂σ(T) is contained in σap(T) ∩ σs(T).
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Since for every n we have ker Tn ⊆ ker Tn+1 we can consider for every n the mapping

Φn : ker Tn+2/ ker Tn+1 → ker Tn+1/ ker Tn,

induced by T, and defined as

Φn(z + ker Tn+1) := Tz + ker Tn z ∈ ker Tn+2.

Analogously, since Tn+1(X) ⊆ Tn(X), we can consider for every n the sequence of mappings

Ψn : Tn(X)/Tn+1(X)→ Tn+1(X)/Tn+2(X),

defined as
Ψn(z + Tn+1(X)) := Tz + Tn+2(X), z ∈ Tn(X).

Most of following results concerning the uniform descent may be found in Grabiner [54].

Theorem 2.10. Let T be a linear operator on a vector space X, and n a nonnegative integer.
(i) Every map Ψn, induced by T, is onto. Moreover, the kernel of Ψn is naturally isomorphic to the quotient

(ker T ∩ Tn(X))/(ker T ∩ Tn+1(X)).
(ii) Every map Φn, induced by T, is injective. Moreover, the cokernel of Φn is naturally isomorphic to to the

quotient (ker Tn+1 + T(X))/(ker Tn + T(X)).
(iii) Tn induces a linear isomorphism from the cokernel of Φn onto the kernel ofΨn.

Corollary 2.11. kn(T) is equal to the codimension of the image of the linear mappingΨn. Moreover,

kn(T) = dim
ker T ∩ Tn(X)

ker T ∩ Tn+1(X)
= dim

ker Tn+1 + T(X)
ker Tn + T(X)

. (10)

Definition 2.12. A linear operator T on a vector space X and let d be a nonnegative integer. T is said to have uniform
descent for n ≥ d if kn(T) = 0 for all n ≥ d.

Theorem 2.13. Suppose that T is a linear operator on a vector space X.
(i) If T has finite nullity α(T), or finite defect β(T), then T has uniform descent for n ≥ 0.
(ii) If T has finite descent p then T has uniform descent for n ≥ p.
(iii) If T has finite descent q then T has uniform descent for n ≥ q.

Theorem 2.14. If T is a linear operator on a vector space X and d is a fixed nonnegative integer, then the following
statements are equivalent:

(i) T has uniform descent for each n ≥ d;
(ii) The sequence of subspaces {ker T ∩ Tn(X)} is constant for n ≥ d;
(iii) ker T ∩ Td(X) = ker T ∩ T∞(X);
(iv) The maps induced by T from ker Tn+2/ker Tn+1 to ker Tn+1/ker Tn are isomorphisms for n ≥ d;
(v) The sequence of subspaces {ker Tn + T(X)} is constant for n ≥ d;
(vi) ker Td + T(X) = N∞(T) + T(X).

Let T ∈ L(X), X a Banach space. The operator range topology on T(X) is the topology induced by the norm
∥ · ∥T defined:

∥y∥T := inf
x∈X
{∥x∥ : y = Tx}.

For a detailed discussion of operator ranges and their topology we refer the reader to [47] and [53].
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Definition 2.15. An operator T ∈ L(X), X a Banach space, is said to have topological uniform descent for n ≥ d
if T has uniform descent for n ≥ d and Tn(X) is closed in the operator range topology of Td(X) for each n ≥ d.

The topological uniform descent for n ≥ d may be characterized in several ways:

Theorem 2.16. [54] If T ∈ L(X), X a Banach space, has uniform descent for n ≥ d, then the following assertions are
equivalent:

(i) T has topological uniform descent for n ≥ d;

(ii) There is an integer n ≥ d and k ∈N such that Tn+k(X) is closed in the operator range topology on Tn(X);

(iii) For each n ≥ d and k ∈N, Tn+k(X) is closed in the operator range topology on Tn(X);

(iv) There is n ≥ d and k ∈N, such that ker Tn + Tk(X) is closed in X;

(v) For all n ≥ d and for all k ∈N, ker Tn + Tk(X) (and also for k = ∞), is closed in X.

Some other important properties for operators having topological uniform descent are given in the
following theorem.

Theorem 2.17. [54] Let T ∈ L(X) be with topological uniform descent for n ≥ d. Then we have:

(i) The restriction of T to T∞(X) is onto.

(ii) The map induced by T on Td(X)/T∞(X) is bounded below.

(iii) The restriction of T to Td(X) ∩N∞(T) is onto.

(iv) The map T̂ : X/N∞(T)→ X/N∞(T), defined by T̂[x] = [Tx] is bounded below.

Essentially semi-regular operators has topological uniform descent. In the remaining part of this section
we give some perturbation results of operators T having topological uniform descent. We consider bounded
operators S which commute with T for which T − S is ”sufficiently small” in the sense of the following
definition.

Definition 2.18. Suppose that T ∈ L(X), X a Banach space, has topological uniform ascent for n ≥ d, and let
S ∈ L(X) be an operator which commutes with T. We say that S − T is sufficiently small if the norm of restriction
(S − T)|Td(X) is less than the reduced minimun modulus γ(T|Td(X)).

Note that if Td(X) is closed in X and is given the restriction norm, it is easily seen that ∥S − T∥ is no
greater than the norm of its restriction to Td(X), so the definition above is essentially a restriction of ∥S−T∥.

We now consider, the important case is when S−T is invertible. This case, of course, subsumes the case
S = λI − T, when λ , 0.

Theorem 2.19. [54] Suppose that T ∈ L(X) has topological uniform descent for n ≥ d, and that S ∈ L(X) commutes
with T. If S − T is sufficiently small and is invertible, then:

(i) S has closed range and topological uniform descent for n ≥ 0.

(ii) dim ((Sn(X))/Sn+1(X) = dim ((Td(X)/Td+1(X), for all n ≥ 0.

(iii) dim (ker (Tn+1/ker Tn) = dim(ker (Td+1/ ker Td) for all n ≥ 0.

(iv) S∞(X) = T∞(X) +N∞(T).

(v)N∞(S) = [T∞(X) ∩N∞(T)].

Theorem 2.19 has some important consequences, if we assume further properties on ker T ∩ Td(X) and
T(X) + ker Td.
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Corollary 2.20. [54] Suppose that T ∈ L(X) has topological uniform descent for n ≥ d, and that S ∈ L(X) commutes
with T. If S − T is sufficiently small and is invertible, then the following assertion holds:

(i) If ker T ∩ Td(X) has finite dimension, then S is upper semi-Fredholm and α(S) = dim (ker T ∩ Td(X)).
(ii) If T(X) + ker Td has finite codimension then S is lower semi-Fredholm and β(S) = codim (T(X) + ker Td).

Theorem 2.21. [54] Suppose that T ∈ L(X) has topological uniform descent for n ≥ d, and that S ∈ L(X) commutes
with T. If S − T is sufficiently small and is invertible, then:

(i) S has infinite ascent or descent if and only if T does.
(ii) S cannot have finite ascent p(T) > 0, or finite descent q(T) > 0.
(iii) S is onto if and only if T has finite descent.
(iv) S is injective (or also bounded below) if and only if T has finite descent.
(v) S is invertible if and only if p(T) = q(T) < ∞.

The following corollary is just a special case of Theorem 2.21, part (v).

Corollary 2.22. Suppose that λ belongs to the boundary of the spectrum ∂σ(T), and λI − T has uniform descent.
Then p(λI − T) = q(λI − T) < ∞.

We conclude this section by proving that the dual of an operator having topological uniform descent
may have not topological uniform descent. First we need the following two lemmas.

Lemma 2.23. Suppose that T,S ∈ L(X), X a Banach space, satisfy T(X) ∩ S(X) = {0} and the sum T(X) ∩ S(X) is
closed. Then T(X) and S(X) are closed.

Proof. Define U : X ×X→ X by means of U(x, y) := Tx + Sy for all (x, y) ∈ X × Y. Since U has closed range,
from the open mapping theorem we have that U is relatively open. Because T(X) ∩ S(X) = {0}, it easily
follows that both T and S are open operators. This is equivalent to saying that T and S have closed ranges.

Lemma 2.24. If T ∈ L(X) is an operator for which T(X) ∩ ker T = {0} and T(X) + ker T is closed in X, then T(X)
is closed. In particular, if p(T) ≤ 1 and T(X) + ker T is closed in X, then T(X) is closed.

Proof. The first assertion immediately follows from Lemma 2.23 applied to the operator T and the natural
inclusion mapping from ker T into X. The second assertion is clear from Theorem 2.7.

Example 2.25. We first show an example for which T2(X) = T(X) and T(X) is not closed. Let X be a Hilbert
space with an orthonormal basis (ei, j) . Let T be defined by:

Tei, j :=


0 if j = 1,
1
i ei,1 if j = 2,
ei, j−1 otherwise

Let M1 denote the subspace generated by the set {ei, j : j ≥ 2, i ≥ 1}, and M2 the subspace generated by the set
{ei,2 : i ≥ 1}. It is easily seen that T2(X) = T(X) =M1 + T(M2). Further, if M3 denotes the subspace generated
by the set {ei,1 : i ≥ 1}, the intersection T(X)∩M3 is not closed, from which we deduce that T(X) is not closed.
Therefore, q(T) ≤ 1 so that T has topological uniform descent. We show that T∗ does not have uniform
topological descent. In fact, suppose that T∗ has topological uniform descent n ≥ d, then T∗(X∗) + ker T∗d is
closed, by part (v) of Theorem 2.16. Since T2(X) = T(X) we then have ker T∗ = ker T∗2, so p(T∗) ≤ 1. This
implies that T∗(X∗) ∩ ker T∗d = {0} and, by Theorem 2.24, implies that T∗ has closed range, or equivalently,
T(X) is closed, and this is impossible. Therefore, T∗ does not have uniform topological descent.
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The class of quasi-Fredholm operator has been first introduced by Labrousse [66], which considered this
class in the case of Hilbert spaces operators. Consider the set

∆(T) := {n ∈N : m ≥ n,m ∈N⇒ Tn(X) ∩ ker T ⊆ Tm(X) ∩ ker T}.

The degree of stable iteration is defined as dis(T) := inf∆(T) if ∆(T) , ∅, while dis(T) = ∞ if ∆(T) = ∅.

Definition 2.26. [25, Proposition 2.6 ] T ∈ L(X) is said to be quasi-Fredholm of degree d, if there exists d ∈ N
such that:

(a) dis(T) = d,
(b) Tn(X) is a closed subspace of X for each n ≥ d,
(c) T(X) + ker Td is a closed subspace of X.

Evidently, the condition (a) entails that kn = 0 for n ≥ d, so every quasi-Fredholm operator has uniform
descent for n ≥ d.

Theorem 2.27. If T ∈ L(X) then the following implications hold:

T ∈ Φ±(X) ⇒ T quasi-Fredholm ⇒ T has topological uniform descent.

Every essentially semi-regular operators has topological uniform descent.

Proof. Every semi-Fredholm operator has topological uniform descent for n ≥ 0, so, by Theorem 2.14,
Tn(X) + ker T is constant for all n ≥ 1. Moreover, Tn is semi-Fredholm for all n ∈ N, hence all Tn(X) are
closed. The condition (c) is trivially satisfied, by Theorem 2.16. This shows the first implication. To see
the second implication, observe first that, if T is quasi-Fredholm then, always by part (ii) of Theorem 2.14,
T has uniform descent. Since the condition (iv) of Theorem 2.16 is satisfied by part (c) of the definition of
quasi-Fredholm operators, it then follows that T has topological uniform descent.

Let QF(d) denote the class of all quasi-Fredholm of degree d. The following result has a crucial role in
the characterizations of quasi-Fredholm operators.

Theorem 2.28. [74] Let T ∈ L(X), and suppose that T has finite ascent p := p(T) < ∞. Then the following statements
are equivalent:

(i) there exists n ≥ p + 1 such that Tn(X) is closed;
(ii) Tn(X) is closed for every n ≥ p;
(iii) Tn(X) + ker Tm is closed for all m,n ∈N with m + n ≥ p.
Analogous statements hold if T has finite descent q := q(T) < ∞.

Dealing with quasi-Fredholm operators, another application of Theorem 2.28 gives a characterization
of these operators:

Theorem 2.29. [25, Corollary 3.3] T ∈ L(X) is quasi-Fredholm if and only if there exists p ∈ N such that T(X) +
ker Tp = T(X) +N∞(T) and Tp+1(X) is closed.

