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Abstract. We describe the main partial positive answers and counterexamples to the pertur-
bation classes problem for semi-Fredholm and Fredholm operators, and point out several related
problems that remain open.

1. Introduction

The study of the perturbation classes for semi-Fredholm and Fredholm operators stemmed from
the abstract approach to integral equations at the beginning of the twentieth century. The main
problems it considers can be described as follows:

(A) Identify the perturbation classes PΦ+, PΦ− and PΦ for the upper semi-Fredholm, lower
semi-Fredholm and Fredholm operators.

(B) Find intrinsic characterizations for each of the perturbation classes PΦ+, PΦ− and PΦ.

(C) Describe the properties of the components PΦ+(X,Y ), PΦ−(X,Y ) and PΦ(X,Y ).

With respect to problem (B), observe that in order to check whether an operator K satisfies
the definition of a perturbation class, we have to study the properties of T + K for T in a family
of operators, which can be unwieldly. An intrinsic characterization is one given in terms of the
action of the operator K itself, like that of the strictly singular operators (Definition 4.4). For
instance, problem (A) is solved for the class of Fredholm operators after the identification of its
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perturbation class with the inessential operators. However, this is not totally satisfactory because
the definition of an inessential operator (Definition 3.5) is not intrinsic. As we will see, these three
problems are interdependent.

In this survey we describe the answers to these problems that have been obtained so far,
specially in the last twenty years, and we point out several problems that remain open. Section 2
provides some historical background for the problem, and Section 3 contains the definitions and
main properties of Fredholm and semi-Fredholm operators, and of their perturbation classes. In
Section 4 we introduce the most important intrinsically-defined classes of operators in connection
with the perturbation classes in Fredholm theory: compact, strictly singular, strictly cosingular
and improjective operators. In Section 5 we show many examples of pairs of Banach spaces for
which the components of the perturbation classes coincide with the corresponding components of
strictly singular, strictly cosingular, or improjective operators. Section 6 collects a selection of
open problems.

Notation: L denotes the class of all bounded linear operators (henceforth, operators) acting
between Banach spaces; L(X,Y ) is the class of all operators into Y whose domain is X. Given
a class of operators A, we refer to A(X,Y ) := A ∩ L(X,Y ) as the component of A in L(X,Y );
we write A(X) instead of A(X,X). The dual of a Banach space X is denoted by X∗, and the
conjugate of an operator T is denoted by T ∗. The range of T ∈ L(X,Y ) is denoted by RanT ,
its kernel by KerT , and its co-kernel is CokerT := Y/R(T ). Given a class A of operators, we
denote Ad := {T : T ∗ ∈ A}. If Z is a closed subspace of X, then JZ ∈ L(Z,X) is the subspace
embedding of Z into X and QZ ∈ L(X,X/Z) is the associated quotient operator. The identity
operator on X is denoted by IX or simply I.

2. Some historical remarks

As it is well explained in [15], the unified solution given by Fredholm to the integral equations
of Abel and Volterra, together with further contributions by Hilbert, led to the formulation of the
famous Fredholm integral equations∫ b

a
K(x, y)u(y) dy = f(x) (first class) (1)

u(x) = f(x) +
∫ b

a
K(x, y)u(y) dy (second class) (2)

where K(x, y) is a kernel function, f(x) is a given function with integrable square and u(x) is the
unknown function. Roughly speaking, the original purpose of integral equations is the study of
the stability of certain physical systems under small perturbations. In the case of the Fredholm
integral equations, those small perturbations are represented by the kernel function: if K(x, y) = 0
for all (x, y), then the system represented in (2) is trivial, while if the kernel K(x, y) is small enough
(in a certain unspecific sense), then u(x) is close enough to f(x) (in the same unspecific sense) and
the system is declared to be stable, in which case the perturbation represented by K is said to be
admissible. In the language of functional analysis, the Fredholm integral equations can be written
as

Ku = f and u = f + Ku, (3)

where K : H −→ H is a compact operator, H is a Hilbert space, f is a given element of H and u
is the unknown. In the second part of equation (3), f is the image of u by the Fredholm operator
I −K, that is, the identity operator perturbed by K. In fact, research on the Fredholm equations
meant the beginning of Functional Analysis.

