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Abstract. In this paper we study some comparative growth properties of composite entire functions in
terms of their maximum terms on the basis of their generalized relative orders (generalized relative lower
orders) with respect to another entire function. In fact, we improve here some results of Datta, Biswas and
Pramanik [9].

1. Introduction, Definitions and Notations.

Let f be an entire function defined in the open complex plane C. The maximum term µ f (r) of

f =
∞∑

n=0
anzn is defined by

µ f (r) = max
n≥0

(|an| rn) .

On the other hand, the maximum modulus M f (r) of f on |z| = r is defined as

M f (r) = max
|z|=r

∣∣∣ f (z)
∣∣∣ .

We use the standard notations and definitions in the theory of entire functions which are available
in [16]. In the sequel we use the following notation:

log[k] x = log
(
log[k−1] x

)
, k = 1, 2, 3, ...and log[0] x = x .

Taking this into account the order (respectively, lower order) of an entire function f is given by

ρ f = lim sup
r→∞

log[2] M f (r)

log r

 respectively λ f =
log[2] M f (r)

log r

 .
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Let us recall that Sato [12] defined the generalized order and generalized lower order of an entire function
f respectively as follows:

ρ[l]
f = lim sup

r→∞

log[l] M f (r)

log r

 respectively λ[l]
f = lim inf

r→∞

log[l] M f (r)

log r


where l is any positive integer. These definitions extended the order ρ f and lower order λ f of an entire
function f since these correspond to the particular case ρ[2]

f = ρ f and λ[2]
f = λ f .

Since for 0 ≤ r < R,

µ f (r) ≤M f (r) ≤ R
R − r

µ f (R)
{
c f . [14]

}
it is easy to see that

ρ f = lim sup
r→∞

log[2] µ f (r)

log r

 respectively λ f = lim inf
r→∞

log[2] µ f (r)

log r


and

ρ[l]
f = lim sup

r→∞

log[l] µ f (r)

log r

 respectively λ[l]
f = lim inf

r→∞

log[l] µ f (r)

log r

 .
Given a non-constant entire function f defined in the open complex planeC, its maximum modulus

function M f is strictly increasing and continuous. Hence there exists its inverse function M−1
f :
(∣∣∣ f (0)

∣∣∣ ,∞)→
(0,∞) with lim

s→∞
M−1

f (s) = ∞.
Then Bernal {[1], [2]} introduced the definition of relative order of f with respect to 1, denoted by

ρ1
(

f
)

as follows:

ρ1
(

f
)
= inf

{
µ > 0 : M f (r) <M1 (rµ) for all r > r0

(
µ
)
> 0
}

= lim sup
r→∞

log M−1
1 M f (r)

log r
.

This definition coincides with the classical one [15] if 1 = exp z. Similarly, one can define the relative
lower order of f with respect to 1 denoted by λ1

(
f
)

as

λ1
(

f
)
= lim inf

r→∞

log M−1
1 M f (r)

log r
.

Datta and Maji [5] reformulated the definition of relative order and relative lower order in terms of
maximum terms of entire functions in the following way:

Definition 1.1. [5] The relative order ρ1
(

f
)

and the relative lower order λ1
(

f
)

of an entire function f with
respect to another entire function 1 are defined as follows:

ρ1
(

f
)
= lim sup

r→∞

logµ−1
1 µ f (r)

log r
and λ1

(
f
)
= lim inf

r→∞

logµ−1
1 µ f (r)

log r
.

Lahiri and Banerjee [11] gave a more generalized concept of relative order in the following way:
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Definition 1.2. [11] If l ≥ 1 is a positive integer, then the l- th generalized relative order of f with respect to 1,
denoted by ρ[l]

1

(
f
)

is defined by

ρ[l]
1

(
f
)
= inf

{
µ > 0 : M f (r) <M1

(
exp[l−1] rµ

)
for all r > r0

(
µ
)
> 0
}

= lim sup
r→∞

log[l] M−1
1 M f (r)

log r
.

Clearly, ρ1
1

(
f
)
= ρ1

(
f
)

and ρ1
exp z
(

f
)
= ρ f .

Likewise one can define the generalized relative lower order of f with respect to 1 denoted by λ[l]
1

(
f
)

as

λ[l]
1

(
f
)
= lim inf

r→∞

log[l] M−1
1 M f (r)

log r
.

