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Abstract. The main purpose of this paper is to continue our previous research study of degenerate k-
regularized (C1,C2)-existence and uniqueness families in sequentially complete locally convex spaces [13]
by investigating the entire solutions of abstract degenerate differential equations of higher order. We apply
our results in the analysis of existence and uniqueness of entire solutions of the abstract Boussinesq-Love
equation and the abstract Barenblatt-Zheltov-Kochina equation in finite domains.

1. Introduction and preliminaries

The first results on entire solutions of abstract degenerate differential equations of first order in locally
convex spaces have been obtained by V. Fedorov [8], who investigated strongly holomorphic groups of linear
equations of Sobolev type. In this paper, the author has defined the notion of a relatively spectral regular
operator and the notion of a phase space of degenerate differential equations of first order. Applications have
been made to degenerate differential equations of first order with regularly elliptic differential operators.

On the other hand, in a series of our recent research studies we have investigated various types of
abstract Volterra integro-differential equations and abstract degenerate fractional differential equations in
locally convex spaces (cf. the forthcoming monograph [9], written in co-autorship with V. Fedorov and R.
Ponce, for a comprehensive survey of results, as well as [11] for non-degenerate case B = I). In [13], we have
considered various types of degenerate k-regularized (C1,C2)-existence and uniqueness families applicable
in the analysis of the following abstract degenerate multi-term problem:

BDαn
t u(t) +

n−1∑
i=1

AiDαi
t u(t) = ADαt u(t) + f (t), t ≥ 0;

u( j)(0) = u j, j = 0, · · ·, ⌈αn⌉ − 1,

(1.1)
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where n ∈ N \ {1}, A := A0, B := An and A1, · · ·,An−1 are closed linear operators on a sequentially complete
locally convex space X, 0 ≤ α1 < · · · < αn, 0 ≤ α := α0 < αn, f (t) is a continuous X-valued function on,
and Dαt denotes the Caputo fractional derivative of order α. In this paper, we analyze entire properties
of degenerate resolvent operator families introduced in [13, Section 3] and apply obtained results in the
study of abstract Boussinesq-Love equation, which is important in the modeling the longitudinal waves in
an elastic bar with the transverse inertia, and the abstract Barenblatt-Zheltov-Kochina equation, which is
important in the study of fluid filtration in fissured rocks, as well as in the studies of moisture transfer in
soil and the process of two-temperature heat conductivity. We reconsider some results obtained by G. A.
Sviridyuk and A. A. Zamyshlyaeva in [22, Section 5], and slightly improve the assertion of [19, Theorem
5.1.3(ii)] in L2 type spaces, concerning the well-posedness of abstract Barenblatt-Zheltov-Kochina equation.
The paper is intended to be a note and contains only one theoretical result (Theorem 2.2), in which we
essentially apply the structural results on vector-valued Laplace transform of holomorphic functions in the
analysis of existence and uniqueness of entire solutions of degenerate differential equations with integer
order derivatives.

Henceforth we assume that X is a Hausdorff sequentially complete locally convex space over the field
of complex numbers, SCLCS for short. By X∗ we denote the dual space of X. If Y is also an SCLCS over the
field of complex numbers, then by L(Y,X) we denote the space consisting of all continuous linear mappings
from Y into X; L(X) ≡ L(X,X). By ~X (~, if there is no risk for confusion), we denote the fundamental system
of seminorms which defines the topology of X; the fundamental system of seminorms which defines the
topology on Y is denoted by ~Y. Let 0 < τ ≤ ∞. A strongly continuous operator family (W(t))t∈[0,τ) ⊆ L(Y,X)
is said to be locally equicontinuous iff, for every T ∈ (0, τ) and for every p ∈ ~X, there exist qp ∈ ~Y and cp > 0
such that p(W(t)y) ≤ cpqp(y), y ∈ Y, t ∈ [0,T]; the notions of equicontinuity of (W(t))t∈[0,τ) and the exponential
equicontinuity of (W(t))t≥0 are defined similarly. Notice that (W(t))t∈[0,τ) is locally equicontinuous whenever
the space Y is barreled ([16]). By B we denote the family consisting of all bounded subsets of Y. Define
pB(T) := supy∈B p(Ty), p ∈ ~X, B ∈ B, T ∈ L(Y,X). Then pB(·) is a seminorm on L(Y,X) and the system
(pB)(p,B)∈~X×B induces the Hausdorff locally convex topology on L(Y,X). If X is a Banach space, then we
denote by ∥x∥ the norm of an element x ∈ X. Let A be a closed linear operator with domain and range
contained in X. Then, by D(A), N(A), R(A), ρ(A) and σ(A) we denote the domain, kernel space, range, the
resolvent set and spectrum of A, respectively; R(λ : A) ≡ (λ − A)−1 (λ ∈ ρ(A)). Since no confusion seems
likely, we will identify A with its graph. Set pA(x) := p(x) + p(Ax), x ∈ D(A), p ∈ ~. Then the calibration
(pA)p∈~ induces the Hausdorff sequentially complete locally convex topology on D(A); we denote this space
simply by [D(A)].