Once the duality relation in Lp spaces was well understood, the theory of Fredholm operators
was extended to the Banach space setting in a natural way, and this last step introduced different
ways to measure the smallness of a perturbation other than the one provided by the Euclidean
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norm. In this way, the theory of Fredholm and semi-Fredholm operators on Banach spaces and the
problem of their perturbation classes came hand in hand, and although this last question is totally
solved for Fredholm operators on Hilbert spaces, it is still challenging in the context of Banach
spaces.

In 1954, in the context of Banach algebras, Kleinecke introduced the ideal In of inessential
operators as the class of Φ-admissible perturbations, although his results were published almost
ten years later [32]. In 1958, Kato introduced the ideal SS of strictly singular operators as a nat-
ural class of Φ+-admissible perturbations that includes the compact operators [30], and Gohberg,
Markus and Feldman asked for intrinsic characterizations of PΦ+, PΦ− and PΦ [18]; in particu-
lar, they asked if PΦ+ = SS. Pe lczyński introduced the class SC of strictly cosingular operators
as a kind of dual class of SS [37] in 1965, and two years later Vladimirskii proved that SC is a
class of Φ−-admissible perturbations [47]. In 1972, Tarafdar introduced the intrinsically-defined
class Imp of improjective operators and proved that SS + SC ⊂ In ⊂ Imp [44]. He also proved
that many components of Imp coincide with those of SS and SC. Finally, the discovery of the
hereditarily indecomposable spaces allowed to show in [20] that SS ̸= PΦ+ and SC ̸= PΦ− (see
Proposition 4.8).

Let us end this section by observing that the movement from the original framework of Hilbert
spaces to more general Banach spaces is not merely philosophical: the measurement of smallness
of a perturbation by means of norms other than the hilbertian one is very important for technical
branches like signal theory [35].

3. Semi-Fredholm operators and their perturbation classes

We begin with the definition of the three classes of semi-Fredholm operators. We refer to [2]
for a detailed study of these classes.

Definition 3.1. An operator T ∈ L(X,Y ) is said to be:

(i) upper semi-Fredholm if KerT is finite-dimensional and RanT is closed;

(ii) lower semi-Fredholm if CokerT is finite-dimensional and RanT is closed;

(iii) Fredholm if T is both upper semi-Fredholm and lower semi-Fredholm.

It is not difficult to prove that if RanT is finite-codimensional, then it must also be closed,
which makes T lower semi-Fredholm.

The classes of upper semi-Fredholm, lower semi-Fredholm and Fredholm operators will be
respectively denoted by Φ+, Φ− and Φ; hence Φ = Φ+ ∩Φ−. We will also denote Φ± := Φ+ ∪Φ−.
It follows from the basic duality results for operators that T ∈ Φ± if and only if T ∗ ∈ Φ±, and
that in this case dim CokerT = dim KerT ∗ and dim KerT = dim CokerT ∗ .

The index of an operator T ∈ Φ± is defined by

indT := dim KerT − dim CokerT .

Note that indT is finite if and only if T ∈ Φ. Similarly, T ∈ Φ+ if and only if indT < ∞, and
T ∈ Φ− if and only if indT > −∞. The index is a continuous function on each space Φ±(X,Y )
when it is endowed with the norm topology; as such, it is constant on each connected component
of Φ±(X,Y ).

Given an operator T in Φ±(X,Y ), there exists εT > 0 such that T +K ∈ Φ± and ind(T +K) =
indT for all K ∈ L(X,Y ) such that ∥K∥ < εT . The task of looking for the largest possible value
of εT is a local question investigated by the theory of operational quantities (see [23], [24] and
references therein). However, the concept of a perturbation class is of global character:



M. González et al. / FAAC 7 (2) (2015), 75–87 78

Definition 3.2. The perturbation class PS of S ∈ {Φ+,Φ−,Φ} is defined by its components in
L(X,Y ), when S(X,Y ) ̸= ∅, as follows:

PS(X,Y ) := {K ∈ L(X,Y ) : T + K ∈ S(X,Y ) for all T ∈ S(X,Y ) }.

Every operator in PS is called an S-admissible perturbation, and every subclass of PS is called
a class of S-admissible perturbations.

Note that Definition 3.2 is not intrinsic because, in order to determine if K ∈ PS(X,Y ), it is
not enough to check the action of K, but we have to study the properties of all the operators in
the set {T + K : T ∈ S(X,Y ) }. Obviously, an intrinsic characterization for the operators in PS
in terms of its sole action would provide a positive answer to problem (B) in the Introduction.