Further characterizations of quasi-Fredholm operators are given in the following theorem:

Theorem 2.30. [25, Proposition 3.2]Suppose that T ∈ L(X) and d ∈N. Then the following statements are equivalent:

(i) T ∈ QF(d);
(ii) dis(T) = d and Td+1(X) is closed;
(iii) there exists an integer n ≥ 0 such that Tn(X) is closed and the restriction Tn := T|Tn(X) is semi-regular.
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Evidently, by part (iii) of Theorem 2.30,

T semi-regular⇒ T quasi-Fredholm.

We now consider a class of operators, introduced and studied by Berkani et al. in a series of papers
([24],[25],[27],[30]) which extends the class of semi-Fredholm operators. For every T ∈ L(X) and a nonneg-
ative integer n, let us denote by Tn the restriction of T to Tn(X) viewed as a map from the space Tn(X) into
itself (we set T0 = T).

Definition 2.31. T ∈ L(X), X a Banach space, is said to be B-Fredholm, (resp., semi B-Fredholm, upper semi
B-Fredholm, lower semi B-Fredholm), if for some integer n ≥ 0 the range Tn(X) is closed and Tn is a Fredholm
operator (resp., semi-Fredholm, upper semi-Fredholm, lower semi-Fredholm).

It is easily seen that every nilpotent operator, as well as any idempotent bounded operator, is B-Fredholm.
Therefore the class of B-Fredholm operators contains the class of Fredholm operators as a proper subclass.

Theorem 2.32. [24, Proposition 2.1] Let T ∈ L(X) and suppose that Tn(X) is closed and Tn is a Fredholm operator
(resp., semi-Fredholm, upper semi-Fredholm, lower semi-Fredholm). For every m ≥ n then Tm(X) is closed and Tm is
a Fredholm operator (resp., semi-Fredholm, upper semi-Fredholm, lower semi-Fredholm), with ind Tm] = ind Tn.

Every semi B-Fredholm operator T has topological uniform descent. Indeed, we show now that every
semi B-Fredholm operator is quasi-Fredholm.

Theorem 2.33. [24, Proposition 2.6] Every semi B-Fredholm operator is quasi Fredholm. More, precisely we have:
(i) T is upper semi B-Fredholm if and only if there is an integer d such that T ∈ QF(d) and ker T ∩ Td(X) has

finite dimension.
(ii) T is lower semi B-Fredholm if and only if there is an integer d such that T ∈ QF(d) and T(X) + ker Td has

finite codimension.
(iii) T is B-Fredholm if and only if there is an integer d such that T ∈ QF(d), ker T ∩ Td(X) has finite dimension

and T(X) + ker Td has finite codimension.

The following punctured disc theorem is obtained by combining Corollary 2.20 and Theorem 2.33, in
the special case that S = λI − T, with λ sufficiently small.

Theorem 2.34. Suppose that T ∈ L(X) is upper semi B-Fredholm. Then there exists an open discD(0, ε) centered at
0 such that λI − T is upper semi-Fredholm for all λ ∈ D(0, ε) \ {0} and

ind (λI − T) = ind (T) for all λ ∈ D(0, ε).

Moreover, if λ ∈ D(0, ε) \ {0} then

α(λI − T) = dim (ker T ∩ Td(X)) for some d ∈N,

so that α(λI − T) is constant as λ ranges inD(0, ε) \ {0} and

α(λI − T) ≤ α(T) for all λ ∈ D(0, ε).

Analogously, if T ∈ L(X) is lower semi B-Fredholm then there exists an open disc D(0, ε) centered at 0 such that
λI − T is lower semi-Fredholm for all λ ∈ D(0, ε) \ {0} and

ind (λI − T) = ind (T) for all λ ∈ D(0, ε).

Moreover, if λ ∈ D(0, ε) \ {0} then

β(λI − T) = codim (ker Td + T(X)) for some d ∈N,

so that β(λI − T) is constant as λ ranges inD(0, ε) \ {0} and

β(λI − T) ≤ β(T) for all λ ∈ D(0, ε).
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Evidently, Theorem 2.34 is an extension of the classical punctured neighborhood theorem for semi-
Fredholm operators, to semi B-Fredholm operators.

B-Fredholm operators on Banach spaces may be characterized through a decomposition which similar
to the Kato decomposition (but recall that a Fredholm operator may be not semi-regular):

Theorem 2.35. [27, Lemma 4.1] Let T ∈ L(X), X a Banach space. Then
(i) T is B-Fredholm if and only if there exist two closed invariant subspaces M and N such that X =M ⊕N, T|M

is Fredholm and T|N is nilpotent.
(ii) T is B-Fredholm of index 0 if and only if there exist two closed invariant subspaces M and N such that

X =M ⊕N, T|M is Fredholm having index 0 and T|N is nilpotent.

According Caradus [35] an operator T ∈ L(X) is said to be generalized Fredholm if there exists an operator
S ∈ L(X) such that TST = T and I − ST − TS ∈ Φ(X). Examples of generalized Fredholm operators are
projections, finite-dimensional and Fredholm operators. This class of operators has been studied in several
papers by Schmoeger ([88], [89], [90], [91], [92], [93]) which shows that T is generalized Fredholm if and
only if there exist two closed invariant subspaces M and N such that X = M ⊕ N, T|M is Fredholm and
T|N is a finite rank nilpotent operator, see [92, Theorem 1.1]. Therefore, by Theorem 2.35 every generalized
Fredholm operator is B-Fredholm, but the converse is not true. For instance, a nilpotent operator with
non-closed range is a B-Fredholm operator but not a generalized Fredholm operator. The relationship
between B-Fredholm operators and generalized Fredholm operators is fixed by the following theorem.

Theorem 2.36. T ∈ L(X) is B-Fredholm if and only if there exists n ∈ N such that Tn is a generalized Fredholm
operator.

The following concept of invertibility has been introduced in [84] and was inspired by the work of
Drazin [42].

Definition 2.37. LetA be an algebra with unit e. An element a ∈ A is said to be a Drazin invertible element of
degree n if there is an element b ∈ A such that

anba = an, bab = b, ab = ba. (11)

The element b is called the Drazin inverse (of degree n). If a ∈ A satisfies the equalities (11) for k = 1 then a is called
group invertible.

In the following remark we shall reassume some basic properties of group invertible elements.

Remark 2.38. (a) An element a can have only one Drazin inverse. of the same degree. Every Drazin inverse
of degree n is also a Drazin inverse of degree n + 1, so if a has Drazin inverse b of degree n and a Drazin
inverse c of degree k, the b = c. Moreover, a ∈ A is Drazin invertible of degree n if and only if an is group
invertible inA, see [84, Lemma 1 and Corollary 5].

(b) An element a ∈ A is group invertible if and only if a admits a commuting generalized inverse, i.e. there
is b ∈ A such that ab = ba and aba = a, or equivalently there exists b ∈ A such that aba = a and e − ab − ba is
invertible inA, see [88, Theorem 3.3 and Proposition 3.9].

(c) If a, b ∈ A are two commuting Drazin invertible elements then ab is Drazin invertible, see [31,
Proposition 2.6].

Let F (X) denote the two-sided ideal of all finite dimensional operators in L(X), and denote by L the
normed algebra L(X)/F (X) provided with the canonical quotient norm. Let π : L(X) → L the canonical
quotient mapping. The well known Atkinson’s theorem say that T ∈ Φ(X) if and only if π(T) is invertible
in L. A version of Atkinson’ s theorem may be stated for B-Fredholm theory as follows:

Theorem 2.39. [31] T ∈ L(X) is B-Fredholm if and only if π(T) is a Drazin invertible element of the algebra L.
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The next result shows that a characterization, similar to that of Theorem 2.35 established for Fredholm
operators on Banach spaces, also holds for semi B-Fredholm operators in the case of Hilbert space operators.

Theorem 2.40. If T ∈ L(H), H a Hilbert space, then T is upper semi B-Fredholm (respectively, lower semi B-
Fredholm) if and only if there exist two closed T-invariant subspaces M and N such that X = M ⊕N, T|M is upper
semi-Fredholm (respectively, lower semi Fredholm) and T|N is nilpotent.

A bounded operator T which is Drazin invertible in A := L(X) is simply said to be Drazin invertible.
Drazin invertibility for operators may be characterized in several way:

Theorem 2.41. [78, Theorem 10, Chapter 3] If T ∈ L(X) then the following statements are equivalent:
(i) T is Drazin invertible, i.e. there is S ∈ L(X) such that TS = ST, STS = S and TnST = Tn;
(ii) there is S ∈ L(X) which commutes with T and n ∈N such that Tn+1S = Tn.
(iii) p(T) = q(T) ≤ n;
(iv) T = T1 ⊕ T2, where T1 is nilpotent and T2 is invertible;
(v) Either 0 < σ(T) or 0 is an isolated point of σ(T) and the restriction of T onto the range P(X) of the spectral

projection associated at {0} is nilpotent.

The concept of Drazin invertibility suggests the following definition:

Definition 2.42. T ∈ L(X), X a Banach space, is said to be left Drazin invertible if p := p(T) < ∞ and Tp+1(X) is
closed, while T ∈ L(X) is said to be right Drazin invertible if q := q(T) < ∞ and Tq(X) is closed.

The operator considered in Example 2.25 shows that I the condition q = q(T) < ∞ does not entails that
Tq(X) is closed. Clearly, T ∈ L(X) is both right and left Drazin invertible if and only if T is Drazin invertible.

The next result characterizes the left Drazin invertible and the right Drazin invertible operators among
the operators which have topological uniform descent.

Theorem 2.43. [19] Suppose that T ∈ L(X). Then the following statements are equivalent:
(i) T is left Drazin invertible;
(ii) T is quasi-Fredholm and has finite ascent;
(iii) T has topological uniform descent and has finite ascent.
Dually, following statements are equivalent:
(iv) T is right Drazin invertible;
(v) T is quasi-Fredholm and has finite descent:
(vi) T has topological uniform descent and has finite descent.

By Theorem 2.7, if T is Fredholm operator with index 0 and either p(T) or q(T) is finite then T is Browder.
This result, in the framework of B-Fredholm theory, may be generalized as follows:

Theorem 2.44. [12, Theorem 2.2] For an operator T ∈ L(X) the following statements hold:
(i) If T is upper semi B-Fredholm with index ind T ≤ 0 and q(T) < ∞, then T is Drazin invertible.
(ii) If T is lower semi B-Fredholm with index ind T ≥ 0 and p(T) < ∞, then T is Drazin invertible.
(iii) If T is B-Fredholm with index ind T = 0 and has either ascent or descent finite, then T is Drazin invertible.

We now show that the concept of left and right Drazin invertibility are dual each other:

Theorem 2.45. [18] For every T ∈ L(X) the following equivalences hold:
(i) T is left Drazin invertible⇔ T∗ is right Drazin invertible.
(ii) T is right Drazin invertible⇔ T∗ is left Drazin invertible.
(iii) T is Drazin invertible if and only if T∗ is Drazin invertible.
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3. The localized SVEP and Fredholm theory

We have seen in Theorem 1.9 that the SVEP for T holds precisely when for every element 0 , x ∈ X we
have σT(x) = ∅. The next fundamental theorem, which establishes a localized version of this result,will be
useful in the sequel .

Theorem 3.1. [1, Theorem 2.22] If T ∈ L(X) the following statements are equivalent:

(i) T has SVEP at λ0;

iii) ker (λ0I − T) ∩ K(λ0I − T) = {0};
(iii) For each 0 , x ∈ ker (λ0I − T) we have σT(x) = {λ0}.

It should be noted that

ker (λ0I − T) ∩ XT(∅) = {0} = ker (λ0I − T) ∩ K(λ0I − T)

holds for every T ∈ L(X). To see this observe first that by Theorem 1.14 we have ker T ⊆ H0(T) ⊆ XT({0}).
From Theorem 1.21 it follows that

ker T ∩ K(T) = ker T ∩ XT(C \ {0}) ⊆ XT({0}) ∩ XT(C \ {0}) = XT(∅).

Since XT(∅) ⊆ XT(C \ {0}) = K(T) we then conclude that

ker T ∩ K(T) = ker T ∩ K(T) ∩ XT(∅) = ker T ∩ XT(∅).

For an arbitrary operator T ∈ L(X) on a Banach space X let

Ξ(T) := {λ ∈ C : T fails to have SVEP at λ} .

Clearly, Ξ(T) is contained in the interior of the spectrum σ(T), and, from the identity theorem for analytic
functions it readily follows that Ξ(T) is open. Clearly Ξ(T) is empty precisely when T has the SVEP.

Corollary 3.2. If T ∈ L(X) is surjective, then T has SVEP at 0 if and only if T is injective. Consequently, the equality
σ(T) = σs(T) ∪ Ξ(T) holds for every T ∈ L(X). Furthermore, σsu(T) contains ∂Ξ(T), the topological boundary of
Ξ(T).