If V is a general topological vector space, then a function f : Ω → V, where Ω is an open non-empty
subset of C, is said to be analytic iff it is locally expressible in a neighborhood of any point z ∈ Ω by a
uniformly convergent power series with coefficients in V. We refer the reader to [2], [11, Section 1.1] and
references cited there for the basic information about vector-valued analytic functions. In our approach the
space X is sequentially complete, so that the analyticity of a mapping f : Ω→ X is equivalent with its weak
analyticity.

We need to introduce the following condition:

(P1) K(·) is Laplace transformable, i.e., it is locally integrable on [0,∞) and there exists β ∈ R so that

K̃(λ) := L(K)(λ) := lim
b→∞

∫ b

0
e−λtK(t) dt :=

∫ ∞

0
e−λtK(t) dt

exists for all λ ∈ C with Reλ > β. Put abs(K) :=inf{Reλ : K̃(λ) exists}, and denote by L−1 the inverse
Laplace transform.

We say that a function h(·) belongs to the class LT − X iff there exists a function f ∈ C([0,∞) : X) such that
for each p ∈ ~ there exists Mp > 0 satisfying p( f (t)) ≤ Mpeat, t ≥ 0 and h(λ) = (L f )(λ), λ > a. We refer
the reader to [2], [18], [23, Chapter 1] and [11, Section 1.2] for more details concerning the vector-valued
Laplace transform. The basic information about abstract degenerate differential equations can be obtained
by consulting [1, 3-4, 6-9, 13-15, 17, 19-22, 24].
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Define Σθ := {λ ∈ C : λ , 0, | arg(λ)| < θ} (θ ∈ (0, π]) and ⌈β⌉ := inf{n ∈ Z : β ≤ n} (β ∈ R). The Gamma
function is denoted by Γ(·) and the principal branch is always used to take the powers; the convolution like
mapping ∗ is given by f ∗ 1(t) :=

∫ t

0 f (t − s)1(s) ds. Set 1ζ(t) := tζ−1/Γ(ζ), 0ζ := 0 (ζ > 0, t > 0) and 10(t) := the
Dirac δ-distribution. If f : [0,∞) → X is a continuous function, then 10 ∗ f ≡ f . In our considerations, k(t)
will be a non-zero continuous scalar-valued function defined for t ≥ 0.

The theory of abstract degenerate fractional differential equations is still very undeveloped and, because
of that, we would like to present here the most important structural results obtained recently in [13] for the
problem (1.1) in its general form, with the orders αi not necessarily being integer numbers (deeply believing
that it will not complicate the perception of the reader). We will use these results later on as an auxiliary tool
in our analysis. Let ζ > 0. Then the Caputo fractional derivative Dζt u ([11]) is defined for those functions
u ∈ C⌈ζ⌉−1([0,∞) : X) for which 1⌈ζ⌉−ζ ∗ (u −∑⌈ζ⌉−1

j=0 u( j)(0)1 j+1) ∈ C⌈ζ⌉([0,∞) : X), by

Dζt u(t) :=
d⌈ζ⌉

dt⌈ζ⌉

[
1⌈ζ⌉−ζ ∗

(
u −

⌈ζ⌉−1∑
j=0

u( j)(0)1 j+1

)]
.

SetNn := {1, 2, · · ·,n},N0
n :=Nn ∪ {0}, m := ⌈α⌉, α0 := α, mi := ⌈αi⌉ (i ∈N0

n) and

Pz := B +
n−1∑
j=1

zα j−αn A j − zα−αn A, z ∈ C \ {0}.

By a strong solution of problem (1.1), we mean any function u ∈ Cmn−1([0,∞) : X) satisfying that all terms
BDαn

t u(t), A1Dα1
t u(t), · · ·, An−1Dαn−1

t u(t), ADαt u(t) are well-defined and continuous for t ≥ 0, as well as that
(1.1) holds.

The following notion plays an important role in the analysis of existence and uniqueness of strong
solutions of problem (1.1).

Definition 1.1. (cf. [13, Definition 3.1] with τ = ∞) Suppose k ∈ C([0,∞)), C1 ∈ L(Y,X), and C2 ∈ L(X) is
injective.