Let us see the relationship between the three classes PΦ+, PΦ− and PΦ.

Proposition 3.3. The inclusion PΦ+ ∪ PΦ− ⊂ PΦ holds.

The proof of this inclusion is a direct application of the constancy of the index indT on the
connected components of Φ±(X,Y ) [14]. Indeed, observe that given T ∈ Φ±(X,Y ) and K ∈
L(X,Y ) in the corresponding perturbation class, we have T + tK ∈ Φ± for each t ∈ [0, 1], hence
ind(T + K) = indT .

A class A of operators is said to be injective if T ∈ A whenever LT ∈ A for one (and then for
all) isomorphic embedding L; roughly speaking, A is injective when the fact that T ∈ A does not
depend upon the target space of T . In a similar way, A is said to be surjective if T ∈ A whenever
TQ ∈ A for any surjective operator Q.

Proposition 3.4. Given a pair X, Y of Banach spaces, the following statements hold:

(i) PΦ+ is injective but not surjective;

(ii) PΦ− is surjective but not injective;

(iii) PΦ−(X,Y ) and PΦ+(X,Y ) are closed subspaces of L(X,Y );

(iv) PΦ+(X) and PΦ−(X) are two-sided ideals of L(X).

(v) the components of PΦ+ and PΦ− do not determine operator ideals: there is no operator ideal
A such that PΦ+(X) = A(X) for every Banach space X, and neither is there for PΦ−.

The proof of the positive parts of (i) and (ii) is straightforward, and the negative parts are
a consequence of the same properties for the strictly singular and strictly cosingular operators.
Proofs of (iii) and (iv) can be found in [14, page 97], and (v) follows from the results of [20] and
[40, Remark after 26.6.12].

Part (v) of Proposition 3.4 means that problems (A) and (B) have a negative answer in general.
However, they can be answered in the positive for many pairs of Banach spaces as we will see in
Section 5. Note also that SS (resp. SC) is the largest proper injective (surjective) operator ideal
[40, 4.6.14].

Definition 3.5. An operator T ∈ L(X,Y ) is said to be inessential if IX − AT ∈ Φ(X) for every
A ∈ L(Y,X); equivalently, if IY − TA ∈ Φ(Y ) for every A ∈ L(Y,X). The class of all inessential
operators will be denoted In.

Inessential operators were introduced by Kleinecke [32], who proved the following result.

Proposition 3.6. The class In is a closed operator ideal, but it is neither injective nor surjective.

Note that Ind ⊂ In, but In is not self-dual: the inclusion operator J : c0 −→ ℓ∞ is inessential
because, by a result of Rosenthal [42], any operator on ℓ∞ is either weakly compact or an iso-
morphism on some subspace isomorphic to ℓ∞, but c⊥0 is complemented in ℓ∗∞, so the conjugate
operator J∗ is not inessential.
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Theorem 3.7. The identity PΦ(X) = In(X) holds for every Banach space X.

Theorem 3.7 solves questions (A) and (C) for PΦ, but the definition of inessential operator is
obviously not intrinsic. Aiena obtained some spectral characterizations for the components PΦ(X)
[1] which constitute an important advance towards the solution of problem (B) for PΦ. Note that
the study of the components PΦ(X) is sufficient to know the behavior of PΦ(X,Y ) because the
existence of a Fredholm operator T : X −→ Y implies that X is isomorphic to Y up to a finite
dimensional subspace. In this sense, the class PΦ is very different to the classes PΦ+ and PΦ−.

Theorem 3.7 and Proposition 3.6 also shed some light upon questions (A) and (B). For instance,
it has led to disprove conjectures like the possible identification of PΦ with the intrinsically-defined
class Imp. Also, the identification of PΦ with an operator ideal shows a difference between the
classes PΦ+ and PΦ− and the class PΦ.

4. Intrinsically-defined classes of admissible perturbations

Many operator classes admitting intrinsic descriptions have been proposed as possible solutions
to questions (A) and (B). The most remarkable of them are enumerated in this section.

4.1. The compact operators

Recall that an operator T ∈ L(X,Y ) is said to be compact if (Txn) contains a convergent
subsequence whenever (xn) is bounded.

Compact operators already occur at the beginning of the early Fredholm theory as explained
in the introduction, where we pointed out that

PΦ(H) = PΦ+(H) = PΦ−(H) = K(H)

if H is a Hilbert space. The main properties of K are given in the following result.