Proof. If T is onto and has SVEP at 0 then K(T) = X. By Theorem 3.1 we have ker T ∩ X = ker T = {0},
hence T is injective. The converse is clear. To show the equality σ(T) = σs(T) ∩ Ξ(T) we have only to show
the inclusion (⊆). Suppose that λ < σs(T)∩Ξ(T). From the first part we obviously have λ < σ(T) from which
we obtain σ(T) = σs(T) ∪ Ξ(T). The last claim is immediate: since ∂Ξ(T) ⊆ σ(T) and Ξ(T) is open it then
follows that ∂Ξ(T) ∩ Ξ(T) = ∅. This obviously implies that ∂Ξ(T) ⊆ σsu(T).

Let L denote the unilateral left shift on the Hilbert space ℓ2(N), defined as

L(x1, x2, x3, · · · ) := (x2, x3, · · · ) for all x = (xn) ∈ ℓ2(N).

Evidently, L is onto but not injective, since every vector (x1, 0, 0, · · · ), with x1 , 0, belongs to ker L. Corollary
3.2 then shows that L fails to have SVEP at 0. Later, we shall see that other examples of operators which do
not have SVEP at 0 are semi-Fredholm operators on a Banach space having index strictly greater than 0.
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Theorem 3.3. [1, Theorem 3.8] For a bounded operator T on a Banach space X and λ0 ∈ C, the following implications
hold:

p(λ0I − T) < ∞ ⇒ N∞(λ0I − T) ∩ (λ0I − T)∞(X) = {0}
⇒ T has the SVEP at λ0,

and

q(λ0I − T) < ∞ ⇒ X = N∞(λ0I − T) + (λ0I − T)∞(X)
⇒ T⋆ has the SVEP at λ0.

In the remaining part of this section we want show that the relative positions of all the subspaces
introduced in the previous chapter are intimately related to the SVEP at a point.

To see that let us consider, for an arbitrary λ0 ∈ C and an operator T ∈ L(X) the following increasing
chain of kernel type of spaces:

ker (λ0I − T) ⊆ N∞(λ0I − T) ⊆ H0(λ0I − T) ⊆ XT({λ0}),
and the decreasing chain of the range type of spaces:

XT(∅) ⊆ XT(C \ {λ0}) = K(λ0I − T) ⊆ (λ0I − T)∞(X) ⊆ (λ0I − T)(X).

The next corollary is an immediate consequence of Theorem 3.1 and the inclusions considered above.

Corollary 3.4. Suppose that T ∈ L(X) verifies one of the following conditions:
(i)N∞(λ0I − T) ∩ (λ0I − T)∞(X) = {0};
(ii)N∞(λ0I − T) ∩ K(λ0I − T) = {0};
(iii)N∞(λ0I − T) ∩ XT(∅) = {0};
(iv) H0(λ0I − T) ∩ K(λ0I − T) = {0};
(v) ker (λ0I − T) ∩ (λ0I − T)(X) = {0}.
Then T has the SVEP at λ0.

Theorem 3.5. [1, Cor 2.45] For T ∈ L(X), the following statements hold:
(i) If T has the SVEP then σsu(T) = σ(T) and σse(T) = σap(T).
(ii) If T⋆ has the SVEP then σap(T) = σ(T) and σse(T) = σsu(T).
(iii) If both T and T⋆ have the SVEP then

σ(T) = σsu(T) = σap(T) = σse(T).

Then converse of Corollary 3.4 need not be true. The next bilateral weighted shift, provides an example
of operator T which has SVEP at 0 while H0(T) ∩ K(T) , {0}.

Example 3.6. [8] Let β := (βn)n∈Z be the sequence of real numbers defined as follows:

βn :=
{

1 + |n| if n < 0,
e−n2

if n ≥ 0.

Let X := L2(β) denote the Hilbert space of all formal Laurent series

∞∑
n=−∞

anzn for which
∞∑

n=−∞
|αn|2βn

2 < ∞ ,
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Let us consider the bilateral weighted right shift defined by

T(
∞∑

n=−∞
anzn) :=

∞∑
n=−∞

anzn+1 ,

or equivalently, Tzn := zn+1 for every n ∈ Z. The operator T is bounded on L2(β) and

∥T∥ = sup
{
βn+1

βn
: n ∈ Z

}
= 1 .

Clearly T is injective, so it has the SVEP at 0. We show now that H0(T) ∩ K(T) , {0}. From ∥zn∥β = βn for
all n ∈ Zwe obtain that

lim
n→∞
∥zn−1∥β

1/n
= 0

and
lim
n→∞
∥z−n−1∥β

1/n
= 1 .

By the formula for the radius of convergence of a power series we then conclude that the two series

f (λ) :=
∞∑

n=1

λ−nzn−1 and 1(λ) := −
∞∑

n=1

λnz−n−1

converge in L2(β) for all |λ| > 0 and |λ| < 1, respectively. Evidently, the function f is analytic on C \ {0}, and

(λI − T) f (λ) = −
∞∑

n=1

λ−nzn −
∞∑

n=1

λ1−nzn−1 = 1 for all λ , 0 ,

while the function 1, which is analytic on the open unit discD(0, 1), verifies

(λI − T)1(λ) =
∞∑

n=0

λnz−n −
∞∑

n=0

λ1+nz−n−1 = 1 for all λ ∈ D(0, 1) .

This implies that 1 ∈ XT({0})∩XT(C \D(0, 1)) = H0(T)∩K(T), where the last equality follows from Theorem
1.21 and Theorem 1.14.

For a quasi-nilpotent operator we have H0(T) = X. The analytic core K(T) is ”near” to be the complement
of H0(T). Indeed we have:

Corollary 3.7. If T ∈ L(X) is quasi-nilpotent then K(T) = {0}.

We now establish some other conditions that entail SVEP:

Theorem 3.8. [1, Theorem 2.31] For a bounded operator T ∈ L(X), X a Banach space, the following implications
hold :

(i) Ho(λ0I − T) closed⇒ Ho(λ0I − T) ∩ K(λ0I − T) = {0} ⇒ T has the SVEP at λ0.
(ii) X = H(λ0I − T) + K(λ0I − T)⇒ T⋆ has the SVEP at λ0.

The operator in the Example 1.17 shows that, in general, the converse of Theorem 3.8 does not hold.
Indeed, T has SVEP, since the point spectrum σp(T) is empty, while H(T) is not closed.

Theorem 3.9. Suppose that for a bounded operator T ∈ L(X), the sum H0(λ0I − T) + (λ0I − T)(X) is norm dense in
X. Then T⋆ has the SVEP at λ0.
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Corollary 3.10. Suppose either that H0(λ0I −T)+K(λ0I −T) orN∞(λ0I −T)+ (λ0I −T)∞(X) is norm dense in X.
Then T⋆ has the SVEP at λ0.

Also the result of Corollary 3.10 cannot be reversed, as the following example shows:

Example 3.11. Let V denote the Volterra operator on the Banach space X := C[0, 1], defined by

(V f )(t) :=
∫ t

0
f (s)ds for all f ∈ C[0, 1] and t ∈ [0, 1].

V is injective and quasi-nilpotent. ConsequentlyN∞(V) = {0} and K(V) = {0} by Corollary 3.7. It is easy to
check that

V∞(X) = { f ∈ C∞[0, 1] : f (n)(0) = 0, n ∈ Z+},
thus V∞(X) is not closed and hence is strictly larger than V(T) = {0}. Clearly the sumN∞(V)+V∞(X) is not
norm dense in X, while V⋆ has the SVEP, because it is quasi-nilpotent.

Given an operator T ∈ L(X), X a Banach space, and an analytic function f defined on an open neighbor-
hood U of σ(T), and let f (T) denote the corresponding operator defined by the functional calculus. One
may be tempted to conjecture that the spectral theorem for the local spectrum, i.e. f (σT(x)) = σ f (T)(x) for all
x ∈ X. It can be easily seen that in general that this equality is not true. Indeed, if we consider the constant
function f ≡ c on the neighborhoodU and an operator T without the SVEP, then there exists, by Theorem
1.21, a vector 0 , x ∈ X such that σT(x) = ∅. Clearly f (σT(x) = ∅, while

σ f (T)(x) = σ( f (T)) = {c} , ∅.

Denote byH(σ(T)) the set of all analytic functions, defined on an open neighborhood of σ(T). In order
to show that the spectral theorem for the local spectrum holds if T has SVEP, we need to prove before that
the SVEP is preserved under the functional calculus.

Theorem 3.12. [68, Theorem 3.3.8] If T ∈ L(X) has SVEP then f (T) has SVEP for every f ∈ H(σ(T)).

Denote by Hnc(σ(T)) the set of all analytic functions, defined on an open neighborhood of σ(T), such
that f is nonconstant on each of the components of its domain.

Theorem 3.13. [68, Theorem 3.3.8] If T ∈ L(X) the following statements hold:
(i) f (σT(x)) ⊆ σ f (T)(x) for all x ∈ X and f ∈ H(σ(T)) .
(ii) If T has SVEP, or if the function f ∈ Hnc(σ(T)), then

f (σT(x)) = σ f (T)(x) for all x ∈ X,

The next result shows that the localized SVEP is preserved under the functional calculus under appro-
priate condition on the analytic function.

Theorem 3.14. [8] Let T ∈ L(X) and f ∈ Hnc(σ(T)). Then f (T) has the SVEP at λ ∈ C if and only if T has the
SVEP at every point µ ∈ σ(T) for which f (µ) = λ.

Combining Theorem 3.14 and Theorem 3.12 we then have:

Corollary 3.15. Let T ∈ L(X) and f ∈ Hnc(σ(T)). Then T has the SVEP if and only if f (T) has the SVEP.

An immediate consequence of Theorem 3.14 is that, in the characterization of the SVEP at a point λ0 ∈ C
given in Theorem 3.1, the kernel ker (λ0I − T) may be replaced by the hyper-kernelN∞(λ0I − T).
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Corollary 3.16. For every bounded operator on a Banach space X the following properties are equivalent:

(i) T has the SVEP at λ0;

(ii) (λ0I − T)n has the SVEP at 0 for every n ∈N.

(iii)N∞(λ0I − T) ∩ XT(∅) = {0};
(iv)N∞(λ0I − T) ∩ K(λ0I − T) = {0}.

Note that in the condition (ii) of Corollary 3.16 the power (λ0I −T)n may be replaced by f (T), where f is
any analytic function on some neighborhoodU of σ(T) such that f is non-constant on each of the connected
components ofU and such that 0 is the only zero of f in σ(T).

The following result generalizes Corollary 3.2 to semi-regular operators, since every surjective operator
is semi-regular.

Theorem 3.17. Suppose that λ0I − T is a semi-regular operator on the Banach space X. Then the following
equivalences hold:

(i) T has the SVEP at λ0 precisely when λ0I − T is injective or, equivalently, when λ0I − T is bounded below;

(ii) T⋆ has the SVEP at λ0 precisely when λ0I − T is surjective.

Proof. (i) We can assume that λ0 = 0. We have only to prove that if T has the SVEP at 0 then T is injective.
Suppose that T is not injective. Then, by Theorem 1.23, the semi-regularity of T entails T∞(X) = K(T) and
{0} , ker T ⊆ T∞(X) = K(T). Thus T does not have the SVEP at 0 by Theorem 3.1.

(ii) If λ0I − T is semi-regular then also λ0I⋆ − T⋆ is semi-regular and λ0I − T is surjective if and only if
λ0I⋆ − T⋆. is bounded below .

Now we show that the SVEP at a point for operators having topological uniform descent may be
characterized in several ways. These characterizations extend previous results obtained in [2] for quasi-
Fredholm operators.

Theorem 3.18. [61] Suppose that λ0I − T has topological uniform descent for n ≥ d. Then the following conditions
are equivalent:

(i) T has SVEP at λ0;

(ii) the restriction T|(λ0I−T)d(X) has SVEP at λ0, where the subspace (λ0I−T)d(X) is equipped with the operator
range topology;

(iii) the restriction (λ0I − T)|(λ0I − T)d(X) is bounded below, where (λ0I − T)d(X) is equipped with the operator
range topology;

(iv) λ0I − T has finite ascent, or equivalently the operator λ0I − T is left Drazin invertible;

(v) σap(T) does not cluster at λ0;

(vi) λ0 < int σap(T), where int σ(T) is the interior of σap(T);

(vii) there exists p ∈N such that H0(λ0I − T) = ker (λ0I − T)p;

(viii) H0(λ0I − T) is closed;

(ix) H0(λ0I − T) ∩ K(λ0I − T) = {0};
(x)N∞(λ0I − T) ∩ (λ0I − T)∞(X) = 0}.
In particular, these equivalences hold for semi B-Fredholm operators.

