Functional Analysis, Approximation and Computation 7 (3) (2015), 21–23

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/faac

An addendum to: Analytically Riesz operators and Weyl and Browder type theorems

Enrico Boasso^a

^aVia Cristoforo Cancellieri 2, 34137 Trieste-TS, Italy

Abstract. In this note a characterization of anallytically Riesz operators is given. This work completes the article [1].

1. Introduction

Anallytically Riesz operators, i.e., bounded and linear maps *T* defined on a Banach space *X* such that there exists an analytical function *f* defined on a neighbourhood of the spectrum of *T* with the property that f(T) is Riesz, were studied in [3]. In addition, several spectra and some spectral properties of this class of operators were studied in [1]. In particular, when instead of an analytical function there exists a polynomial $P \in \mathbb{C}[X]$ such that P(T) is Riesz, *T* is said to be a polynomially Riesz operator. The structure of polynomially Riesz operators was studied in [2] (see also [4, Theorem 2.13]). To learn more about polynomially Riesz operators see for example [4] and its reference list.

After the publication of [1], a characterization of analytically Riesz operators was obtained. In fact, similar arguments to the ones in [1] prove that necessary and sufficient for *T* to be analytically Riesz is that there exist X_1 and X_2 two closed and complemented *T*-invatiant subspaces of *X* such that if $T = T_1 \oplus T_2$, then $T_1 \in \mathcal{L}(X_1)$ is an arbitray operator and X_2 is finite dimensional or $T_2 \in \mathcal{L}(X_2)$ is a polynomially Riesz operator ($T_i = T |_{X_i}$, i = 1, 2). In other words, an analytically Riesz operator is essentially the direct sum of an arbitray operator and a polynomially Riesz operator. The objective of this note is to present this characterization and some other related results. This note consists in a completation of [1].

2. Results

Fron now on X will denote an infinite dimensional complex Banach space, $\mathcal{L}(X)$ the algebra of all bounded and linear maps defined on and with values in X and $I \in \mathcal{L}(X)$ the identity map. If $T \in \mathcal{L}(X)$, then N(T), R(T) and $\sigma(T)$ will stand for the null space, the range and the spectrum of T, respectively. In addition, $\mathcal{K}(X) \subset \mathcal{L}(X)$ will denote the closed ideal of compact operators defined on X, C(X) the Calkin algebra of X and $\pi : \mathcal{L}(X) \to C(X)$ the quotient map.

²⁰¹⁰ Mathematics Subject Classification. Primary 47A53.

Keywords. Riesz operators; polynomially Riesz operators; analytically Riesz operators.

Received: 15 May 2015; Accepted: 11 June 2015.

Communicated by Dragan S. Djordjević

Email address: enrico_odisseo@yahoo.it (Enrico Boasso)

Recall that $T \in L(X)$ is said to be a *Fredholm* operator if $\alpha(T) = \dim N(T)$ and $\beta(T) = \dim X/R(T)$ are finite dimensional. In addition, $T \in \mathcal{L}(X)$ is said to be a *Riesz operator*, if $T - \lambda I$ is Fredholm for all $\lambda \in \mathbb{C}$, $\lambda \neq 0$. The set of all Riesz operators defined on X will be denoted by $\mathcal{R}(X)$. More generally, T will be said to be an *analytically Riesz operator*, if there exists a holomorphic function f defined on an open neighbourhood of $\sigma(T)$ such that $f(T) \in \mathcal{R}(X)$ ($\mathcal{H}(\sigma(T))$ will denote the algebra of germs of analytic functions defined on open neighbourhoods of $\sigma(T)$). In particular, T will be said to be *polynomially Riesz*, if there exists $P \in C[X]$ such that $P(T) \in \mathcal{R}(X)$ (see [4]).

To prove the main result of this note, a preliminary result is needed.

Lemma 2.1. Let X be an infinite dimensional complex Banach space and consider $T \in \mathcal{R}(X)$. Then, if $V \in \mathcal{L}(X)$ is such that $TV - VT \in \mathcal{K}(X)$, VT and $TV \in \mathcal{R}(X)$.

Proof. Recall that necessary and sufficient for $T \in \mathcal{R}(X)$ is that $\pi(T) \in C(X)$ is quasinilpotent. Since $\pi(V)$ commutes with $\pi(T)$, it is not difficult to prove that $\pi(V)\pi(T) = \pi(T)\pi(V)$ is quasinilpotent. In particular, VT and $TV \in \mathcal{R}(X)$. \Box

Next a characterization of analytically Riesz operators is given. Note that the following notation will be used. If X_1 and X_2 are two closed and complemented *T*-invariant subspaces of the Banach space X ($T \in \mathcal{L}(X)$), then *T* has the decomposition $T = T_1 \oplus T_2$, where $T_i = T |_{X_i}$, i = 1, 2.

Theorem 2.2. Let X be an infinite dimensional complex Banach space and consider $T \in \mathcal{L}(X)$. Then, the following statements are equivalent:

(i) The operator T is analytically Riesz.