(i) A strongly continuous operator family (E(t))t≥0 ⊆ L(Y,X) is said to be a k-regularized C1-existence
family for (1.1) iff, for every y ∈ Y, the following holds: E(·)y ∈ Cmn−1([0,∞) : [D(B)]), E(i)(0)y = 0 for
every i ∈N0 with i < mn − 1, A j(1αn−α j ∗ E(mn−1))(·)y ∈ C([0,∞) : X) for 0 ≤ j ≤ n, and

BE(mn−1)(t)y +
n−1∑
j=1

A j

(
1αn−α j ∗ E(mn−1)

)
(t)y − A

(
1αn−α ∗ E(mn−1)

)
(t)y = k(t)C1y, t ≥ 0.

(ii) A strongly continuous operator family (U(t))t≥0 ⊆ L(X) is said to be a k-regularized C2-uniqueness
family for (1.1) iff, for every t ≥ 0 and x ∈ ∩

0≤ j≤n D(A j), the following holds:

U(t)Bx +
n−1∑
j=1

(
1αn−α j ∗U(·)A jx

)
(t) −

(
1αn−α ∗U(·)Ax

)
(t)y =

(
k ∗ 1mn−1

)
(t)C2x.

(iii) A strongly continuous family ((E(t))t≥0, (U(t))t≥0) ⊆ L(Y,X)× L(X) is said to be a k-regularized (C1,C2)-
existence and uniqueness family for (1.1) iff (E(t))t≥0 is a k-regularized C1-existence family for (1.1),
and (U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1).

In the case that k(t) = 1ζ+1(t), where ζ ≥ 0, it is also said that (E(t))t≥0, resp. (U(t))t≥0, is a ζ-times
integrated C1-existence family for (1.1), resp., ζ-times integrated C2-uniqueness family for (1.1); 0-times
integrated C1-existence family for (1.1), resp., 0-times integrated C2-uniqueness family for (1.1), is also said
to be a C1-existence family for (1.1), resp., C2-uniqueness family for (1.1).
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Suppose 0 ≤ i ≤ mn − 1. In [13, Definition 3.3], we have introduced the following sets: D′i =: { j ∈ N0
n−1 :

m j − 1 ≥ i}, D′′i :=N0
n−1 \D′i and

Di :=
{

ui ∈
∩
j∈D′′i

D(A j) : A jui ∈ R(C1), j ∈ D′′i

}
.

These sets will be important in our further work.
We need the following results from [13]:

Lemma 1.2. Suppose k(t) satisfies (P1), (U(t))t≥0 ⊆ L(X), ω ≥ max(0, abs(k)), C1 ∈ L(Y,X) and C2 ∈ L(X) is
injective.

(i) Let the operator Pz be injective for every z > ω with k̃(z) , 0. Suppose, additionally, that there exist strongly
continuous operator families (W(t))t≥0 ⊆ L(Y,X) and (W j(t))t≥0 ⊆ L(Y,X) such that {e−ωtW(t) : t ≥ 0} and
{e−ωtW j(t) : t ≥ 0} are equicontinuous (0 ≤ j ≤ n) as well as that:

∞∫
0

e−ztW(t)y dt = k̃(z)P−1
z C1y and

∞∫
0

e−ztW j(t)y dt = k̃(z)zα j−αn A jP−1
z C1y,

for every z > ωwith k̃(z) , 0, y ∈ Y and j ∈N0
n. Then there exists a k-regularized C1-existence family for (1.1),

denoted by (E(t))t≥0. Furthermore, E(mn−1)(t)y = W(t)y, t ≥ 0, y ∈ Y and A j(1αn−α j ∗ E(mn−1))(t)y = W j(t)y,
t ≥ 0, y ∈ Y, j ∈N0

n.

(ii) Suppose (U(t))t≥0 is strongly continuous and the operator family {e−ωtU(t) : t ≥ 0} is equicontinuous. Then
(U(t))t≥0 is a k-regularized C2-uniqueness family for (1.1) iff, for every x ∈ ∩n

j=0 D(A j), the following holds:

∞∫
0

e−ztU(t)Pzx dt = k̃(z)z1−mn C2x, ℜλ > ω.

(iii) Suppose (U(t))t≥0 is a locally equicontinuous k-regularized C2-uniqueness family for (1.1). Then there exists at
most one strong solution of (1.1).