Next, we will consider some characterizations of SVEP for T∗ at λ0 in the case that λ0I−T has topological
uniform descent. Recall that the property of having topological uniform descent is not transmitted by
duality, so we cannot use the results of Theorem 3.18.
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Theorem 3.19. Suppose that λ0I − T has topological uniform descent for n ≥ d. Then the following conditions are
equivalent:

(i) T∗ has SVEP at λ0;
(ii) there exists n ∈N such that restriction (λ0I − T)|(λ0I − T)n(X) is onto, where (λ0I − T)n(X) is equipped with

the operator range topology;
(iii) λ0 < int σs(T);
(iv) σs(T) does not cluster at λ0;
(v) λ0I − T has finite descent, or equivalently the operator λ0I − T is right Drazin invertible;
(vi) there exists q ∈N such that K(λ0I − T) = (λ0I − T)q(X);
(vii) X = H0(λI − T) + K(λ0I − T);
(viii) H0(λI − T) + K(λ0I − T) is norm dense in X;
(ix) X = N∞(λ0I − T) + (λ0I − T)∞(X);
(x)N∞(λ0I − T) + (λ0I − T)∞(X) is norm dense in X.
In particular, the equivalences hold for semi B-Fredholm operators.

The next corollary is an obvious consequence of Theorem 3.18 and Theorem 3.19.

Corollary 3.20. [61] If λ0I − T has uniform topological descent then the following statements are equivalent:
(i) Both T and T∗ have SVEP at λ0;
(ii) λ0 is a pole of the resolvent;
(iii) X = H0(λ0I − T) ⊕ K(λ0I − T);
(iv) X = N∞(λ0I − T) ⊕ (λ0I − T)∞(X).

Since every essentially semi-regular operator has topological uniform descent, so the results established
in Theorem 3.18 and Theorem 3.19 are valid for this class of operators.

Theorem 3.21. [1, Theorem 3.16 and 3.17] Suppose that λ0I − T is essentially semi-regular. Then we have
(i) T has SVEP at λ0 if and only if H0(λ0I − T) is finite dimensional. In this case λ0I − T ∈ Φ+(X).
(ii) T∗ has SVEP at λ0 if and only if K(λ0I − T) is finite codimensional. In this case λ0I − T ∈ Φ−(X).

For semi-Fredholm operator we have the following important result.

Corollary 3.22. Suppose that λ0I − T is semi-Fredholm. Then the following statements hold:
(i) If T has SVEP at λ0 then ind (λ0I − T) ≤ 0.
(ii) If T∗ has SVEP at λ0 then ind (λ0I − T) ≥ 0.
Consequently, if both T and T∗ have SVEP at λ0 then λ0I − T ∈ Φ(X) and ind (λ0I − T) = 0.

Proof. (i) By Theorem 3.18 we know that if T has SVEP at λ0 then p(λ0I − T) < ∞, and this implies, by part
(i) of Theorem 2.7, that α(λ0I − T) ≤ β(λ0I − T), so ind (λ0I − T) ≤ 0.

(ii) By Theorem 3.19 we know that if T∗ has SVEP at λ0 then q(λ0I − T) < ∞, and this implies, by part (i)
of Theorem 2.7, that β(λ0I − T) ≤ α(λ0I − T), so ind (λ0I − T) ≥ 0.

The last assertion is clear.

The converse of the results of Corollary 3.22 do not hold, i.e. a semi-Fredholm operator with index less
or equal to 0 may fails SVEP at 0. For instance, if R and L denote the right shift and the left shift on the
Hilbert space ℓ2(N), then is is easy to see that R is injective, and α(R⊕L) = α(L) = 1 while β(R⊕L) = β(R) = 1,
so R⊕ L is a Fredholm operator having index 0. Since L fails SVEP at 0, then R⊕ L does not have SVEP at 0.
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Corollary 3.23. [2] If λI−T ∈ L(X) is B-Fredholm with ind (λI−T) = 0 the the following statements are equivalent:

(i) T has SVEP at λ;
(ii) λI − T is Drazin invertible;
(iii) T∗ has SVEP at λ.

Proof. (i)⇔ (ii) The SVEP of T at λ is equivalent to p(λI − T) < ∞, by Theorem 3.18, and this is equivalent
to saying that λI − T is Drazin invertible, by Theorem 2.44.

(iii)⇔ (ii) The SVEP of T∗ at λ is equivalent to q(λI − T) < ∞, by Theorem 3.19, and this is equivalent to
saying that λI − T is Drazin invertible, always by Theorem 2.44.

4. Localized SVEP under commuting perturbations

We first observe that SVEP is not preserved under non-commuting perturbations. In fact, by [96,
Example 5.6.29], the sum of a decomposable operator and a rank-one operator may fail to have SVEP,
although decomposable operators and finite rank operators have SVEP.

In general the SVEP is also not stable under arbitrary sums and products of commuting operators. A
specific example based on the theory of weighted shifts may be found in [33], but here we present a general
principle that shows that such examples exist in abundance.

Theorem 4.1. [16] Let S ∈ L(X) and suppose that there exist α , β ∈ C such that

K(αI − S) = K(βI − S) = {0} (12)

If T ∈ L(X) commutes with S, then T is the sum of two commuting operators with SVEP, while exp(T) is the product
of two commuting operators with SVEP.

Proof. Since all quasi-nilpotent operators share SVEP, we may assume that the spectral radius r(T) > 0. To
verify that T(S− αI) has SVEP, we consider an arbitrary open set U ⊆ C and an analytic function f : U→ X
for which

(µI − T(S − αI)) f (µ) = 0 for all µ ∈ U.

For a fixed non-zero µ ∈ U and arbitrary λ ∈ C with λ < |µ|/r(T), the operator λT − µI is invertible and its
inverse commutes with both S and T. Moreover,

(λI − (S − αI))T(λT − µI)−1 f (µ)
= (λT − µI)−1[(µI − T(S − αI)) + (λT − µI)] f (µ) = f (µ).

This shows that 0 ∈ ρS−αI( f (µ)) and therefore, by Theorem 1.21,

f (µ) ∈ K(S − αI) = {0} for all µ ∈ U.

Thus f ≡ 0 on U, which establishes SVEP for T(S − αI) and, of course, similarly also for T(S − βI). Because

(β − α)T = T(S − αI) + T(βI − S),

the first assertion is now immediate, and the last clam, concerning the product, follows from the fact that
SVEP is preserved under the analytical calculus.

Note that in Theorem 4.1 the operators T and exp(T) may fail to have SVEP, while the condition on
S entails that XT(∅) = {0} and hence, by Theorem 1.11, the SVEP for S. To provide concrete examples of
operators that satisfy the condition (12) on K(λI − S) of the preceding result, we now introduce the concept
of semi-shift.

A bounded operator S ∈ L(X) is said to a semi-shift, if S is an isometry for which S∞(X) = {0}. Examples
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of semi-shifts T are the unilateral right shift operators of arbitrary multiplicity on the sequence spaces ℓp(N),
with 1 ≤ p < ∞, defined as

Tx := (0, x1, x2, . . . ) for all x = (xn) ∈ ℓp(N).

Other important examples of semi-shifts are the right translation operators on the Lebesgue spaces Lp([0,+∞]),
1 ≤ p < ∞. Note that if T is a semi-shift then σT(x) = σ(T) coincides with the closed unit disc D(0, 1) of C
for all non-zero x ∈ X, see [68, Proposition 1.6.8]. Now, if x , 0 and α ∈ D(0, 1) then α ∈ σT(x) and hence
0 ∈ σαI−T(x), so that x < K(αI − T), by Theorem 1.21. Therefore, K(αI − T) = {0} for all α ∈ D(0, 1).

To find an operator without SVEP that commutes with a semi-shift is perhaps not completely obvious,
but this task can easily be accomplished when X is a separable Hilbert space. Indeed, in this case, for
arbitrary S,T ∈ L(X) the operator T ⊗ I and I ⊗ S on the Hilbert tensor product X ⊗ X commute, since

(T ⊗ I)(I ⊗ S) = T ⊗ S = (I ⊗ S)(T ⊗ I);

see [62, Section 2.6] for a nice exposition of the theory of the Hilbert tensor product. Moreover, since T ⊗ I
is unitarily equivalent to the Hilbert direct sum

∑∞
n=1 ⊕T, it is easily seen that the failure of SVEP at a point

λ extends from T to T ⊗ I. In the same vein, it follows that I ⊗ S is a semi-shift whenever S is, since I ⊗ S
is unitarily equivalent to

∑∞
n=1 ⊕S. Note that, in the Hilbert spaces case , the semi-shifts are precisely pure

isometries.
Thus neither SVEP nor localized SVEP is, in general, preserved under sums and products of commuting

perturbations. We next will show that the SVEP is preserved under the special case of a Riesz commuting
perturbation. Recall that an operator R ∈ L(X) is said to be a Riesz operator if λI − R is a Fredholm operator
for every λ ∈ C \ {0} and this is equivalent to saying that λI −R is Browder for all λ ∈ C \ {0}. The spectrum
σ(R) of a Riesz operator is at most countable and has no nonzero cluster point. Furthermore, each nonzero
element of the spectrum is an eigenvalue and the spectral projection associated with every λ , 0 is finite-
dimensional, we refer to the book [1] for details. Examples of Riesz operators are quasi-nilpotent operators
and compact operators, see [58]. It is well-known that if R ∈ L(X) be a Riesz operator and Ω a spectral
subset of σ(R) such 0 < Ω, then the spectral projection P associated with Ω is finite dimensional.

The following recent result ([15]) shows that localized SVEP from an operator T is preserved under
Riesz commuting perturbations.

Theorem 4.2. Let X be a Banach space, T,R ∈ L(X), where R is a Riesz operator such that TR = RT. If λ ∈ C,
then T has SVEP at λ if and only if T − R has SVEP at λ. In particular, the SVEP is stable under Riesz commuting
perturbations.

Proof. Without loss of generality we may assume that λ = 0. Suppose T has not SVEP at 0. We show
that T − R has not SVEP at 0. Since T has not SVEP at 0, we have ker T ∩ K(T) , {0}, by Theorem 3.1,
hence there exists a sequence of vectors (xi)i=0.1,... of X such that x0 , 0, Tx0 = 0, Txi = xi−1 (i ≥ 1) and
supi≥1 ∥xi∥1/i < ∞. Let K := supi≥1 ∥xi∥1/i and fix an ε, 0 < ε < 1

2K . Let Ω := {λ ∈ σ(R) : |λ| ≥ ε} and denote by
P the spectral projection associated withΩ. Then P is finite dimensional, and if X2 := P(X) and X1 := ker P,
then X = X1 ⊕ X2. According the spectral decomposition theorem we have R(X j) ⊂ X j ( j = 1, 2),

σ(R|X1) ⊂ {λ : |λ| < ε} and σ(R|X2) ⊂ {λ : |λ| ≥ ε}.

Since TR = RT, we also have T(X j) ⊂ X j ( j = 1, 2). Clearly,

TPx0 = PTx0 = 0,

and
TPxi = PTxi = Pxi−1 (i ≥ 1).

We claim that Pxi = 0 for all i. To see this, suppose that Pxi , 0 for some i ≥ 0. Since TPxi+1 = Pxi , 0 we
then deduce that Pxi+1 , 0, and by induction it then follows that Pxn , 0 for all n ≥ i.
Let k ≥ 1 be the smallest integer for which Pxk , 0. We have

TPxk = Pxk−1 = 0.
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For all n ≥ k we also have

Tn−kPxn = Tn−k−1(TPxn) = Tn−k−1Pxn−1 = ....

= TPxk+1 = Pxk , 0,

hence Pxn < ker (T|X2)n−k, for all n ≥ k. Furthermore,

Tn−k+1Pxn = TTn−kPxn = TPxk = Pxk−1 = 0,

so Pxn ∈ ker (T|X2)n−k+1. This implies that T|X2 has infinite ascent, which is impossible, since dim X2 < ∞.
Therefore, Pxi = 0, and hence xi ∈ ker P = X1, for all i ≥ 0.

Let us consider the restriction R1 = R|X1. Clearly, r(R1) < ε, so there exists j0 such that ∥R j
1∥ ≤ ε j for all

j ≥ j0.
Set y0 :=

∑∞
i=0 Rixi and similarly, for k ≥ 1 let

yk :=
∞∑
i=k

(
i
k

)
Ri−kxi.