Proposition 4.1. [40] The class K is a self-dual, injective, surjective, closed operator ideal con-
sisting of S-admissible perturbations for all S ∈ {Φ+,Φ−,Φ}.

Although the class K is properly contained in the other classes of admissible perturbations, it is
still interesting in Fredholm theory. For instance, the following characterizations are a very useful
tool:

Proposition 4.2. [34] Let T ∈ L(X,Y ).

(i) T ∈ Φ+ if and only if Ker(T + K) is finite-dimensional for all K ∈ K(X,Y ).

(ii) T ∈ Φ− if and only if Coker(T + K) is finite-dimensional for all K ∈ K(X,Y ).

Also the following observation is useful:

Remark 4.3. In the previous result we can replace “compact operators” by “nuclear operators
with arbitrarily small norm”.
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4.2. The strictly singular and the strictly cosingular operators

Definition 4.4. An operator T ∈ L(X,Y ) is said to be strictly singular if for every subspace Z
of X, TJZ is an isomorphic embedding only if Z is finite-dimensional.

T is said to be strictly cosingular if for every subspace Z of Y , QZT is surjective only if Z is
finite-codimensional.

Proposition 4.5. The classes SS and SC have the following properties:

(i) SS and SC are closed operator ideals;

(ii) SS is injective but not surjective, and SC is surjective but not injective;

(iii) SS ⊂ PΦ+ and SC ⊂ PΦ−.

In the previous proposition, the results for SS are due to Kato [30] and the results for SC are
due to Pe lczyński [37] and Vladimirskii [47].

Proposition 4.6. The following statements hold:

(i) K  SS ∩ SC;
(ii) SC \ SS ̸= ∅;
(iii) SS \ SC ̸= ∅.

For part (ii), the natural inclusion operator U : L2[0, 1] −→ L1[0, 1] belongs to SC \ SS, and
for part (iii), the inclusion operator V : L∞[0, 1] −→ L2[0, 1] belongs to SS \ SC. Thus, part (i)
is proved by the natural inclusion operator W := UV : L∞[0, 1] −→ L1[0, 1], which belongs to
SS ∩ SC \ K.

Indeed, the restriction of U to the subspace generated by the Rademacher functions is an
isomorphic injection, so U /∈ SS. On the other hand, if N is a subspace of L1[0, 1] such that QNU
is surjective, then QN is a surjection onto a reflexive subspace, hence QN is weakly compact. Since
L1[0, 1] has the Dunford-Pettis property, QN is completely continuous, so QNU is compact, hence
the quotient L1[0, 1]/N is finite-dimensional and therefore, U ∈ SC.

Now, V = U∗, so U /∈ SS implies V /∈ SC. Moreover, since L∞[0, 1] has the Dunford-
Pettis property, any restriction V |R with R reflexive is completely continuous, so it cannot be an
isomorphic embedding, which proves V ∈ SS. Finally, W is not compact because the sequence
(fn), where fn(t) := sin 2nπt, is bounded in L∞[0, 1] but does not have any convergent subsequence
in L1[0, 1]. For additional details, see [4].

For a while, it was thought that the admissible classes SS and SC might be identified with the
perturbation classes PΦ+ and PΦ−, but the discovery of the hereditarily indecomposable spaces
denied this possibility.

Definition 4.7. A Banach space X is said to be indecomposable if for each decomposition X =
X1 ⊕X2 with X1 and X2 closed subspaces, X1 or X2 is finite-dimensional.

The space X is said to be hereditarily indecomposable if all its closed subspaces are indecom-
posable, and it is said to be quotient indecomposable if all its quotients are indecomposable.

Hereditarily indecomposable spaces, unlike Hilbert spaces, support very few operators. In
fact, Weis proved [49] that for every space Y we have L(X,Y ) = Φ+(X,Y ) ∪ SS(X,Y ) if and
only if X is hereditarily indecomposable; and similarly, for every space Y we have L(Y,X) =
Φ−(Y,X) ∪ SC(Y,X) if and only if X is quotient indecomposable.