In the subsequent section, the existence of strong solutions of problem (1.1) will be goverened by
C1-existence families for (1.1). Then we will be in a position to essentially apply the following lemma:

Lemma 1.3. (cf. [13, Theorem 3.6]) Suppose (E(t))t≥0 is a C1-existence family for (1.1) satisfying that the operator
family (E(mn−1)(t))t≥0 ⊆ L(Y,X) is locally equicontinuous, and ui ∈ Di for 0 ≤ i ≤ mn − 1. Let 1 ∈ C1([0,∞) : Y)
satisfy C11(t) = f (t), t ≥ 0, and let G ∈ C([0,∞) : Y) satisfy (1αn−mn+1 ∗ 1)(t) = (11 ∗ G)(t), t ≥ 0. Then the function

u(t) =
mn−1∑
i=0

ui1i+1(t) −
mn−1∑
i=0

∑
j∈Nn−1\Di

(
1αn−α j ∗ E(mn−1−i)

)
(t)vi, j

+

mn−1∑
i=m

(
1αn−α ∗ E(mn−1−i)

)
(t)vi,0 +

t∫
0

E(t − s)G(s) ds, t ≥ 0, (1.2)

is a strong solution of problem (1.1), where vi, j ∈ Y satisfy A jui = C1vi, j for 0 ≤ j ≤ n − 1.
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2. The main result and its applications

In this section, we would like to propose a new operator theoretical method for seeking of entire
solutions to abstract degenerate differential equations of higher order. Although our method can be used
for proving some new results on the existence and uniqueness of analytical solutions to certain classes of
abstract degenerate multi-term fractional Cauchy problems, we will consider here only the equations with
integer order derivatives, so that our standing hypothesis henceforth will be that the orders α, α1, · · ·, αn
of Caputo derivatives Dαt u(t), Dα1

t u(t), · · ·,Dαn
t u(t), appearing in (1.1), are non-negative integers. For more

details about fractional-order case, we refer the reader to the forthcoming monograph [9].

Definition 2.1. Let αi ∈ N0 for all i ∈ N0
n, and let the function u ∈ Cαn−1([0,∞) : X) be a strong solution

of problem (1.1). Then we say that u(·) is an entire solution of problem (1.1) iff the functions u(·) and
Bu(αn)(·), A1u(α1)(·), · · ·, An−1u(αn−1)(·), Au(α)(·) can be analytically extended from the interval [0,∞) to the
whole complex plane.

The main result of this paper reads as follows.

Theorem 2.2. Suppose k(t) satisfies (P1), C1 ∈ L(Y,X) and C2 ∈ L(X) is injective. Let αi ∈ N0 for all i ∈ N0
n,

and let there exist a locally equicontinuous k-regularized C2-uniqueness family for (1.1). Suppose that there exists a
sufficiently large number R > 0 such that the operator Pz is injective for |z| ≥ R, as well as that the operator families
{P−1

z C1 : |z| ≥ R} ⊆ L(Y,X) and {zα j−αn A jP−1
z C1 : |z| ≥ R, j ∈ N0

n} ⊆ L(Y,X) are equicontinuous. Let the mappings
z 7→ P−1

z C1y ∈ X, |z| > R and z 7→ zα j−αn A jP−1
z C1y ∈ X, |z| > R be analytic for any y ∈ Y, j ∈ N0

n, and let there
exist operators D,D0,D1, · · ·,Dn ∈ L(Y,X) such that limz→∞ P−1

z C1y = Dy and limz→∞ zα j−αn A jP−1
z C1y = D jy for

any y ∈ Y, j ∈ N0
n. Suppose that ui ∈ Di for 0 ≤ i ≤ mn − 1, vi, j ∈ Y satisfy A jui = C1vi, j for 0 ≤ j ≤ n − 1,

as well as that 1 ∈ C1([0,∞) : Y) and C11(t) = f (t), t ≥ 0. Then there exists a unique strong solution of (1.1).
Assume, additionally, that the function t 7→ 1(t), t ≥ 0 can be analytically extended to the whole complex plane,
resp., to a continuously differentiable function R 7→ Y. Then there exists a unique entire solution u(·) of (1.1), resp.,
the function t 7→ u(t), t ≥ 0 can be extended to an αn-times continuously differentiable function R 7→ X and the
functions Bu(αn)(·), A1u(α1)(·), · · ·, An−1u(αn−1)(·), Au(α)(·) can be extended to continuously differentiable functions
R 7→ X. Furthermore, in any case set out above, the existence of a positive real number ω′ > 0 such that the set
{e−ω′s1(s) : s ≥ 0}, resp., {e−ω′z1(z) : z ∈ C} ({e−ω′ |s|1(s) : s ∈ R}) is bounded in Y, implies the existence of a positive
real number ω′′ > 0 such that the set {e−ω′′su(s) : s ≥ 0}, resp., {e−ω′′zu(z) : z ∈ C} ({e−ω′′ |s|u(s) : s ∈ R}) is bounded
in X.