This definition is correct, since
∞∑
i=k

(
i
k

)
∥Ri−kxi∥ ≤

∞∑
i=k

2i∥Ri−k
1 ∥Ki

≤
j0+k∑
i=k

2iKi∥Ri−k
1 ∥ +

∞∑
i= j0+k+1

2iKiεi−k < ∞.

Moreover, for k ≥ 2 j0 we have

∥yk∥ ≤
2k−1∑
i=k

2iKi∥Ri−k
1 ∥ +

∞∑
i=2k

(2K)iεi−k

≤ k max{(2K)k, (2K)2k−1∥R1∥k−1} + (2K)2kεk

1 − 2Kε
.

Hence,

∥yk∥1/k ≤ k1/k
(
max{(2K)k, (2K)2k−1∥R1∥k−1}

)1/k
+

( (2K)2kεk

1 − 2Kε

)1/k

≤ k1/k max{2K, (2K)
2k−1

k ∥R1∥
k−1

k } + 4K2ε
1 − 2Kε

.

from which we obtain lim supk→∞ ∥yk∥1/k < ∞.
We also have

(T − R)y0 =

∞∑
i=1

Rixi−1 −
∞∑

i=0

Ri+1xi = 0.

Now, for k ≥ 1 we have

(T − R)yk =

∞∑
i=k

(
i
k

)
Ri−kxi−1 −

∞∑
i=k

(
i
k

)
Ri−k+1xi

= xk−1 +

∞∑
i=k

Ri−k+1xi

((i + 1
k

)
−

(
i
k

))
= yk−1.

It remains to show that not all of the yk’s are equal to zero. Suppose on the contrary that yk = 0 (k ≥ 0)
and let j1 ≥ j0. Then we have

j1∑
k=0

(−1)kRkyk =

∞∑
i=0

αiRixi,
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where, if we let ν := min {i, j1}, we have

αi =

ν∑
k=0

(−1)k
(
i
k

)
for every i = 0, 1, . . . .

Clearly, α0 = 1. For 1 ≤ i ≤ j1 we obtain

αi =

i∑
k=0

(−1)k
(
i
k

)
= 0.

For i > j1 we have |αi| ≤ 2i, so

0 =
j1∑

k=0

(−1)kRkyk = x0 +

∞∑
i= j1+1

αiRixi

and

∥x0∥ ≤
∞∑

i= j1+1

2i∥Ri
1∥∥xi∥ ≤

∞∑
i= j1+1

2iεiKi =
(2Kε) j1+1

1 − 2Kε
.

Letting j1 → ∞ yields ∥x0∥ = 0, a contradiction. Therefore, ker (T − R) ∩ K(T − R) , {0}, and this implies,
again by Theorem 3.1, that T − R does not have SVEP at 0.

By symmetry we then conclude that T has SVEP at 0 if and only if T − R has SVEP at 0.

Remark 4.3. Every Riesz operator is meromorphic, i.e., every nonzero λ ∈ σ(T) is a pole of the resolvent of T.
Meromorphic operators have the same structure of the spectrum as Riesz operators, i.e., every 0 , λ ∈ σ(T)
is an eigenvalue, and the spectrum is at most countable and has no nonzero cluster point, see [58, §54].
A simple example shows that the result of Theorem 4.2 cannot be extended to meromorphic operators.
Denote by L is the backward shift on ℓ2(N) and let λ0 < σ(L) = D, D the closed unit disc. It is known that L
does not have SVEP at 0. Since L has SVEP at λ0, then T := λ0I − L has SVEP at 0, while T − λ0I = −L, does
not have SVEP at 0, and, obviously, λ0I is meromorphic.

Remark 4.4. Denote by σe(T) is the essential Fredholm spectrum of T, and let re(T) denote the essential
spectral radius of T. i.e.,

re(T) := sup {|λ| : λ ∈ σe(T)}.
Obviously, in the case of a Riesz operator K we have re(K) = 0. A closer look at the proof of Theorem 4.2
reveals that the stability of localized SVEP also holds if we assume that re(K) is small enough.

The result of Theorem 4.2 implies that the localized SVEP is stable under quasi-nilpotent commuting
perturbations. We now address the question of the extent to which SVEP at a point is stable under quasi-
nilpotent equivalence. Before we need to give some definitions.

Definition 4.5. The operator A ∈ L(X,Y) between the Banach spaces X and Y is a quasi-affinity if it has a trivial
kernel and dense range. We say that T ∈ L(X) is a quasi-affine transform of S ∈ L(Y), and we write T ≺ S, if there
is a quasi-affinity A ∈ L(X,Y) that intertwines T and S, i.e. SA = AT. If there exists two quasi-affinities A ∈ L(X,Y),
B ∈ L(X,Y) for which SA = AT and BS = TB then we say that S and T are quasi-similar.

The commutator of two operators S,T ∈ L(X) is the operator C(S,T) on L(X) defined by

C(S,T)(A) := SA − AT for all A ∈ L(X).

By induction it is easily to show the binomial identity
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C(S,T)n(A) =
n∑

k=0

(
n
k

)
(−1)kSn−kATk. (13)

Obviously, C(λI − S, λI − T)n(A) = (−1)nC(S,T)n(A) for all λ ∈ C , from which we obtain

C(S,T)n(A) = (−1)nC(λI − S, λI − T)n(A)

=

n∑
k=0

(
n
k

)
(−1)n−k(λI − S)n−kA(λI − T)k

for all A ∈ L(X), n ∈N. The equality (13) also entails that

C(S,T)n(A)x = SnAx for all x ∈ ker T. (14)

Definition 4.6. Given the operators T ∈ L(X) and S ∈ L(Y), we say that the pair (S,T) is asymptotically inter-
twined by the operator A ∈ L(X,Y) if ∥C(T,S)(A)∥1/n → 0 as n→ ∞ The operators S ∈ L(X) an T ∈ L(X) are said
to be quasi-nilpotent equivalent if (S,T) and (T,S) are asymptotically intertwined by the identity operator I on X.

Evidently, the notion of asymptotically intertwined pairs is a generalization of the intertwining condition
C(S,T)(A) = 0 which appears in the definition of T ≺ S. This notion is also a generalization of the higher
order intertwining condition:

C(S,T)n(A) = 0 for some n ∈N.

Lemma 4.7. [9] Let T ∈ L(X), S ∈ L(Y) and suppose that for some injective map A ∈ L(X,Y) there exists an integer
n ∈N for which C(S,T)n(A) = 0. If S has SVEP at λ0 then T has SVEP at λ0. In particular, if T ∈ L(X) and S ∈ L(Y)
are intertwined by an injective map A ∈ L(X,Y) then localized SVEP carries over from S to T.

The following example shows that converse of Lemma 4.7 does not hold, i.e. if T ≺ S the SVEP from T
may be not transmitted to S.

Example 4.8. Let C denote the Cesàro matrix,i.e. C is a lower triangular matrix such that the nonzero entries
of the n-th row are n−1 (n ∈ N) 

1 0 0 0 · · ·
1/2 1/2 0 0 · · ·
1/3 1/3 1/3 0 · · ·
1/4 1/4 1/4 1/4 · · ·
...

...
...

...
...


.

Let 1 < p < ∞ and consider the matrix C as an operator Cp acting on ℓp. Let q be such that 1/p + 1/q = 1. In
[83] it has been proved that σ(Cp) is the closed disc Γq, where

Γq := {λ ∈ C : |λ − q/2| ≤ q/2}.

Moreover, it has been proved in [51] that for each µ ∈ int Γq the operator µI − Cp is an injective Fredholm
operator with β(Cp) = 1, . Consequently, every µ ∈ intΓq belongs to the surjectivity spectrum σs(Cp).

Let Cp
∗ ∈ L(ℓq) denote the conjugate operator of Cp. Obviously, σs(Cp) clusters at every µ ∈ intΓq and

since µI − Cp is Fredholm it then follows that Cp
∗ does not have SVEP at these points µ, by Theorem 3.19.

Every operator has SVEP at the boundary of the spectrum, and since σ(C∗p) = σ(Cp) = Γq it then follows that
Cp
∗ has SVEP at λ precisely when λ < int Γq. Choose 1 < p′ < p < ∞ and let q′ be such that 1/p′ + 1/q′ = 1.

Then 1 < q < q′ < ∞. If we denote by A : ℓq → ℓq′ the natural inclusion then we have C∗p′A = AC∗p and
clearly A is an injective operator with dense range, hence C∗p ≺ C∗p′ . As noted before the operator C∗p has
SVEP at every point outside of Γq, in particular C∗p has SVEP at the points λ ∈ Γq′ \ Γq, while C∗p′ fails SVEP
at the points λ ∈ Γq′ \ Γq which do not belong to the boundary of Γq′ .
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The following permanence results require a rather technical work, the reader can be find the proof of
these results in [68, Chapter 3].

Theorem 4.9. Quasi-nilpotent equivalence preserves SVEP. Moreover, quasi-nilpotent equivalent operators have the
same local spectra, the same surjectivity spectrum, the same approximate point spectrum, and the same spectrum.
Furthermore, if T and S are quasi-nilpotent equivalent then the identityXT(Ω) = XS(Ω) holds for every closed subset
Ω of C.

Theorem 4.9 then implies that the identity XT(Ω) = XS(Ω) holds for every closed subsetΩofC. Moreover,
Since by Theorem 1.9 an operator T ∈ L(X) has SVEP precisely when XT(∅) = {0}, and since quasi-nilpotent
equivalence preserves the analytic spectral subspaces, it is clear that SVEP is stable under quasi-nilpotent
equivalence. If there exists an integer n ∈N for which C(S,T)n(I) = C(T, S)n(I) = 0, then the operators S and
T are said to be nilpotent equivalent. For S,T ∈ L(X) with ST = TS, it is easily seen that

C(S,T)n(I) = (S − T)n for all n ∈N.

Thus, in this case, S and T are quasi-nilpotent equivalent precisely when S − T is quasi-nilpotent, while S
and T are nilpotent equivalent if and only if S − T is nilpotent.

Theorem 4.10. [16] Suppose that the operators S,T ∈ L(X) are nilpotent equivalent, and let λ ∈ C. Then T has
SVEP at λ precisely when S does. In particular, if T has SVEP at λ, and if N ∈ L(X) is nilpotent and satisfies
TN = NT, then also T +N has SVEP at λ.

We know that localized SVEP is stable under commuting quasi-nilpotent perturbations. A natural
question is if the SVEP at a point is preserved under under quasi-nilpotent equivalence. Although we do
not know the answer to this question in general, we can handle certain important special cases.

Nilpotent operators are special cases of algebraic operators. Recall that an operator K ∈ L(X) is said to
be algebraic if there exists a non-trivial complex polynomial h such that h(K) = 0. In addition to nilpotent
operators, examples of algebraic operators are idempotent operators and operators for which some power
has finite-dimensional range. Note that if K is algebraic, by the classical spectral mapping theorem we have
h(σ(K)) = σ(h(K)) = {0}, so the spectrum σ(K) is finite.

If T ∈ L(X) has SVEP at a point λ, then it may be tempting to conjecture that T + K has SVEP at λ for
every algebraic operator K ∈ L(X) that commutes with T. However, this cannot be true in general. Indeed,
in the example given in Remark 4.3, the operator K := −λ0I is obviously algebraic, T has SVEP at 0 while
T + K does not have SVEP at 0. Nevertheless, we obtain the following result.

Theorem 4.11. [16] Let T,K ∈ L(X) be commuting operators, suppose that K is algebraic, and let h be a non-zero
polynomial for which h(K) = 0. If T has SVEP at each of the zeros of h, then T − K has SVEP at 0. In particular, if T
has SVEP, then so does T + K.

The case of commuting quasi-nilpotent equivalence seems to be more complicated. In the next theorem
we assume that H0(λI − T) ∩ XT(∅) = {0}. This condition, as it has been Theorem 3.8, is stronger than T has
SVEP at λ.

Theorem 4.12. [16] Suppose that T ∈ L(X) satisfies H0(λI − T) ∩ XT(∅) = {0} for some λ ∈ C, and let S ∈ L(X) be
quasi-nilpotent equivalent to T. Then S has SVEP at λ.

The SVEP at a point is preserved under quasi-nilpotent equivalence if we assume that λI − T either
admits a generalized Kato decomposition or is quasi-Fredholm.

Corollary 4.13. Let S,T ∈ L(X) be quasi-nilpotent equivalent operators, let λ ∈ C, and suppose that λI − T either
admits a generalized Kato decomposition or is quasi-Fredholm. If T satisfies SVEP at λ, then so does S.
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We finally address the permanence of localized SVEP for the adjoint T∗ of an operator T ∈ L(X). The
condition H0(λI−T)+K(λI−T) = X may be thought of as being dual to the condition H0(λI−T)∩K(λI−T) = {0},
and entails the SVEP for T∗ at λ, by Theorem 3.8. These observations concerning the localized SVEP will be
improved in the following result.