Proposition 4.8. There exists a separable reflexive space Z for which SS(Z)  PΦ+(Z) and
SC(Z∗)  PΦ−(Z∗).
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There are at least two different constructions of such a space Z [17, 20], and both of them involve
the hereditarily indecomposable spaces discovered in [27] and [12]. Let us succinctly describe the
construction given in [20]:

Let X be a reflexive, hereditarily indecomposable space and let Y be an infinite-dimensional
closed subspace of X such that dimX/Y = ∞. Then the operator

A : Y ×X −→ Y ×X defined by A(y, x) = (0, y)

is inessential, but clearly not strictly singular. Applying the stability under perturbations of the
index of semi-Fredholm operators, we can show that the space Z := X×Y satisfies Φ+(Z) = Φ(Z).
Thus

PΦ+(Z) = PΦ(Z) = In(Z) ̸= SS(Z).

A duality argument shows that the conjugate operator A∗ : Z∗ −→ Z∗ is inessential, but not
strictly singular, and that Φ−(Z∗) = Φ(Z∗). Thus

PΦ−(Z∗) = PΦ(Z∗) = In(Z∗) ̸= SC(Z∗).

Since SS and SC are closed operator ideals, it is straightforward that so are SSd and SCd. The
following result describes the duality between SS and SC.

Proposition 4.9. [50] The ideals SS and SC satisfy the following statements:

(i) SSd  SC;
(ii) SCd  SS;

An example of an operator in SC \ SSd is the natural inclusion Jc0 ∈ L(c0, ℓ∞); and SS \ SCd

contains the operator Q ∈ L(ℓ1(ℓn2 ), ℓ2) defined by

Q
(
(xn

i )ni=1
∞
n=1

)
:= ( lim

n→U
xn
i )i∈N

where U is a fixed non-trivial ultrafilter on N. In fact, Q is surjective and weakly compact, and as
ℓ1(ℓn2 ) has the Schur property (weakly convergent sequences in ℓ1(ℓn2 ) are norm convergent), then
Q is strictly singular. But the range of Q∗ is complemented, hence Q∗ /∈ SC [4].

4.3. The improjective operators

As we have seen, the ideals K, SS and SC are intrinsically-defined subclasses of PΦ+, PΦ−
and PΦ. In turn, these perturbation classes are subclasses of the following class:

Definition 4.10. An operator T ∈ L(X,Y ) is said to be improjective if for every subspace Z of X,
TJZ is an isomorphic embedding and T (Z) is complemented in Y only if Z is finite-dimensional.

Proposition 4.11. [44, 45] The class Imp is an operator quasi-ideal and satisfies the following
statements:

(i) Impd ⊂ Imp;

(ii) PΦ ⊂ Imp.

The inclusion Imp(X,Y ) ⊂ Impd(X,Y ) holds if X is reflexive [44]. Unfortunately, the be-
haviour of Imp is not as good as that of other classes. Let XGM be the separable, indecomposable
space constructed by Gowers and Maurey [28] after their discovery of the hereditarily indecompos-
able spaces in [27].



M. González et al. / FAAC 7 (2) (2015), 75–87 82

Proposition 4.12. [6] The following statements hold:

(i) Imp(XGM) is not a linear subspace of L(XGM); hence Imp is not an operator ideal;
(ii) In(XGM)  Imp(XGM).

Using the Continuum Hypothesis, Koszmider constructed a connected compact space K0 such
that every operator T ∈ L

(
C(K0)

)
is of the form T = gI + S with g ∈ C(K0) and S a weakly

compact operator on C(K0) [33]. As a consequence, the space C(K0) is indecomposable. An-
other C(K) space with the same characteristics but whose construction does not depend on the
Continuum Hypothesis was found by Plebanek [41].

Theorem 4.13. [8] Let K0 be the compact of Koszmider. Then

SS
(
C(K0)

)
= In

(
C(K0)

)
̸= Imp

(
C(K0)

)
.

It follows from the original proof of Theorem 4.13 that Imp
(
C(K0)

)
is not a linear subspace

of L
(
C(K0)

)
.

The classes of operators that we have considered in connection with the perturbation classes
for semi-Fredholm operators and the relationships among them are represented in the following
diagram, where A → C means that class A is properly contained in class C.