Proof. Let β ∈ (−π, π]. Then, for every θ ∈ (0, π/2), there exists a sufficiently large numberωβ,θ > 0 satisfying
that the function qβ,θ(z) := z−1P−1

ze−iβC1 ∈ L(Y,X), z ∈ ωβ,θ + Σθ+(π/2) is well-defined, strongly analytic and that
for each θ′ ∈ (0, θ) the operator family {z−1(z−ωβ,θ)P−1

ze−iβC1 : z ∈ ωβ,θ +Σθ′+(π/2)} ⊆ L(Y,X) is equicontinuous.
By [11, Theorem 1.2.5(i)], we obtain that for each y ∈ Y there exists an X-valued analytic mapping z 7→
Wβ,y(z), z ∈ Σπ/2 satisfying that, for everyθ ∈ (0, π/2),we have that

∫ ∞
0 e−ztWβ,y(t) dt = z−1P−1

ze−iβC1y,ℜz > ωβ,θ
and the set {e−ωβ,θzWβ,y(z) : z ∈ Σθ′ } is bounded in X (y ∈ Y, θ′ ∈ (0, θ)). Define Wβ(z)y := Wβ,y(z), z ∈ Σπ/2,
y ∈ Y. By the uniqueness theorem for Laplace transform, it readily follows that Wβ(z) : Y → X is a linear
mapping (z ∈ Σπ/2); furthermore, we can argue as in the proofs of [11, Theorem 2.2.5] and [2, Theorem 2.6.1]
so as to conclude that, for every θ ∈ (0, π/2), {e−ωβ,θzWβ(z) : z ∈ Σθ′} ⊆ L(Y,X) is an equicontinuous operator
family (θ′ ∈ (0, θ)).

Since limz→∞ P−1
z C1y = Dy (y ∈ Y), we can apply [11, Theorem 1.2.5(ii)/(iii)] in order to see that, for every

y ∈ Y andθ ∈ (0, π/2),we have limz→0,z∈Σθ Wβ(z)y = Dy.Now we will prove that, for every z ∈ Σπ/2∩eiπ/2Σπ/2,
we have W0(z) = Wπ/2(ze−iπ/2). Let y ∈ Y be fixed, and let arg(z) = θ. Set Γθ := {eiθt : t ≥ 0}. Using Cauchy’s
formula, it is not difficult to see that, for all sufficiently large values of positive real parameter s > 0, we
have

∞∫
0

e−stW0

(
eiθt

)
y dt = e−iθ

∫
Γθ

e−se−iθvW0(v)y dv = e−iθ

∞∫
0

e−se−iθvW0(v)y dv = s−1P−1
se−iθC1y, y ∈ Y.
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Similarly,
∫ ∞

0 e−stWπ/2(ei(θ−π/2)t)y dt = s−1P−1
seiθC1y, y ∈ Y so that the uniqueness theorem for Laplace transform

implies that W0(eiθt) = Wπ/2(ei(θ−π/2)t) for all t ≥ 0. Plugging t = |z|, we get that W0(z) = Wπ/2(ze−iπ/2), as
claimed.

A similar line of reasoning shows that the operator family (W(z))z∈C,where

W(z) :=


W0(z), z ∈ Σπ/2,
Wπ/2(ze−iπ/2), if z ∈ eiπ/2Σπ/2,
W−π/2(zeiπ/2), if z ∈ e−iπ/2Σπ/2,
Wπ(ze−iπ), if z ∈ eiπΣπ/2,
D, if z = 0,

is well-defined. By the foregoing, we obtain that there exists ω > 0 such that the operator family {e−ωzW(z) :
z ∈ C} ⊆ L(Y,X) is equicontinuous as well as that, for every y ∈ Y, the mapping z 7→ W(z)y, z ∈ C is entire
(because it is weakly entire; this follows from the fact that for each x∗ ∈ X∗ the mapping z 7→ ⟨x∗,W(z)y⟩,
z ∈ C \ {0} is analytic and has the limit ⟨x∗,Dy⟩ as z→ 0).

Replacing the function z 7→ qβ,θ(z) = z−1P−1
ze−iβC1 ∈ L(Y,X), z ∈ ωβ,θ + Σθ+(π/2) with the function z 7→

qβ,θ, j(z) := z−1(ze−iβ)α j−αn A jP−1
ze−iβC1 ∈ L(Y,X), z ∈ ωβ,θ + Σθ+(π/2) in the first part of proof (θ ∈ (0, π/2),

j ∈ N0
n), we can define for each y ∈ Y an X-valued analytic mapping z 7→ Wβ, j,y(z), z ∈ Σπ/2 satisfying

that, for every θ ∈ (0, π/2), we have that
∫ ∞

0 e−ztWβ, j,y(t) dt = z−1(ze−iβ)α j−αn A jP−1
ze−iβC1y,ℜz > ωβ,θ and the set

{e−ωβ,θzWβ, j,y(z) : z ∈ Σθ′} is bounded in X (y ∈ Y, θ′ ∈ (0, θ)). Define now Wβ, j(z)y := Wβ, j,y(z), z ∈ Σπ/2, y ∈ Y,
and W j(·) by replacing W0(·), Wπ/2(·), W−π/2(·), Wπ(·) and D in the definition of W(·) with W0, j(·), Wπ/2, j(·),
W−π/2, j(·), Wπ, j(·) and D j, respectively ( j ∈ N0