Theorem 4.14. [16] For every pair of quasi-nilpotent equivalent operators S,T ∈ L(X) and arbitrary λ ∈ C, the
following assertion hold:

(i) if K(λI − T) +H0(λI − T) is norm dense in X, then S∗ has SVEP at the point λ.
(ii) if H0(λI − T∗) + K(λI − T∗) is weak-*-dense in X∗, then S has SVEP at the point λ.

5. Weyl and Browder spectra under perturbations

In this section we prove several perturbation result concerning the spectra relative to some important
classes of operators in Fredholm theory, some of them have been already introduced in the previous sections.
Recall that a bounded operator T ∈ L(X) is said to be a Weyl operator, T ∈W(X), if T is a Fredholm operator
having index 0. The classes of upper semi-Weyl and lower semi-Weyl operators are defined, respectively:

W+(X) := {T ∈ Φ+(X) : ind T ≤ 0},

W−(X) := {T ∈ Φ−(X) : ind T ≥ 0}.
Clearly, W(X) =W+(X) ∩W−(X). The Weyl spectrum is defined as

σw(T) := {λ ∈ C : λI − T <W(X)},

the upper semi-Weyl spectrum is defined as

σuw(T) := {λ ∈ C : λI − T <W+(X)},

and the lower semi-Weyl spectrum is defined as

σlw(T) := {λ ∈ C : λI − T <W−(X)}.

By duality we have σw(T) = σw(T∗) and

σuw(T) = σlw(T∗) and σlw(T) = σuw(T∗).

Clearly, every Browder (respectively, upper semi-Browder, lower semi-Browder) operator T ∈ L(X) is
Weyl (respectively, upper semi-Weyl, lower semi-Weyl), by Theorem 2.7, so σw(T) ⊆ σb(T), σuw(T) ⊆ σub(T)
and σlw(T) ⊆ σlb(T). Moreover, by duality, σb(T) = σb(T∗) and

σub(T) = σlb(T∗) and σlb(T) = σub(T∗).

We now turn to the stability of semi-Browder spectra, or more generally, of the essentially semi-regular
spectrum under commuting Riesz perturbations. In the next lemma we collect some other basic facts about
Riesz operators that will be used in the rest of the chapter.

Lemma 5.1. Let R ∈ L(X) be a Riesz operator. Then we have
(i) R∗ is a Riesz operator.
(ii)If M is a closed R-invariant subspace of R then both the restriction R|M and the operator R̃ : X/M → X/M

induced by R are Riesz.

Semi-Browder operators are stable under commuting Riesz perturbations:
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Theorem 5.2. [82] Let T ∈ L(X) and R a Riesz operator such that TR = RT. Then we have:
(i) T ∈ B+(X)⇔ T + R ∈ B+(X).
(ii) T ∈ B−(X)⇔ T + R ∈ B+(X).
(i) T ∈ B(X)⇔ T + R ∈ B(X).

Proof. (i) Let T be upper semi-Browder, so p(T) < ∞ and this is equivalent to saying that T has SVEP at 0,
by Theorem 3.18. By Theorem 4.2 then T +R has SVEP at 0, and since T +R is upper semi-Fredholm it then
follows that p(T+R) < ∞, so T+R is upper semi-Browder. The converse implication follows by symmetry.

(ii) The proof is analogous to that of part (i). Let T be lower semi-Browder, so q(T) < ∞ and this is
equivalent to saying that T∗ has SVEP at 0, by Theorem 3.19. The dual of a Riesz operator is also Riesz.
By Theorem 4.2 it then follows that T∗ + R∗ has SVEP at 0, and since T + R is lower semi-Fredholm it then
follows that q(T + R) < ∞, so T + R is lower semi-Browder.

(iii) Clear.

Corollary 5.3. The Browder spectra σub(T), σlb(T), and σb(T) are stable under commuting Riesz perturbations.

In the particular case of bounded below, or surjective, operators we can say something more:

Theorem 5.4. Suppose that T ∈ L(X) and R ∈ L(X) a Riesz operator commuting with T. Then
(i) If T is bounded below then T + K ∈ B+(X). Moreover,

T(ker (T + R)n) = ker (T + R)n for all n ∈N.

(ii) If T is onto then T + K ∈ B(X). Moreover,

T−1((T + R)n(X)) = (T + R)n(X) for all n ∈N.

Proof. (i) The first assertion is clear by Theorem 5.2, since T ∈ B+(X).
Define S := T+R. We have Sn ∈ Φ+(X) for every n ∈N, so ker Sn is finite dimensional. If x ∈ ker Sn then

Tx ∈ ker Sn, since (T + R)nTx = T(T + R)nx = 0, hence ker Sn is T-invariant. Furthermore, the restriction of
T to ker Sn is injective, since T is bounded below, so T maps ker Sn onto itself.

(ii) The first assertion is clear by Theorem 5.2, since T ∈ B−(X).
Let S := T +R. Then Sn ∈ Φ−(X) for every n ∈N, so codim Sn(X) = dim X/Sn(X) < ∞. Consider the map

T̂ : X/Sn(X)→ X/Sn(X) induced by T , defined by T̂x̂ := T̂x for all x̂ := x + Sn(X). Since T is onto, for every
y ∈ X there exists an element z ∈ X such that y = Tz, and therefore, ŷ = T̂ẑ. Hence T̂ is onto. Since X/Sn(X)
is finite dimensional it then follows that T̂ is also injective, and this implies that Tx ∈ Sn(X) if and only if
x ∈ Sn(X). Consequently, T−1(Sn(X)) = Sn(X).

Lemma 5.5. Suppose that T ∈ L(X) is essentially semi-regular. Then the operator T̃ : X/T∞(X) → X/T∞(X) is
upper semi-Browder.

Proof. Let (M,N) be the corresponding Kato decomposition for which X = M ⊕ N, T|M is semi-regular,
T|N nilpotent with dim N < ∞. Clearly, T∞(X) = (T|M)∞(M) ⊆ M. Moreover, T∞(X) is closed and
T(T∞(X)) = T∞(X). Let k ≥ 1 and x = x1 ⊕ x2 satisfies Tkx ∈ T∞(X). Then (T|M)x2 ∈ T∞(X), thus
x ∈ N + T∞(X) and dim ker Tk ≤ dim N. Consequently, N∞(T̃) ≤ dim N < ∞. Let π : X → X/T∞(X) be the
canonical projection. As T∞(X) ⊆ T(X) and the range of T̃ is the set {Tx+T∞(X), x ∈ X} = π(T(X)), the range
of T̃ is closed, hence T̃ is upper semi-Browder.

Also the class of essentially semi-regular operators is stable under Riesz commuting perturbations:

Theorem 5.6. [65] Suppose that T,K ∈ L(X) commutes, T is essentially semi-regular and K is a Riesz operator.
Then T + K is essentially semi-regular.
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Proof. The subspace T∞(X) is closed. Set T̂ := T|T∞(X) and let T̃ : X/T∞(X) → X/T∞(X) be the operator
induced by T. Observe that TS = ST entails that S(T∞(X)) ⊆ T∞(X), so T∞(X) is both T-invariant and S-
invariant. Since T has topological uniform descent then Theorem 2.17 implies that T̂ is onto. The restriction
Ŝ := S|T∞(X) is Riesz, and since T̂Ŝ = ŜT̂, Theorem 5.4 entails that T̂ + Ŝ is lower semi-Browder. Now, let T̃
and S̃ denote the induced mappings on X/T∞(X), by T and S respectively. From Lemma 5.5 we know that
T̃ is upper semi-Browder, S̃ is Riesz and S̃T̃ = T̃S̃, thus, by Theorem 5.2, T̃ + S̃ is upper semi-Browder. By
Theorem 2.8, applied to T + S, we then conclude that T + S is essentially semi-regular.

Denote by
σes(T) := {λ ∈ C : λI − T is not essentially semi-regular}

the essentially semi-regular spectrum. Obviously, σes(T) is a subset of the semi-regular spectrum σse(T).

Theorem 5.7. [78, §21], [81] Let T ∈ L(X).
(i) σes(T) is a non-empty compact subset. In particular, σes(T) contains the boundary of the essential spectrum

σe(T).
(ii) If K ∈ L(X) is finite-dimensional (not necessarily commuting) or a commuting Riesz operator then σes(T) =

σes(T + K).
(iii) σes(T) =

∩
σse(T + K), where the intersection is taken over all Riesz operators commuting with T, or

equivalently the intersection is taken over all finite rank operators commuting with T.

Essentially semi-regular operators having finite ascent, or finite descent, are also stable under Riesz
commuting perturbations:

Theorem 5.8. [19] Let T ∈ L(X) is essentially semi-regular and K ∈ L(X) a Riesz operator commuting with T. Then

(i) T has finite ascent if and only if T + K has finite ascent.
(ii) T has finite descent if and only if T + K has finite descent.

Proof. (i) Suppose that T has finite ascent and K a Riesz operator commuting with T. We know that the
condition p(T) < ∞ entails that T has SVEP at 0. Hence T + K has SVEP at 0, by Theorem 4.2. But T + K is
essentially semi-regular, by Theorem 5.6, in particular has topological uniform descent. The SVEP of T + K
at 0 is then equivalent to saying that p(T + K) < ∞, by Theorem 3.18. The converse may be obtained by
symmetry from the equality p(T) = p((T + K) − K) = p(T + K), since T + K commutes with K.

The proof of part (ii) is analogous: if T has finite descent and K is Riesz, then T∗ has SVEP at 0, hence,
by Theorem 4.2, T∗ + K∗ has SVEP at 0, since K∗ is a Riesz operator, and K∗ commutes with T∗. Now, T + K
is essentially semi-regular, always by Theorem 5.6, and hence T∗ + K∗ is essentially semi-regular, see [1,
Corollary 1.49], in particular has topological uniform descent. The SVEP of T∗ + K∗ at 0 then implies, by
Theorem 3.18, that q(T + K) < ∞. The converse may be obtained always by symmetry.

Theorem 5.9. [1, Theorem 3.39] For a bounded operator T on a Banach space X, the following assertions are
equivalent:

(i) T is a Weyl operator;
(ii) There exist K ∈ F (X) and an invertible operator S ∈ L(X) such that T = S + K is invertible;
(iii) There exist K ∈ K (X) and an invertible operator S ∈ L(X) such that T = S + K is invertible.

By means of a simple modification of the proof of Theorem 5.9 we easily obtain the following character-
izations of upper and lower Weyl operators::

Theorem 5.10. [1, p. 135] Let T ∈ L(X). Then we have
(i) T ∈ W+(X) if and only if there exist K ∈ K (X) and a bounded below operator S such that T = S + K.
(ii) T ∈ W−(X) if and only if there exist K ∈ K (X) and a surjective operator S such that T = S + K.
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As a simple consequence of Theorem 5.9 and Theorem 5.10, the Weyl spectra may be characterized in
terms of commuting perturbations as follows.

Corollary 5.11. Let T ∈ L(X). Then we have

σuw(T) =
∩

K∈K (X)

σap(T + K), σlw(T) =
∩

K∈K (X)

σs(T + K), (15)

and

σw(T) =
∩

K∈K (X)

σ(T + K). (16)

The next result shows that the Browder spectra may be obtained by adding to Weyl spectra the cluster
points of parts of the spectrum.

Theorem 5.12. [1, Theorem 3.65] For a bounded operator T ∈ L(X) the following statements hold:
(i) σub(T) = σuw(T) ∪ acc σap(T).
(ii) σlb(T) = σlw(T) ∪ acc σs(T).
(iii) σb(T) = σw(T) ∪ acc σ(T).

If either T or T∗ has SVEP we can say more:

Theorem 5.13. [1, Theorem 3.66] Suppose that T ∈ L(X).
(i) If T has SVEP then σw(T) = σb(T) = σlb(T).
(ii) If T∗ has SVEP then σw(T) = σb(T) = σub(T).
(iii) If either T or T∗ has the SVEP we have

σuw(T) = σub(T) and σlw(T) = σlb(T).

We now give a characterization of semi-Browder operators by means of the SVEP.

Theorem 5.14. [1, Theorem 3.45] For an operator T ∈ L(X), X a Banach space, the following statements are
equivalent:

(i) T ∈ B+(X);
(ii) There exist a K ∈ F (X) and a bounded below operator S ∈ L(X) such that TK = KT and T = S+K is bounded

below ;
(iii) There exists a K ∈ K (X) and a bounded below operator S ∈ L(X) such that TK = KT and T = S + K;
(iv) T is essentially semi-regular and T has the SVEP at 0.