SCd −→ SS −→ PΦ+

↗ ↗ ↘
K −→ SS ∩ SC PΦ+ + PΦ− −→ PΦ = In −→ Imp

↘ ↘ ↗
SSd −→ SC −→ PΦ−

5. Positive answers to the perturbation classes problem

Originally, the perturbation classes problem asked if SS = PΦ+ and SC = PΦ−. But once
that it is known that SS ̸= PΦ+ and SC ̸= PΦ−, the problem turns into the following, weaker
one: find pairs X, Y of Banach spaces for which Φ+(X,Y ) ̸= ∅ and SS(X,Y ) = PΦ+(X,Y ), or
Φ−(X,Y ) ̸= ∅ and SC(X,Y ) = PΦ−(X,Y ). Note that a positive answer for a given pair of spaces
X, Y provides an intrinsic characterization of the corresponding component of the perturbation
class. For similar reasons we are interested in spaces X for which In(X) = Imp(X). In this
section we shall see that there are many examples among the classical Banach spaces for which
this is true.

Since K is the simplest class of admissible perturbations for Φ, Φ+ and Φ−, we start with the
following result, which mixes the beginnings of Fredholm perturbation theory with some recent
discoveries of exotic Banach spaces.

Proposition 5.1. The identities PΦ(X) = PΦ+(X) = PΦ−(X) = K(X) hold in two very differ-
ent cases:

(a) X = ℓp for 1 ≤ p < ∞;
(b) X = XAH, the hereditarily indecomposable space of Argyros and Haydon [13].

Indeed, the symmetrical structure of the ℓp spaces lets them support many operators but, at the
same time, helps to prove the equality easily. Part (b) holds by the opposite reason: the space of
operators L(XAH) is very small, up to the point that every T ∈ L(XAH) is of the form T = λI +K
for some λ ∈ R and some compact operator K. In particular, Φ(XAH) = Φ±(XAH).
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5.1. When PΦ+(X,Y ) = SS(X,Y ) or PΦ−(X,Y ) = SC(X,Y )

The perturbation classes PΦ+(X,Y ) and PΦ−(X,Y ) admit intrinsic characterizations when
they coincide with SS(X,Y ) and SC(X,Y ) respectively. Here we describe some pairs of spaces for
which one of the equalities holds.

A Banach space X is said to be subprojective if every closed, infinite-dimensional subspace Y
of X contains an infinite-dimensional subspace Z complemented in X; if moreover we can always
find Z with complement isomorphic to X, then X is said to be strongly subprojective.

Theorem 5.2. Suppose Φ+(X,Y ) ̸= ∅. Then the identity PΦ+(X,Y ) = SS(X,Y ) holds in the
following cases:

(a) Y is subprojective;

(b) X is hereditarily indecomposable [7];

(c) X is separable and Y contains a complemented copy of C[0, 1] [11];

(d) X = Lp(0, 1) for 1 < p < 2 and Y satisfies the Orlicz property [26];

(e) X = L1(0, 1) and Y is weakly sequentially complete [26];

(f) X is strongly subprojective [22, 43];

(g) X is a Lorentz space ΛW,p(0, 1) with finite cotype for 1 < p < 2, or Lp,q(0, 1) or Lp,q(0,∞)
for 1 < p ≤ 2 and 1 ≤ q ≤ 2, and SS(ℓ2, Y ) = K(ℓ2, Y ) [25];

(h) X is an Orlicz function space Lφ(0, 1) with E∞
φ ≡ {tp} for 1 < p < 2 and SS(ℓ2, Y ) =

K(ℓ2, Y ) [25].

Part (a) in Theorem 5.2 follows from the fact that if Y is subprojective, then SS(X,Y ) =
Imp(X,Y ) [7].

A Banach space X is said to be superprojective if every closed, infinite-codimensional subspace Y
is contained in a complemented, infinite-codimensional subspace Z of X; if moreover Z can always
be obtained isomorphic to X then X is said to be strongly superprojective.

Theorem 5.3. Suppose Φ−(X,Y ) ̸= ∅. Then the identity PΦ−(X,Y ) = SC(X,Y ) holds in the
following cases:

(a’) X is superprojective;

(b’) Y is quotient indecomposable [7];

(c’) X contains a complemented copy of ℓ1 and Y is separable [11];

(d’) Y = Lp(0, 1) for 2 < p < ∞ and X∗ satisfies the Orlicz property [26];

(e’) Y = Lp(0, 1) for 1 ≤ p ≤ 2 [26];

(f ’) Y is strongly superprojective [22, 43].