n). Then there exists ω j > 0 such that the operator family
{e−ω jzW j(z) : z ∈ C} ⊆ L(Y,X) is equicontinuous and, for every y ∈ Y, the mapping z 7→W j(z)y, z ∈ C is entire
( j ∈N0

n).
By Lemma 1.2, we get that there exists an exponentially equicontinuous C1-existence family for (1.1),

denoted by (E(t))t≥0. Furthermore, for every y ∈ Y, the mapping t 7→ E(t)y, t ≥ 0 can be analytically extended
to the whole complex plane so that E(αn−1)(z)y = W(z)y, z ∈ C, y ∈ Y and A j(1αn−α j ∗ E(αn−1))(z)y = W j(z)y,
z ∈ C, y ∈ Y, j ∈ N0

n. Making use of the closedness of operators A j for j ∈ N0
n, the above implies that the

functions z 7→ A jE(αn−1)(z)y, z ∈ C are well-defined and entire (y ∈ Y, j ∈ N0
n). By Lemma 1.3 and Lemma

1.2(iii), we get that the function t 7→ u(t), t ≥ 0, given by (1.2), with 1(t) = G(t), t ≥ 0, is a unique strong
solution of problem (1.1).

Define v(t) := u(t) −
∫ t

0 E(t − s)1(s) ds, t ≥ 0. By the proof of [13, Theorem 3.6], we have:

Dαn
t v(·) =

mn−1∑
i=m

(
1i−α ∗ E(mn−1)

)
(·)vi,0 −

mn−1∑
i=0

∑
j∈Nn−1\Di

(
1i−α j ∗ E(mn−1)

)
(·)vi, j ∈ C([0,∞) : X),

BDαn
t v(·) ∈ C([0,∞) : X) and

AiDαi
t v(·) =

mn−1∑
j=mi

1 j+1−αi (·)Aiu j −
mn−1∑
l=0

∑
j∈Nn−1\Dl

[
1l−α j ∗ Ai

(
1αn−αi ∗ E(mn−1)

)]
(·)vl, j

+

mn−1∑
l=m

[
1l−α ∗ Ai

(
1αn−αi ∗ E(mn−1)

)]
(·)vl,0 ∈ C([0,∞) : X),

for all i ∈ N0
n−1. These representation formulae imply that the functions v(·) and Bv(αn)(·), A1v(α1)(·), · ·

·, An−1v(αn−1)(·), Av(α)(·) can be analytically extended from the interval [0,∞) to the whole complex plane.
Furthermore, (u−v)(αn−1)(t) =

∫ t

0 E(αn−1)(t−s)1(s) ds, t ≥ 0 and (u−v)(αn)(t) =
∫ t

0 E(αn−1)(t−s)1′(s) ds+E(αn−1)(t)1(0),
t ≥ 0. Now it is quite simple to prove that if the function t 7→ 1(t), t ≥ 0 can be analytically extended to
the whole complex plane, resp., to a continuously differentiable function R 7→ Y, then u(·) is an entire
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solution of problem (1.1), resp., the function t 7→ u(t), t ≥ 0 can be extended to an αn-times continuously
differentiable functionR 7→ X and the functions Bu(αn)(·),A1u(α1)(·), ···, An−1u(αn−1)(·), Au(α)(·) can be extended
to continuously differentiable functions R 7→ X. The remaining part of proof can be left to the reader.

Remark 2.3. (i) Suppose that Y = X,C1 ∈ L(X) is injective, C1A j ⊆ A jC1, j ∈N0
n, as well as that the operator

families {P−1
z C1 : |z| ≥ R} ⊆ L(X) and {zα j−αn A jP−1

z C1 : |z| ≥ R, j ∈ N0
n} ⊆ L(X) are equicontinuous

and strongly continuous. Then the analyticity of mappings z 7→ P−1
z C1x ∈ X, |z| > R and z 7→

zα j−αn A jP−1
z C1x ∈ X, |z| > R automatically follows for any x ∈ X, j ∈ N0

n (cf. the proof of [14, Lemma
2.3]).

(ii) Suppose that 1 ∈ C∞([0,∞) : Y), resp., 1(·) can be extended to an infinitely differentiable function
R 7→ Y. Then u ∈ C∞([0,∞) : X) and Bu(αn), A1u(α1), · · ·, An−1u(αn−1), Au(α) ∈ C∞([0,∞) : X), resp.,
the functions u(·) and Bu(αn)(·), A1u(α1)(·), · · ·, An−1u(αn−1)(·), Au(α)(·) can be extended to infinitely
differentiable functions R 7→ X.