(ii) There exist X_1 and X_2 two closed and complemented T-invariant subspaces of X with the property that, if $T = T_1 \oplus T_2$, then $T_1 \in \mathcal{L}(X_1)$ is an arbitrary operator and either X_2 is finite dimensional or $T_2 \in \mathcal{L}(X_2)$ is polynomially Riesz.

Proof. Suppose that statement (i) holds. Let $f \in \mathcal{H}(\sigma(T))$ be such that $f(T) \in \mathcal{R}(X)$. According to [3, Theorem 1], there are two closed disjoint sets S_1 and S_2 such that $\sigma(T) = S_1 \cup S_2$, f is locally zero at each point of S_1 but it is not at any point of S_2 . In addition, if X_1 and X_2 are two closed and complemented T-invariant subspaces of X associated to the decompositon defined by S_1 and S_2 , then $f(T_1) = 0$ and either X_2 is a finite dimensional space or T_2 can be decomposed as a direct sum of operators (see the proof of [3, Theorem 1] for details).

Suppose then that dim X_2 is infinite. Let $f_2 \in \mathcal{H}(\sigma(T_2))$ be defined as the restriction of f to an open set containing S_2 but disjoint to S_1 (recall that $\sigma(T_1) = S_1$ and $\sigma(T_2) = S_2$). Since $f(T) = 0 \oplus f_2(T_2)$, $T_2 \in \mathcal{L}(X_2)$ is analytically Riesz. Since f is analytically zero at no point of S_2 , the set $f_2^{-1}(0) \cap S_2$ is finite. In particular, there exist $n \in \mathbb{N}$, $k_i \in \mathbb{N}$ and $\lambda_i \in f_2^{-1}(0) \cap S_2$ (i = 1, ..., n) such that $f_2(z) = (z - \lambda_1)^{k_1} \dots (z - \lambda_n)^{k_n} g(z)$, where $g \in \mathcal{H}(\sigma(T_2))$ is such that $g(z) \neq 0$ for all $z \in \sigma(T_2)$.

Now, since $(T_2 - \lambda_1)^{k_1} \dots (T_2 - \lambda_n)^{k_n} g(T_2) = f_2(T_2) \in \mathcal{R}(X_2)$, and $g(T_2) \in \mathcal{L}(X_2)$ is an invertible operator, which commutes with $(T_2 - \lambda_1)^{k_1} \dots (T_2 - \lambda_n)^{k_n}$, according to Lemma 2.1, $(T_2 - \lambda_1)^{k_1} \dots (T_2 - \lambda_n)^{k_n} \in \mathcal{R}(X_2)$. Consequently, T_2 is polynomially Riesz.

To prove the converse, consider two closed and disjoint sets $S_1, S_2 \subset \mathbb{C}$ such that $S_1 \cup S_2 = \sigma(T), \sigma(T_i) = S_i$, i = 1, 2. Let U_i be two disjoint open sets such that $S_i \subset U_i$, i = 1, 2, and define $f \in \mathcal{H}(\sigma(T))$ as follows: $f \mid_{U_1} = 0$ and when X_2 is finite dimensional, $f \mid_{U_2} = z$, while when dim X_2 is infinite, $f \mid_{U_2} = P$, where $P \in \mathbb{C}[X]$ is such that $P(T) \in \mathcal{R}(X)$. Therefore, $f(T) = 0 \oplus T_2$ (dim $X_2 < \infty$) or $f(T) = 0 \oplus P(T)$ (dim X_2 infinite). In both cases *T* is analytically Riesz. \Box

Recall that polynomially Riesz operators were characterized in [2, 4] (see in paricular [4, Theorems 2.2, 2.3, 2.13]).

Corollary 2.3. Let X be an infinite dimensional complex Banach space and consider $T \in \mathcal{L}(X)$. Suppose that there is $f \in \mathcal{H}(\sigma(T))$ such that $f(T) \in \mathcal{R}(X)$ and for each $x \in \sigma(T)$, f is not locally zero at x. Then, T is polynomially Riesz.

Proof. Using the same notation as in Theorem 2.2, according to the proof of this Theorem and [3, Theorem 1], $S_1 = \emptyset$ and $X = X_2$. Since dim X_2 is infinite, *T* is polynomially Riesz. \Box

Note that according to Corollary 2.3, the operators considered in [1] are polynomially Riesz. Compare with [4].

References

- [1] E. Boasso, Analytically Riesz operators and Weyl and Browder type theorems, Funct. Anal. Approx. Comput. 7 (2) (2015), 1-7.
- [2] C. Gheorghe, Some remarks on structure of polynomially Riesz operators. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. (8) 54 (1973), 42-45.
- [3] M. A. Kaashoek and M. R. F. Smyth, On operators T such that f(T) is Riesz or meromorphic, Proc. Roy. Irish Acad. Sect. A 72 (1972), 81-87.
 [4] S. Č. Živković Zlatanović, D. S. Djordjević, R. Harte and B. P. Duggal, On polynomially Riesz operators, Filomat 28 (1) (2014),
- 197-205.