In the case of generalized relative order (respectively generalized relative lower), it therefore seems
reasonable to state suitably an alternative definition of generalized relative order (respectively generalized
relative lower) of entire function in terms of its maximum terms. Datta, Biswas and Ghosh [10] introduced
such a definition in the following way:

Definition 1.3. [10] For any positive integre l ≥ 1, the growth indicators ρ[l]
1

(
f
)

and λ[l]
1

(
f
)

of an entire function f
are defined as:

ρ[l]
1

(
f
)
= lim sup

r→∞

log[l] µ−1
1 µ f (r)

log r
and λ[l]

1

(
f
)
= lim inf

r→∞

log[l] µ−1
1 µ f (r)

log r
.

For entire functions, the notions of thier growth indicators such as order is classical in complex
analysis and during the past decades, several researchers have already been exploring their studies in the
area of comparative growth properties of composite entire functions in different directions using the classical
growth indicators. But at that time, the concepts of relative orders and consequently the generalized relative
orders of entire functions and as well as their technical advantages of not comparing with the growths of
exp z are not at all known to the researchers of this area. Therefore the studies of the growths of composite
entire functions in the light of their relative orders are the prime concern of this paper. In fact some light has
already been thrown on such type of works by Datta et al. in [3], [4], [5], [6], [7], [8], [9] and [10]. Actually
in this paper we wish to establish some results relating to the growth rates of composite entire functions in
terms of their maximum terms on the basis of generalized relative order (generalized relative lower).

2. Lemmas.

In this section we present some lemmas which will be needed in the sequel.

Lemma 2.1. [13] Let f and 1 be any two entire functions. Then for every α > 1 and 0 < r < R,

µ f◦1 (r) ≤ α
α − 1

µ f

(
αR

R − r
µ1 (R)

)
.

Lemma 2.2. [13] If f and 1 are any two entire functions with 1 (0) = 0. Then for all sufficiently large values of r,

µ f◦1(r) ≥ 1
2
µ f

(1
8
µ1

( r
4

))
.

Lemma 2.3. [5] If f be an entire function and α > 1, 0 < β < α, then for all sufficiently large r,

µ f (αr) ≥ βµ f (r) .
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3. Theorems.

In this section we present the main results of the paper.

Theorem 3.1. Let f , 1 and h be any three entire functions such that 1 (0) = 0, ρ[l]
h

(
f
)
> 0 and λ[l+1]

1 > 0 where l ≥ 1.
Then

lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) = ∞ .
Proof. Suppose ρ[l]

h

(
f
)
> 0 and λ[l+1]

1 > 0.
As µ−1

h (r) is an increasing function of r,we get from Lemma 2.2, for all sufficiently large values of r that

log[l] µ−1
h µ f◦1(r) ≥ log[l] µ−1

h

{
µ f

(
µ1

( r
100

))}
i.e., log[l] µ−1

h µ f◦1(r) ≥
(
ρ[l]

h

(
f
) − ε) logµ1

( r
100

)
i.e., log[l] µ−1

h µ f◦1(r) ≥
(
ρ[l]

h

(
f
) − ε) · exp[l−1]

( r
100

)(λ[l+1]
1 −ε)


i.e.,

log[l] µ−1
h µ f◦1(r)

log r
≥

(
ρ[l]

h

(
f
) − ε) · exp[l−1]

[(
r

100

)(λ[l+1]
1 −ε)

]
log r

i.e., lim sup
r→∞

log[l] µ−1
h µ f◦1(r)

log r
≥ lim inf

r→∞

(
ρ[l]

h

(
f
) − ε) · exp[l−1]

[(
r

100

)(λ[l+1]
1 −ε)

]
log r

i.e., ρ[l]
h

(
f ◦ 1) = ∞ . (1)

Now in view of (1), we obtain that

lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) ≥ lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log r

·

lim inf
r→∞

log r

log[l] µ−1
h

(
µ f (r)

)
i.e., lim sup

r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) ≥ ρ[l]
h

(
f ◦ 1) · 1

ρ[l]
h

(
f
)

i.e., lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) = ∞ .

Thus the theorem follows.

Theorem 3.2. Let f , 1 and h be any three entire functions satisfying 1 (0) = 0, λ[l]
h

(
f
)
> 0 and ρ[l+1]

1 > 0 where
l ≥ 1. Then

lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) = ∞ .
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Theorem 3.3. Let f , 1 and h be any three entire functions such that 1 (0) = 0, λ[l]
h

(
f
)
> 0 and λ[l+1]

1 > 0 . Then

lim sup
r→∞

log[l] µ−1
h

(
µ f◦1(r)

)
log[l] µ−1

h

(
µ f (r)

) = ∞ .
The proofs of Theorem 3.2 and Theorem 3.3 are omitted as those can be carried out in the line of

Theorem 3.1.