(iii) Let 0 ≤ i ≤ mn − 1, 0 ≤ j ≤ n − 1 and i ≥ α j. If a strong solution u(·) of problem (1.1) has the property
that u ∈ C∞([0,∞) : X) and Bu(αn), A1u(α1), · · ·, An−1u(αn−1), Au(α) ∈ C∞([0,∞) : X), then it can be easily
seen that the mapping t 7→ A ju

(α′j)(t), t ≥ 0 is well-defined and infinitely differentiable for α′j ≥ α j;
hence, ui ∈ D(A j) for 0 ≤ i ≤ mn − 1, j ∈ D′′i and our result on the well-posedness of (1.1) is optimal
provided that R(C1) = X.

Now we would like to present how Theorem 2.2 can be applied in the analysis of abstract Boussinesq-
Love equation.

Example. Suppose that ∅ , Ω ⊆ Rn is a bounded domain with smooth boundary ∂Ω. In the cylinderR×Ω,
we consider the following Cauchy-Dirichlet problem for linearized Boussinesq-Love equation:

(λ − ∆)utt(t, x) − α(∆ − λ′)ut(t, x) = β(∆ − λ′′)u(t, x) + f (t, x), t ∈ R, x ∈ Ω, (2.1)
u(0, x) = u0(x), ut(0, x) = u1(x), (t, x) ∈ R ×Ω; u(t, x) = 0, (t, x) ∈ R × ∂Ω, (2.2)

where λ, λ′, λ′′ ∈ R, α, β ∈ R and β , 0 (in [22], the standing hypothesis was that α , 0; as explained later
in [24], the case α = 0 is worthy of consideration and has a certain physical meaning). By {λk} [= σ(∆)] we
denote the eigenvalues of the Dirichlet Laplacian∆ in L2(Ω) (cf. [2, Section 6], [22, Section 5] and [19, Section
1.3] for more details) numbered in nonascending order with regard to multiplicities. By {ϕk} ⊆ C∞(Ω) we
denote the corresponding set of mutually orthogonal [in the sense of L2(Ω)] eigenfunctions.

In [22], G. A. Sviridyuk and A. A. Zamyshlyaeva have considered the well-posedness of problem (2.1)-
(2.2) in the Sobolev space Wp,l(Ω), where 1 < p < ∞ and l ∈ N0, and the Hölder space Cl+γ(Ω), where
0 < γ < 1 and l ∈ N0. In order to apply [22, Theorem 4.1], G. A. Sviridyuk and A. A. Zamyshlyaeva
imposed the following condition:

(i) λ ∈ ρ(∆),

or

(iii) λ ∈ σ(∆) ∧ λ = λ′ ∧ λ , λ′′.

Although our results on the well-posedness of problem (2.1)-(2.2) in cases (i) or (iii) give some new infor-
mation about qualitative properties of strong solutions of (2.1)-(2.2), in the remaining part of this example
we will completely focus our attention on the following case:

(ii) λ ∈ σ(∆) ∧ λ , λ′ ∧ (α = 0⇒ λ , λ′′).

If (ii) holds with α , 0, then we cannot apply [22, Theorem 4.1] (despite of the validity of requirement
stated in the formulation of [22, Lemma 5.1]) because of the violation of condition [22, (A), p. 271]. Here it
is also worth noting that the existence and uniqueness of two times continuously differentiable solutions of
problem (2.1)-(2.2) on the non-negative real axis (understood in a broader sense of [19, Definition 5.6.2]) have
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been considered in [19, Example 5.7.1, Lemma 5.7.1(ii), Theorem 5.7.3] provided that Y = H2(Ω) ∩ H1
0(Ω),

X = L2(Ω), as well as that (ii) holds and that, additionally, λ′′ , 0; even in this case, we obtain from Theorem
2.2 and a simple analysis, with X = Y = L2(Ω) and C1 being the identity operator on X, that a strong
solution t 7→ u(t), t ≥ 0 of this problem has the property that the mapping t 7→ ∆u(t), t ≥ 0 belongs to the
space C2([0,∞) : L2(Ω)) provided that f ∈ C1([0,∞) : L2(Ω))/needless to say that we obtain the existence
and uniqueness of entire solutions of problem (2.1)-(2.2) provided that the function f (·) can be extended
analytically to the whole complex plane.

With a little abuse of notation, we have that n = 2, B = (λ − ∆), A1 = −α(∆ − λ′), A = β(∆ − λ′′), α2 = 2,
α1 = 1 and α = 0 (the use of symbols α and βwill be clear from the context). Hence,

Pz = z−2
[(

z2λ + αzλ′ + βλ′′
)
+

(
−z2 − αz − β

)
∆
]
, z ∈ C \ {0}.