The next result is dual to that given in Theorem 5.14.

Theorem 5.15. [1, Theorem 3.45] Let T ∈ L(X), X a Banach space. Then the following properties are equivalent:
(i) T ∈ B−(X);
(ii) There exist a K ∈ F (X) and a surjective operator S such that TK = KT and T = S + K;
(iii) There exist a K ∈ K (X) and a surjective operator S such that TK = KT and T = S + K;
(iv) T is essentially semi-regular and T∗ has the SVEP at 0.

Combining Theorem 5.14 and Theorem 5.15 we readily obtain the following characterizations of Browder
operators.
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Theorem 5.16. Let T ∈ L(X), X a Banach space. Then the following properties are equivalent:
(i) T ∈ B(X);
(ii) There exist K ∈ F (X) and an invertible operator S such that TK = KT and T = S + K;
(iii) There exist K ∈ K (X) and an invertible operator S such that TK = KT and T = S + K;
(iv) T is essentially semi-regular, both T and T∗ have SVEP at 0.

From Theorem 5.14, Theorem 5.15 and Theorem 5.16 we easily obtain:

Corollary 5.17. Let T ∈ L(X). Then we have

σub(T) =
∩

K∈K (X),KT=TK

σap(T + K), σlb(T) =
∩

K∈K (X),KT=TK

σs(T + K), (17)

and

σb(T) =
∩

K∈K (X),KT=TK

σ(T + K). (18)

It is evident that the concepts of Weyl operators and Browder operators may be extended to B-Fredholm
theory. Precisely, if Tn(X) is closed and T[n] : T|Tn(X) is upper semi-Weyl (respectively, lower semi-Weyl,
Weyl), then is said to be upper semi B-Weyl, (respectively, lower semi B-Weyl, B-Weyl). By σubw(T), σlbw(T),
σbw(T), we denote the upper semi B-Weyl spectrum, the lower semi B-Weyl spectrum and the B-Weyl
spectrum, respectively. Analogously, T ∈ L(X) is said to be upper semi B-Browder, (respectively, lower semi
B-Browder, B-Browder ) if for some integer n ≥ 0 the range Tn(X) is closed and T[n] is upper semi-Browder
(respectively, lower semi-Browder, Browder.) By σubb(T), σlbb(T), σbb(T), we denote the upper semi B-
Browder spectrum, the lower semi B-Browder spectrum and the B-Browder spectrum, respectively.

Every bounded below operator T ∈ L(X) is upper semi-Browder, while every surjective operator T ∈ L(X)
is lower semi Browder, so every left Drazin invertible operator is upper semi B-Browder, while every right
Drazin invertible operator is lower semi B-Browder. Actually, we have the following equivalences:

Theorem 5.18. [5] If T ∈ L(X) then the following equivalences hold:
(i) T is upper semi B-Browder⇔ T is left Drazin invertible.
(ii) T is lower semi B-Browder⇔ T if T is right Drazin invertible.
Consequently, T is B-Browder if and only if T is Drazin invertible.

The left Drazin spectrum is defined as

σld(T) := {λ ∈ C : λI − T is not left Drazin invertible},

the right Drazin spectrum is defined as

σrd(T) := {λ ∈ C : λI − T is not right Drazin invertible},

and the Drazin spectrum is defined as

σd(T) := {λ ∈ C : λI − T is not Drazin invertible}.

Obviously, σd(T) = σld(T) ∪ σrd(T).
The relationship between the B-Browder spectra and the B-Weyl spectra is similar to that observed for

the Browder spectra and Weyl spectra, established in Theorem 5.12:

Theorem 5.19. [5] If T ∈ L(X) then the following equalities hold:
(i) σld(T) = σubw(T) ∪ acc σap(T).
(ii) σrd(T) = σlbw(T) ∪ acc σs(T).
(iii) σd(T) = σbw(T) ∪ acc σ(T).
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The following result shows that many of the spectra considered before coincide whenever T or T∗ has
SVEP.

Theorem 5.20. Suppose that T ∈ L(X). Then the following statements hold:

(i) If T has SVEP then

σlbw(T) = σlbb(T) = σd(T) = σbw(T). (19)

(ii) If T∗ has SVEP then

σubw(T) = σubb(T) = σbw(T) = σd(T). (20)

(iii) If both T and T∗ have SVEP then

σubw(T) = σlbw(T) = σbw(T) = σd(T). (21)

6. polaroid type operators

The concept of pole may be sectioned as follows:

Definition 6.1. Let T ∈ L(X), X a Banach space. If λI − T is left Drazin invertible and λ ∈ σap(T) then λ is said
to be a left pole. A left pole λ is said to have finite rank if α(λI − T) < ∞. If λI − T is right Drazin invertible and
λ ∈ σs(T) then λ is said to be a right pole. A right pole λ is said to have finite rank if β(λI − T) < ∞.

Clearly, λ is pole of the resolvent if and only λ if is both a right pole and a left pole.
In the sequelH(Ω,Y), Y any Banach space, denotes the Fréchet space of all analytic functions from the

open setΩ ⊆ C to Y. We have proved in Theorem 1.32 that if λ ∈ iso σap(T) then H0(λI − T) is closed. If λ is
a left pole we can say more:

Theorem 6.2. [18] Let T ∈ LX), X a Banach space.

(ii) If λ is a left pole of T ∈ L(X) then λ is an isolated point of σap(T) and there exists ν ∈N such that

H0(λI − T) = ker (λI − T)ν.

Moreover, λ is a left pole of finite rank then H0(λI − T) is finite-dimensional.

(ii) If λ is a right pole of T ∈ L(X) then λ is an isolated point of σs(T), and there exists ν ∈N such that

K(λI − T) = (λI − T)ν(X).

Moreover, λ is a right pole of finite rank if and only if K(λI − T) has finite codimension.

Remark 6.3. It should be noted that a left pole, as well as a right pole, need not to be an isolated point of
σ(T). For instance, let R ∈ ℓ2(N) be the classical unilateral right shift and

U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ ℓ2(N).

Define T := R ⊕U. Then σ(T) = D, D the closed unit disc of C. Moreover, σap(T) = Γ ∪ {0}, Γ the unit circle,
and T is upper semi-Browder, in particular left Drazin invertible. Hence 0 is a left pole (of finite rank, since
α(T) = 1) but 0 < iso σ(T) = ∅. Note that 0 is a right pole of the dual T∗, but is not an isolated point of
σ(T∗) = σ(T) = D.

In the case of Hilbert space operators we have much more. .
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Theorem 6.4. [18] Let T ∈ L(H), H a Hilbert space.
(i) λ ∈ σap(T) is a left pole if and only if there exist two T-invariant closed subspaces M, N such that H =M⊕N,

λI − T|M is bounded below, λI − T|N is nilpotent. In this case N = H0(λI − T).
(ii) If λ ∈ σs(T) then λ is a right pole if and only if there exist two T-invariant closed subspaces M, N such that

H =M ⊕N, λI − T|M is onto, λI − T|N is nilpotent. In this case M = K(λI − T).

Corollary 6.5. If T ∈ L(H), H a Hilbert space, then λ is a left pole of finite rank if and only if the exists two closed
T-invariant subspaces M,N such that X =M⊕N, N is finite-dimensional, λI−T|M is bounded below and λI−T|N
is nilpotent. Analogously, λ is a right pole of finite rank if and only if there exist two closed T-invariant subspaces
M,N such that X =M ⊕N, M is finite-codimensional, λI − T|M is onto and λI − T|N is nilpotent

We now introduce some classes of operators which have a very nice structure.

Definition 6.6. A bounded operator T ∈ L(X) is said to be left polaroid if every λ ∈ isoσap(T) is a left pole of
the resolvent of T. T ∈ L(X) is said to be right polaroid if every λ ∈ isoσs(T) is a right pole of the resolvent of T.
T ∈ L(X) is said to be polaroid if every λ ∈ iso σ(T) is a pole of the resolvent of T. A bounded operator T ∈ L(X) is
said to be a-polaroid if every λ ∈ iso σap(T) is a pole of the resolvent of T.

The concept of left and right polaroid are dual each other:

Theorem 6.7. [4] If T ∈ L(X) then λ is a left pole (respectively, right pole) of the resolvent of T if and only if λ is a
right pole (respectively, left pole) of the resolvent of T∗. Consequently, T is left polaroid (respectively, right polaroid,
polaroid) if and only if T∗ is right polaroid (respectively, left polaroid, polaroid).

Proof. The proof is immediate from Theorem 2.45, taking into account that σap(T) = σs(T∗) and σs(T) =
σap(T∗).

The condition of being polaroid, may be characterized by means of the quasi-nilpotent part as follows:

Theorem 6.8. [9] If T ∈ L(X) the following statements hold:
(i) T is polaroid if and only if there exists p := p(λI − T) ∈N such that

H0(λI − T) = ker (λI − T)p for all λ ∈ isoσ(T). (22)

(ii) If T is left polaroid then there exists p := p(λI − T) ∈N such that

H0(λI − T) = ker (λI − T)p for all λ ∈ iso σap(T). (23)

The relationships between the polaroid conditions are established in the following theorem.

Theorem 6.9. If T ∈ L(X) the following implications hold:

T a-polaroid⇒ T left polaroid⇒ T polaroid

Furthermore, if T is right polaroid then T is polaroid.

Proof. The first implication is clear, since a pole is always a left pole. Assume that T is left polaroid and let
λ ∈ iso σ(T). It is known that the boundary of the spectrum is contained in σa(T), in particular every isolated
point of σ(T), thus λ ∈ iso σa(T) and hence λ is a left pole of the resolvent of T. By part (ii) of Theorem 6.8
then there exists a natural ν := ν(λI − T) ∈ N such that H0(λI − T) = ker (λI − T)ν. But λ is isolated in σ(T)
so, by part (i) of 6.8, λ is is a pole of the resolvent, i.e. T is polaroid.

To show the last assertion suppose that T is right polaroid. By Theorem 6.7 then T∗ is left polaroid and
hence, by the first part, T∗ is polaroid, or equivalently T is polaroid.

The following example provides an operator that is left polaroid but not a-polaroid.
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Example 6.10. Let R ∈ ℓ2(N) be the unilateral right shift defined as

R(x1, x2, . . . ) := (0, x1, x2, · · · ) for all (xn) ∈ ℓ2(N),

and
U(x1, x2, . . . ) := (0, x2, x3, · · · ) for all (xn) ∈ ℓ2(N).

If T := R⊕U thenσ(T) = D(0, 1), so iso σ(T) = ∅. Moreover, σap(T) = Γ∪{0}, Γ the unit circle, so iso σap(T) = {0}.
Since R is injective and p(U) = 1 it then follows that p(T) = p(R) + p(U) = 1. Furthermore, T ∈ Φ+(X) and
hence T2 ∈ Φ+(X), so that T2(X) is closed. Therefore 0 is a left pole and hence T is left polaroid. On the other
hand q(R) = ∞, so that q(T) = q(R) + q(U) = ∞, so T is not a-polaroid. Note that T is also polaroid.

The following example provides an operator that is polaroid but not left polaroid.

Example 6.11. Let R denote the right shift on ℓ2(N) defined by

R(x1, x2, . . . ) := (0, x1, x2, . . . ) (xn) ∈ ℓ2(N),

and let Q be the weighted left shift defined by

Q(x1, x2, . . . ) := (x2/2, x3/3, . . . ) (xn) ∈ ℓ2(N).

Q is a quasi-nilpotent operator, σ(R) = D(0, 1), where D(0, 1) denotes the closed unit disc ofC, and σap(R) = Γ,
where Γ is the unit circle of C. Moreover, if en := (0, ..., 0, 1, 0...), where 1 is the n-th term, then en+1 ∈ ker Qn+1

while en+1 < ker Qn for every n ∈N, so p(Q) = ∞.
Define T := R ⊕ Q on X := ℓ2(N) ⊕ ℓ2(N). Clearly, σ(T) = D(0, 1), and σap(T) = Γ ∪ {0}. We have

p(T) = p(R) + p(Q) = ∞, so 0 is not a left pole. Therefore, T is polaroid, since iso σ(T) = ∅, but not left
polaroid. Evidently, the dual T∗ is polaroid but not right polaroid, since q(T∗) = ∞.