Theorem 3.4. Let f , 1 and h be any three entire functions with 0 < λ[l]
h

(
1
) ≤ ρ[l]

h

(
1
)
< ∞ and 1 (0) = 0 and

lim sup
r→∞

log[l] µ−1
h

(
µ f (r)

)
log[l] µ−1

h (r)
= A, a real number < ∞.

Then

λ[l]
h

(
f ◦ 1) ≤ Aλ[l]

h

(
1
) ≤ ρ[l]

h

(
f ◦ 1) ≤ Aρ[l]

h

(
1
)

where l ≥ 1.

Proof. Since µ−1
h (r) is an increasing function of r, it follows from Lemma 2.1, Lemma 2.2 and Lemma 2.3 for

all sufficiently large values of r that

µ−1
h µ f◦1(r) ≥ µ−1

h

{
µ f

(
µ1

( r
100

))}
(2)

and

µ−1
h µ f◦1(r) ≤ µ−1

h

{
µ f

(
µ1 (26r)

)}
(3)

respectively.
Therefore from (2) ,we get for all sufficiently large values of r that

log[l] µ−1
h µ f◦1(r) ≥ log[l] µ−1

h

{
µ f

(
µ1

( r
100

))}
i.e.,

log[l] µ−1
h µ f◦1(r)

log r
≥

log[l] µ−1
h

{
µ f

(
µ1
(

r
100

))}
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥
log[l] µ−1

h

{
µ f

(
µ1
(

r
100

))}
log[l] µ−1

h

(
µ1
(

r
100

)) ·
log[l] µ−1

h

(
µ1
(

r
100

))
log r

i.e., lim sup
r→∞

log[l] µ−1
h µ f◦1(r)

log r

≥ lim sup
r→∞

 log[l] µ−1
h

{
µ f

(
µ1
(

r
100

))}
log[l] µ−1

h

(
µ1
(

r
100

)) ·
log[l] µ−1

h

(
µ1
(

r
100

))
log r


i.e., lim sup

r→∞

log[l] µ−1
h µ f◦1(r)

log r

≥ lim sup
r→∞

log[l] µ−1
h

{
µ f

(
µ1
(

r
100

))}
log[l] µ−1

h

(
µ1
(

r
100

)) lim inf
r→∞

log[l] µ−1
h

(
µ1
(

r
100

))
log r
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i.e., ρ[l]
h

(
f ◦ 1) ≥ A · λ[l]

h

(
1
)
. (4)

Similarly from (3) , it follows for all sufficiently large values of r that

log[l] µ−1
h µ f◦1(r) ≤ log[l] µ−1

h

{
µ f

(
µ1 (26r)

)}
i.e.,

log[l] µ−1
h µ f◦1(r)

log r
≤

log[l] µ−1
h

{
µ f

(
µ1 (26r)

)}
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≤
log[l] µ−1

h

{
µ f

(
µ1 (26r)

)}
log[l] µ−1

h

(
µ1 (26r)

) ·
log[l] µ−1

h

(
µ1 (26r)

)
log r

(5)

i.e., lim inf
r→∞

log[l] µ−1
h µ f◦1(r)

log r

≤ lim inf
r→∞

 log[l] µ−1
h

{
µ f

(
µ1 (26r)

)}
log[l] µ−1

h

(
µ1 (26r)

) ·
log[l] µ−1

h

(
µ1 (26r)

)
log r


i.e., lim inf

r→∞

log[l] µ−1
h µ f◦1(r)

log r

≤ lim sup
r→∞

log[l] µ−1
h

{
µ f

(
µ1 (26r)

)}
log[l] µ−1

h

(
µ1 (26r)

) · lim inf
r→∞

log[l] µ−1
h

(
µ1 (26r)

)
log r

i.e., λ[l]
h

(
f ◦ 1) ≤ A.λ[l]

h

(
1
)
. (6)

Also from (5) ,we obtain for all sufficiently large values of r that

lim sup
r→∞

log[l] µ−1
h µ f◦1(r)

log r

≤ lim sup
r→∞

 log[l] µ−1
h

{
µ f

(
µ1 (26r)

)}
log[l] µ−1

h

(
µ1 (26r)

) ·
log[l] µ−1

h

(
µ1 (26r)

)
log r


i.e., lim sup

r→∞

log[l] µ−1
h µ f◦1(r)

log r

≤ lim sup
r→∞

log[l] µ−1
h

{
µ f

(
µ1 (26r)

)}
log[l] µ−1

h

(
µ1 (26r)

) · lim sup
r→∞

log[l] µ−1
h

(
µ1 (26r)

)
log r

i.e., ρ[l]
h

(
f ◦ 1) ≤ A.ρ[l]

h

(
1
)
. (7)

Therefore the theorem follows from (4), (6) and (7) .