(g’) Y is a Lorentz function space ΛW,p(0, 1) with finite type for 2 < p < ∞, or Lp,q(0, 1)
or Lp,q(0,∞) for 2 ≤ p, q < ∞ and SC(X, ℓ2) = K(X, ℓ2) [25];

(h’) Y is an Orlicz function space Lφ(0, 1) with E∞
φ ≡ {tp} for 2 < p < ∞ and SC(X, ℓ2) =

K(X, ℓ2) [25].

Part (a’) in Theorem 5.3 is a consequence of the fact that if X is superprojective, then
SC(X,Y ) = Imp(X,Y ) [7].

It is worth noting that Theorems 5.2 and 5.3 hold in two very different cases: on the one
hand, for hereditarily indecomposable spaces and quotient indecomposable spaces, which only
admit trivial projections; on the other hand, for (strongly) subprojective spaces and (strongly)
superprojective spaces, which admit many projections.

There are many classical spaces that are strongly subprojective or strongly superprojective:
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Proposition 5.4. The following Banach spaces are strongly subprojective:

(1) The sequence spaces ℓp for 1 ≤ p < ∞, and c0.

(2) The James space J .

(3) The Lorentz sequence spaces d(w, p) for 1 ≤ p < ∞ and w = (wn) a non-increasing null
sequence with

∑∞
n=1 wn divergent. This applies to ℓp,q for 1 ≤ p, q < ∞.

(4) The Baernstein spaces Bp for 1 < p < ∞.

(5) The Tsirelson space T .

(6) The function spaces Lp(0, 1) for 2 ≤ p < ∞.

(7) The function spaces Lp(0,∞) ∩ L2(0,∞) for 1 ≤ p ≤ 2.

(8) The Lorentz spaces ΛW,p(0, 1), Lp,q(0,∞) and Lp,q(0, 1) for 2 < p < ∞ and 1 ≤ q < ∞.

(9) The spaces of continuous functions C(K), with K a scattered compact.

(10) Closed subspaces of the previous examples.

We refer to a recent paper [36] for additional examples of (strongly) subprojective Banach
spaces.

Recall that a compact space K is said to be scattered (or dispersed) if every non-empty subset
of K has an isolated point. Examples of scattered compact spaces are the ordinal intervals [0, κ] =
{α ordinal : 0 ≤ α ≤ κ }, endowed with the order topology, and the one-point compactification
Γ∞ of any set Γ endowed with the discrete topology. Note that C(Γ∞) is isomorphic to c0(Γ).

Proposition 5.5. The following Banach spaces are strongly superprojective:

(1’) The sequence spaces ℓp for 1 < p < ∞, and c0.

(2’) The dual J∗ of James space.

(3’) The dual spaces d(w, p)∗ of d(w, p) for 1 < p < ∞ and w = (wn) a non-increasing null
sequence with

∑∞
n=1 wn divergent. This applies to ℓ∗p,q for 1 < p, q < ∞.

(4’) The dual spaces B∗
p of Baernstein’s spaces for 1 < p < ∞.

(5’) The dual T ∗ of Tsirelson space.

(6’) The function spaces Lp(0, 1) for 1 < p ≤ 2.

(7’) The function spaces Lp(0,∞) + L2(0,∞) for 2 ≤ p < ∞.

(8’) The dual spaces ΛW,p(0, 1)∗, Lp,q(0,∞)∗ and Lp,q(0, 1)∗ for 2 < p < ∞ and 1 < q < ∞.

(9’) The spaces of continuous functions C(K), with K a scattered compact.

(10’) Quotients of the previous examples.

Propositions 5.4 and 5.5 were proved in [22]. It is unknown if there are subprojective spaces
which are not strongly subprojective, or superprojective spaces which are not strongly superpro-
jective.
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5.2. When PΦ(X,Y ) = In(X,Y ) admits an intrinsic characterization

Here we describe some pairs of spaces for which In(X,Y ) coincides with Imp(X,Y ), SS(X,Y )
or SC(X,Y ).

Proposition 5.6. [5, 44]

(a) If X or Y is subprojective or superprojective, then In(X,Y ) = Imp(X,Y ).

(b) If Y is subprojective, then SS(X,Y ) = In(X,Y ) = Imp(X,Y ).

(c) If X is superprojective, then SC(X,Y ) = In(X,Y ) = Imp(X,Y ).

After Theorem 4.13, it is natural to ask for which compacts K the set Imp
(
C(K)

)
coincides

with SS
(
C(K)

)
or In

(
C(K)

)
.