In the case of Hilbert space operators T ∈ L(H) instead of the dual T∗ it is more appropriate to consider
the Hilbert adjoint T′. By means of the classical Fréchet- Riesz representation theorem we know that if U is
the conjugate-linear isometry that associates to each y ∈ H the linear form x→ ⟨x, y⟩ then

λI − T′ = (λI − T)′ = U−1(λI − T)∗U. (24)

This obviously implies that σap(T′) = σap(T∗) and σs(T′) = σs(T∗).

Theorem 6.12. [4] If T ∈ L(H), H a Hilbert space, then the following equivalences hold:
(i) T is left polaroid if and only if T′ is right polaroid.
(ii) T is right polaroid if and only if T′ is left polaroid.
(iii) T is polaroid if and only if T′ is polaroid.

In presence of SVEP the polaroid conditions coincide. Precisely, we have

Theorem 6.13. [4] Let T ∈ L(X). Then we have
(i) If T∗ has SVEP at at every λ < σuw(T) then σap(T) = σ(T). Furthermore, the properties of being polaroid,

a-polaroid and left polaroid for T are all equivalent.
(ii) If T has SVEP at every λ < σlw(T) then σs(T) = σ(T). Furthermore,the properties of being polaroid, a-polaroid

and left polaroid for T∗ are all equivalent.

Let Hnc(σ(T)) denote the set of all analytic functions, defined on an open neighborhood of σ(T), such
that f is nonconstant on each of the components of its domain. Define, by the classical functional calculus,
f (T) for every f ∈ Hnc(σ(T)).
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Theorem 6.14. [3] For an operator T ∈ L(X) the following statements are equivalent.
(i) T is polaroid;
(ii) f (T) is polaroid for every f ∈ Hnc(σ(T));
(iii) there exists a non-trivial polynomial p such that p(T) is polaroid;
(iv) there exists f ∈ Hnc(σ(T)) such that f (T) is polaroid.

Theorem 6.15. [18] If T ∈ L(X) and f ∈ Hnc(σ(T)), then λ is a left pole (respectively, right pole) of f (T) if and only
if there exists a left pole (respectively, a right pole) µ of T such that f (µ) = λ.

Proof. We show that f (Γl(T)) = Γl( f (T)). It is well-known that the spectral mapping theorem holds for
σap(T). Moreover, Γl(T) and σld(T) are disjoint. We have

f (σap(T)) = f (Γl(T) ∪ σld(T)) = f (Γl(T)) ∪ f (σld(T)).

On the other hand,
σap( f (T)) = Γl( f (T)) ∪ σld( f (T)) = Γl( f (T)) ∪ f (σld(T)),

and since f (σap(T)) = σap( f (T)) it then follows that f (Γl(T)) = Γl( f (T)).
The case of right poles may be proved in a similar way. To prove that f (Γr(T)) = Γr( f (T)), just replace

Γl(T) by Γr(T) and σap(T) by σs(T).

A natural question is if the analogous of Theorem 6.14 holds for left polaroid operators. By using the
same arguments of the proof of Theorem 6.14 (just use the spectral mapping theorem for σap(T) and σs(T))
we easily obtain that the implication

T left polaroid⇒ f (T) left polaroid,

holds for every f ∈ Hnc(σ(T)), and a a similar implication holds also for right polaroid operators.
Denote byH i

nc(σ(T)) the set of all f ∈ Hnc(σ(T)) such that f is injective.

Theorem 6.16. [3] For an operator T ∈ L(X) the following statements are equivalent.
(i) T is left polaroid;
(ii) f (T) is left polaroid for every f ∈ H i

nc(σ(T));
(iii) there exists f ∈ H i

nc(σ(T)) such that f (T) is left polaroid.

Proof. We have only to show that (iii)⇒ (i). Let λ0 be an isolated point of σap(T) and let µ0 := f (λ0) As in the
proof of Theorem 6.14 it then follows that µ0 ∈ iso σap( f (T)), so µ0 is a left pole of f (T). Now, by Theorem
6.15 there exists a left pole η of T such that f (η) = µ0 and since f is injective then η = λ0. Therefore, T is left
polaroid.

Definition 6.17. An operator T ∈ L(X) is said to be hereditarily polaroid if every part of T is polaroid.

A simple example shows that polaroid operator need not be necessarily hereditarily polaroid. Let
T := R ⊕ Q on H ⊕ H, where H := ℓ2(N), R is the right shift and Q is quasi-nilpotent. Then σ(T) is the
unit disc, so iso σ(T) is empty and hence T is polaroid. On the other hand, if M := {0} ⊕ ℓ2(N), then T|M
is not polaroid, since Q is not polaroid. It is easily seen that the property of being hereditarily polaroid is
similarity invariant, but is not preserved by a quasi-affinity.

The class of hereditarily polaroid operators is substantial; it contains several important classes of oper-
ators. The first class that we consider is the following one introduced by Oudghiri [79].

Definition 6.18. A bounded operator T ∈ L(X) is said to belong to the class H(p) if there exists a natural p := p(λ)
such that:

H0(λI − T) = ker (λI − T)p for all λ ∈ C. (25)
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The property H(p) is inherited by the restrictions on closed invariant subspaces:

Theorem 6.19. Let T ∈ L(X) be a bounded operator on a Banach space X. If T has the property H(p) and Y is a
closed T-invariant subspace of X then T|Y has the property H(p).

Proof. If H0(λI − T) = ker(λI − T)p then

H0((λI − T)|Y) ⊆ ker(λI − T)p ∩ Y = ker((λI − T)|Y)p,

from which we obtain H0((λI − T)|Y) = ker((λI − T)|Y)p.

The following result is an easy consequence of Theorem 6.19.

Corollary 6.20. Every H(p)-operator T is hereditarily polaroid.

The next result shows that property H(p) is preserved by quasi-affine transforms.

Theorem 6.21. If S ∈ L(Y) has property H(p) and T ≺ S, then T has property H(p)

Proof. We consider the case that p := (λI − T) = 1 for all λ ∈ C. Suppose S has property H(1), i. SA = AT,
with A injective. If λ ∈ C and x ∈ H0(λI − T) then

∥(λI − S)nAx∥1/n = ∥A(λI − T)nx∥1/n ≤ ∥A∥1/n∥(λI − T)nx∥1/n,

from which it follows that Ax ∈ H0(λI − S) = ker (λI − S). Hence A(λI − T)x = (λI − S)Ax = 0 and, since A is
injective, this implies that (λI−T)x = 0, i.e. x ∈ ker (λI−T). Therefore H0(λI−T) = ker (λI−T) for all λ ∈ C.
The more general case of H(p)-operators is proved by a similar argument.

The class of H(p)-operators is very large. To see this, we first introduce a special class of operators
which has an important role in local spectral theory. Let C∞(C) denote the Fréchet algebra of all infinitely
differentiable complex-valued functions on C

Definition 6.22. An operator T ∈ L(X), X a Banach space, is said to be generalized scalar if there exists a continuous
algebra homomorphismΨ : C∞(C)→ L(X) such thatΨ(1) = I andΨ(Z) = T, where Z denotes the identity function
on C.

The interested reader can be find a a well organized treatment of generalized scalar operators in
[68, Section 1.5]). It should be noted that every quasi-nilpotent generalized scalar operator is nilpotent,
[68, Proposition 1.5.10]. Moreover, if T is generalized scalar then T has the Dunford property (C), i.e.
XT(Ω) is closed for all closed subset Ω ⊆ C, see [68, Theorem 1.5.4 and Proposition 1.4.3]. In particular,
H0(λI − T) = XT({λ} is closed for each λ ∈ C, so every generalized scalar operator has SVEP, by Theorem
3.8.

An operator similar to a restriction of a generalized scalar operator to one of its closed invariant subspaces
is called subscalar.

Theorem 6.23. Every subscalar operator T ∈ L(X) is H(p).

Definition 6.24. An operator T ∈ L(X) is said paranormal if

∥Tx∥ ≤ ∥T2x∥∥x∥ for all x ∈ X,

The restriction T|M of a paranormal operator T ∈ L(X) to a closed subspace M is evidently paranormal .
The property of being paranormal is not translation-invariant. T ∈ L(X) is called totally paranormal if λI − T
is paranormal for all λ ∈ C.

Theorem 6.25. Every totally paranormal operator has property H(1).
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Theorem 6.23 implies that some important classes of operators are H(p). In the sequel we list some of
these classes:

(a) Hyponormal operators. A bounded operator T ∈ L(H) on a Hilbert space is said to be hyponormal

∥T′x∥ ≤ ∥Tx∥ for all x ∈ H,

or equivalently T′T ≥ TT′. By an important result due to Putinar [80], every hyponormal operator is similar
to a subscalar operator, see also [68, section 2.4], so hyponormal operators are H(p). Actually, we have more:
every hyponormal operator is H(1) since, as it is easy to verify, is also totally paranormal. An example of
hyponormal operator on ℓ2(N) is given by a weighted right shift where the corresponding weight sequence
is increasing. Subnormal operators and quasi-normal operators are hyponormal, see [39] or [50], so these
operators are H(1).

For T ∈ L(H) let T = W|T| be the polar decomposition of T. Then R := |T|1/2W|T|1/2 is said the Aluthge
transform of T. If R = V|R| is the polar decomposition of R, define T̃ := |R|1/2V|R|1/2.

(b) Log-hyponormal operators. An operator T ∈ L(H) is said to be log-hyponormal if T is invertible and
satisfies

log (T∗T) ≥ log (TT∗).

If T is log-hyponormal then T̃ is hyponormal and T = KT̃K−1, where K := |R|1/2|T|1/2, see ([95], [37]). Hence
T is similar to a hyponormal operator and therefore, by Theorem 6.21, has property H(1).

(c) p-hyponormal operators. An operator T ∈ L(H) is said to be be p-hyponormal, with 0 < p ≤ 1, if

(T′T)p ≥ (T′)p.

Every invertible p-hyponormal T is quasi-similar to a log-hyponormal operator and consequently, by
Theorem 6.21, it has property H(1)(([20], [40]). This is also true for p-hyponormal operators which are not
invertible. Every p-hyponormal operator is paranormal, see [21] or [36].

(d) M-hyponormal operators. Recall that T ∈ L(H) is said to be M-hyponormal if there exists M > 0 such
that

TT∗ ≤MT∗T.

Every M-hyponormal operator is subscalar ([68, Proposition 2.4.9]) and hence H(p).

(e) w-hyponormal operators. If T ∈ L(H) and T = U|T| is the polar decomposition, define T̂ := |T| 12 U|T| 12 .
T ∈ L(H) is said to be w-hyponormal if

|T̂| ≥ |T| ≥ |T̂∗|.
Examples of w-hyponormal operators are p-hyponormal operators and log-hyponormal operators. All
w-hyponormal operators are subscalar (together with its Aluthge transformation, see [71]), and hence H(p).

(f) Another important class of polaroid operators is given by the class of all multipliers on a semi-simple
commutative Banach algebra. Given a Banach algebra A, a map T : A → A is said to be a multiplier if
(Tx)y = x(Ty) holds for all x, y ∈ A. For every multiplier of a semi-simple Banach algebra A we have
H0(λI − T) = ker (λI − T) for all λ ∈ C, see [7, Theorem 1.8], so every multiplier is H(1). A very important
example of multiplier is given in the case where A is the semi-simple Banach algebra L1(G), the group
algebra of a locally compact abelian group G with convolution as multiplication. Indeed, in this case to any
complex Borel measure µ on G there corresponds a multiplier Tµ defined by

Tµ( f ) := µ ⋆ f for all f ∈ L1(G),

where

(µ ⋆ f )(t) :=
∫

G
f (t − s)dµ(s).

The classical Helson-Wendel Theorem shows that each multiplier is a convolution operator and the multi-
plier algebra of A := L1(G) may be identified with the measure algebra M(G), see [67, Chapter 0].
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Theorem 6.26. ([11, p. 2445] and [3]) Every paranormal operator on a separable Banach space has SVEP. Paranormal
operators on Hilbert spaces have SVEP. Moreover, every algebraic paranormal operator T ∈ L(X) is hereditarily
polaroid

The class of paranormal operators includes some other classes of operators defined on Hilbert spaces:
(g) p-quasihyponormal operators. In Example (c) it has been observed that every p-hyponormal operator

is paranormal. A Hilbert space operator T ∈ L(H) is said to be p-quasihyponormal for some 0 < p ≤ 1 if

T′|T′|2pT ≤ T′|T|2pT.

Every p-quasi-hyponormal is paranormal [69].
(h) Class A operators An operator T ∈ L(H) is said to be a class A operator if |T2| ≥ |T|2. Every log-

hyponormal operator is a class A operator [49] but the converse is no true, see [50, p. 176]. Every class A
operator is paranormal (an example of a paranormal operator which is not a class A operator can be found
in [50, p. 177]).
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