Theorem 3.5. Let f , 1 and h be any three entire functions satisfying 1 (0) = 0 and 0 < λ[l]
h

(
1
) ≤ ρ[l]

h

(
1
)
< ∞ and

lim inf
r→∞

log[l] µ−1
h

(
µ f (r)

)
log[l] µ−1

h (r)
= A, a real number < ∞.
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Then

λ[l]
h

(
f ◦ 1) ≤ Aρ[l]

h

(
1
) ≤ ρ[l]

h

(
f ◦ 1)

where l ≥ 1.

The proof of Theorem 3.5 is omitted because it can be carried out in the line of Theorem 3.4.

Theorem 3.6. Let f , 1 and h be any three entire functions satisfying

lim sup
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log[2] r

)α = A, a real number > 0,

lim inf
r→∞

log
[

log[l] µ−1
h (µ f (r))

log[l] µ−1
h (r)

]
[
log[l] µ−1

h (r)
]β = B, a real number > 0

and 1 (0) = 0 for any α, β satisfying α > 1, 0 < β < 1, αβ > 1 and l ≥ 1. Then

ρ[l]
h

(
f ◦ 1) = ∞ .

Proof. From (i) we have for a sequence of values of r tending to infinity we get that

log[l] µ−1
h

(
µ1(r)

)
≥ (A − ε)

(
log[2] r

)α
(8)

and from (ii) we obtain for all sufficiently large values of r that

log

 log[l] µ−1
h

(
µ f (r)

)
log[l] µ−1

h (r)

 ≥ (B − ε)
[
log[l] µ−1

h (r)
]β

i.e.,
log[l] µ−1

h

(
µ f (r)

)
log[l] µ−1

h (r)
≥ exp

[
(B − ε)

[
log[l] µ−1

h (r)
]β]
.

Since µ1 (r) is continuous, increasing and unbounded function of r, we get from above for all sufficiently
large values of r that

log[l] µ−1
h

(
µ f (µ1 (r))

)
log[l] µ−1

h

(
µ1 (r)

) ≥ exp
[
(B − ε)

[
log[l] µ−1

h

(
µ1 (r)

)]β]
. (9)

Also µ−1
h (r) is increasing function of r, it follows from (8), (9) , Lemma 2.2 and Lemma 2.3 for a sequence of

values of r tending to infinity that

log[l] µ−1
h µ f◦1(r)

log r
≥

log[l] µ−1
h

{
µ f

(
1
24µ1

(
r
4

))}
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r
≥

log[l] µ−1
h

{
µ f

(
µ1
(

r
100

))}
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥
log[l] µ−1

h

{
µ f

(
µ1
(

r
100

))}
log[l] µ−1

h

(
µ1
(

r
100

)) ·
log[l] µ−1

h

(
µ1
(

r
100

))
log r
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i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥ exp
[
(B − ε)

[
log[l] µ−1

h

(
µ1

( r
100

))]β]
·

(A − ε)
(
log[2]

(
r

100

))α
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥ exp
[
(B − ε) (A − ε)β

(
log[2]

( r
100

))αβ]
·

(A − ε)
(
log[2]

(
r

100

))α
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥ exp
[
(B − ε) (A − ε)β

(
log[2]

( r
100

))αβ−1
log[2]

( r
100

)]
·

(A − ε)
(
log[2]

(
r

100

))α
log r

i.e.,
log[l] µ−1

h µ f◦1(r)

log r

≥
(
log
( r

100

))(B−ε)(A−ε)β(log[2]( r
100 ))αβ−1

·
(A − ε)

(
log[2]

(
r

100

))α
log r

i.e., lim sup
r→∞

log[l] µ−1
h µ f◦1(r)

log r

≥ lim inf
r→∞

(
log
( r

100

))(B−ε)(A−ε)β(log[2]( r
100 ))αβ−1

·
(A − ε)

(
log[2]

(
r

100

))α
log r

.

Since ε (> 0) is arbitrary and α > 1, αβ > 1, the theorem follows from above.