Proposition 5.7. [8] The identity In
(
C(K)

)
= Imp

(
C(K)

)
holds in the following cases:

(i) K is scattered,

(ii) every separable subspace of C(K) is contained in a separable complemented subspace,

(iii) every non-weakly compact operator acting on C(K) is an isomorphism on some subspace
isomorphic to ℓ∞.

An additional condition improves Proposition 5.7. Let us recall that a compact set K is a
Valdivia compact if it contains a dense subset A for which there exists a set Γ and a homeomorphism
h : K −→ RΓ such that h(A) is the set of elements in h(K) with countable support. Eberlein, Gulko,
and Corson compact sets are examples of Valdivia compacts [29].

Proposition 5.8. [8] The identity SS
(
C(K)

)
= Imp

(
C(K)

)
holds when K is a continuous image

of a Valdivia compact.

6. Some open problems

All known counterexamples to the perturbation classes problem for semi-Fredholm operators
involve hereditarily indecomposable Banach spaces, whose properties are quite exotic.

Problem 1. Find examples of classical Banach spaces X and Y such that PΦ+(X,Y ) ̸= SS(X,Y )
or PΦ−(X,Y ) ̸= SC(X,Y ).

We can consider candidates by lifting some of the restrictions from the results shown in Sub-
section 5.1.

Problem 2. Suppose that 1 < p < 2 and Y is a Banach space containing a subspace isomorphic
to Lp(0, 1). Is it true that PΦ+(Lp(0, 1), Y ) ̸= SS(Lp(0, 1), Y )?

We showed in Theorem 5.2 that the answer is positive when Y satisfies the Orlicz property. We
can also consider the following dual problem, whose answer is again known true only under some
restrictions.

Problem 3. Suppose that 2 < p < ∞ and X is a Banach space admitting a quotient isomorphic
to Lp(0, 1). Is it true that PΦ−(X,Lp(0, 1)) ̸= SS(X,Lp(0, 1))?

All the examples of spaces Z for which PΦ+(Z) ̸= SS(Z) have the form Z = X × Y with
X and Y infinite-dimensional. However, it was proved in [21] that a hereditarily indecomposable
space ZT constructed in [46] satisfies PΦ−(ZT ) ̸= SC(ZT ).
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Problem 4. Does there exist an indecomposable space Z for which PΦ+(Z) ̸= SS(Z)?

Note that Z in the previous problem cannot be hereditarily indecomposable (see (b) in Theo-
rem 5.2).

Finally, we know the answer to the following problem in some special cases [8], but this could
be improved.

Problem 5. Characterize those compact spaces K for which In
(
C(K)

)
= Imp

(
C(K)

)
.

7. Final remarks

The term semigroup in reference to the classes Φ+, Φ− and Φ was first used by Lebow and
Schechter [34]. Later, the term operator semigroup was extended by Aiena et al. [9] to any class of
operators closed under composition and cartesian product of operators, and containing all bijective
isomorphisms.

Weis proved that PΦ+(X,Y ) = SS(X,Y ) when X = Y = Lp(0, 1) for 1 ≤ p < 2 [48]. This
result is a consequence of a more general result included in Theorem 5.2, and it implies that
PΦ−(X,Y ) = SC(X,Y ) when X = Y = Lp(0, 1) for 2 < p < ∞. We refer to [43] for a recent
exposition of the properties of PΦ+ and PΦ−.

In [16], Friedman introduced a certain condition (C) and showed that

T ∈ SS ⇒ T satisfies (C) ⇒ T ∈ PΦ+.

In [10] it was shown that T ∈ PΦ+ does not imply property (C), leaving it open whether the
converse of the other implication is valid.

We have considered the perturbation classes problems for bounded operators. The correspond-
ing problems for closed semi-Fredholm and Fredholm operators with dense range were studied
by Weis in [49]. We observe that the problems for bounded operators are different from their
counterparts for closed operators. Indeed, we showed in Proposition 4.8 that there exists a sep-
arable reflexive space Z for which SS(Z) ̸= PΦ+(Z) and SC(Z∗) ̸= PΦ−(Z∗). However, it was
proved in [49] that, for a separable space, the perturbation classes for closed upper and lower
semi-Fredholm operators with dense range coincide respectively with the strictly singular and the
strictly cosingular operators. We refer to [3] for additional information.
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