In the line of Theorem 3.6, one may also state the following two theorems without their proofs :

Theorem 3.7. Let f , 1 and h be any three transcendental entire functions such that

lim inf
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log[2] r

)α = A, a real number > 0,

lim sup
r→∞

log
[

log[l] µ−1
h (µ f (r))

log[l] µ−1
h (r)

]
[
log[l] µ−1

h (r)
]β = B, a real number > 0

and 1 (0) = 0 for any α, β with α > 1, 0 < β < 1, αβ > 1 and l ≥ 1. Then

ρ[l]
h

(
f ◦ 1) = ∞ .
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Theorem 3.8. Let f , 1 and h be any three transcendental entire functions such that

lim inf
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log[2] r

)α = A, a real number > 0,

lim inf
r→∞

log
[

log[l] µ−1
h (µ f (r))

log[l] µ−1
h (r)

]
[
log[l] µ−1

h (r)
]β = B, a real number > 0

and 1 (0) = 0 for any α, β satisfying α > 1, 0 < β < 1, αβ > 1 and l ≥ 1. Then

λ[l]
h

(
f ◦ 1) = ∞ .

Theorem 3.9. Let f , 1 and h be any three entire functions such that

(i) lim sup
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log r
)α = A, a real number > 0,

(ii) lim inf
r→∞

log[l] µ−1
h

(
µ f (r)

)
(
log[l] µ−1

h (r)
)β+1 = B, a real number > 0

and 1 (0) = 0 for any α, β satisfying 0 < α < 1, β > 0, α
(
β + 1

)
> 1 and l ≥ 1 Then

ρ[l]
h

(
f ◦ 1) = ∞ .

Proof. From (i) we have for a sequence of values of r tending to infinity,

log[l] µ−1
h

(
µ1(r)

)
≥ (A − ε) (log r

)α (10)

and from (ii) we obtain for all sufficiently large values of r that

log[l] µ−1
h

(
µ f (r)

)
≥ (B − ε)

(
log[l] µ−1

h (r)
)β+1

.

Since µ1 (r) is continuous, increasing and unbounded function of r, we get from above for all sufficiently
large values of r that

log[l] µ−1
h

(
µ f (µ1 (r))

)
≥ (B − ε)

(
log[l] µ−1

h

(
µ1 (r)

))β+1
. (11)

Also µ−1
h (r) is an increasing function of r, it follows from Lemma 2.2, Lemma 2.3, (10) and (11) for a sequence

of values of r tending to infinity that

log[l] µ−1
h µ f◦1(r) ≥ log[l] µ−1

h

{
µ f

( 1
24
µ1

( r
4

))}
i.e., log[l] µ−1

h µ f◦1(r) ≥ log[l] µ−1
h

{
µ f

(
µ1

( r
100

))}
i.e., log[l] µ−1

h µ f◦1(r) ≥ (B − ε)
(
log[l] µ−1

h

(
µ1

( r
100

)))β+1

i.e., log[l] µ−1
h µ f◦1(r) ≥ (B − ε)

[
(A − ε)

(
log
( r

100

))α]β+1

i.e., log[l] µ−1
h µ f◦1(r) ≥ (B − ε) (A − ε)β+1 (log r +O(1)

)α(β+1)

i.e.,
log[l] µ−1

h µ f◦1(r)

log r
≥

(B − ε) (A − ε)β+1 (log r +O(1)
)α(β+1)

log r



S. K. Datta, T. Biswas, J. H. Shaikh / FAAC 8 (1) (2016), 39–49 48

i.e., lim sup
r→∞

log[l] µ−1
h µ f◦1(r)

log r
≥ lim inf

r→∞

(B − ε) (A − ε)β+1 (log r +O(1)
)α(β+1)

log r
.

Since ε (> 0) is arbitrary and α
(
β + 1

)
> 1, it follows from above that

ρ[l]
h

(
f ◦ 1) = ∞,

which proves the theorem.

In the line of Theorem 3.9, one may state the following two theorems without their proofs :

Theorem 3.10. Let f , 1 and h be any three entire functions such that

lim inf
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log r
)α = A, a real number > 0,

lim sup
r→∞

log[l] µ−1
h

(
µ f (r)

)
(
log[l] µ−1

h (r)
)β+1 = B, a real number > 0

and 1 (0) = 0 for any α, β satisfying 0 < α < 1, β > 0, α
(
β + 1

)
> 1 and l ≥ 1. Then

ρ[l]
h

(
f ◦ 1) = ∞ .

Theorem 3.11. Let f , 1 and h be any three entire functions with

lim inf
r→∞

log[l] µ−1
h

(
µ1(r)

)
(
log r
)α = A, a real number > 0,

lim inf
r→∞

log[l] µ−1
h

(
µ f (r)

)
(
log[l] µ−1

h (r)
)β+1 = B, a real number > 0

and 1 (0) = 0 for any α, β with 0 < α < 1, β > 0, α
(
β + 1

)
> 1 and l ≥ 1. Then

λ[l]
h

(
f ◦ 1) = ∞ .
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