It is clear that (ii) implies that

λ ,
z2λ + αzλ′ + βλ′′

z2 + αz + β
→ λ as |z| → ∞.

We assume that X = Y = Lp(Ω) for some p ∈ (1,∞), C1 is the identity operator on X, ∆ is the Dirichlet
Laplacian on Lp(Ω) acting with domain D(∆) := Wp,2(Ω) ∩Wp,1

0 (Ω), as well as that the following condition
holds:

P. There exist a sufficiently large real number R > 0 and a positive real number number l < 4, resp., l < 2,
provided that (ii) holds with α , 0, resp., α = 0, such that

∥R(z : ∆)∥ = O
(
|λ − z|−l

)
as z→ λ. (2.3)

Before proceeding further, it should be observed that the condition P. holds in the case that p = 2, with
l = 1: Suppose that λ = λk0 for some k0 ∈N. Then 1 = R(z : ∆) f =

∑∞
k=1

⟨ϕk , f ⟩
z−λk
ϕk as z→ λk0 , so that Parseval’s

equality implies |z − λk0 |2∥1∥2 =
∑∞

k=1
|z−λk0 |

2 |⟨ϕk , f ⟩|2
|z−λk |2 ≤ Const.

∑∞
k=1 |⟨ϕk, f ⟩|2 = ∥ f ∥2 as z→ λk0 (let us recall that

λk → −∞ as k→∞). Using now the condition P., the expression

P−1
z = z−2

(
z2 + αz + β

)−1
[

z2λ + αzλ′ + βλ′′

z2 + αz + β
− ∆

]−1

, |z| ≥ R,

and the resolvent equation, it readily follows that there exists a postive real number ζ > 0 such that the
operator families {(1 + |z|)ζP−1

z : |z| ≥ R} ⊆ L(X) and {(1 + |z|)ζzα j−αn A jP−1
z : |z| ≥ R, j ∈ N0

2} ⊆ L(X) are
equicontinuous, as well as that limz→∞ P−1

z x = 0 and limz→∞ zα j−αn A jP−1
z x = 0 for any x ∈ X, j ∈ N0

n. The
strong analyticity of mappings z 7→ P−1

z , |z| > R and z 7→ zα j−αn A jP−1
z , |z| > R follows from Remark 2.3(i),

while the existence of an exponentially bounded I-uniqueness family for the corresponding problem (1.1)
simply follows from Lemma 1.2(ii) and the above argumentation; here I stands for the identity operator on
X.

Hence, there exists a unique entire solution z 7→ u(z), z ∈ C of problem (2.1)-(2.2), provided that
u0(x) ∈ Wp,2(Ω) ∩Wp,1

0 (Ω), u1(x) ∈ Wp,2(Ω) ∩Wp,1
0 (Ω) and the function f (·) can be analytically extended to

the whole complex plane; moreover, we have the existence of a positive real number ω′ > 0 such that the
set {e−ω′z1(z) : z ∈ C} is bounded in Lp(Ω). Since C1 is the identity operator on X, this is an optimal result as
long as the condition P. holds (cf. Remark 2.3(iii)).

We close the paper with the following illustrative example, in which we analyze the existence and
uniqueness of entire solutions to the abstract Barenblatt-Zheltov-Kochina equation in finite domains by
using the argumentation contained in the proof of Theorem 2.2 and an old approach of N. H. Abdelaziz,
F. Neubrander (cf. [1] and [9, Subsection 2.2.3]); for the sake of simplicity, we will focus our attention
completely on homogenous case.
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Example. Let ∅ , Ω ⊆ Rn, {λk}, {ϕk} and ∆ possess the same meanings as in the previous example, let
X = Y = L2(Ω), and let C1 be the identity operator on X. As mentioned above, we analyze entire solutions
of the Barenblatt-Zheltov-Kochina equation

(λ − ∆)ut(t, x) = ζ∆u(t, x), t ∈ R, x ∈ Ω; u(0, x) = u0(x), x ∈ Ω, u(t, x) = 0, (t, x) ∈ R × ∂Ω, (2.4)

where ζ ∈ R \ {0} and λ = λk0 ∈ σ(∆) (cf. the equation (1.1) with n = 2, B = λ−∆, A1 = 0, A = ζ∆, α2 = 1 and
α1 = α = 0; then we have Pz = λ − (1 + ζz−1)∆).

Using Parseval’s equality, it can be easily seen that the operator D : f 7→ (−1)(ζλ)−1 ∑
λ=λk
⟨ϕk, f ⟩ϕk

( f ∈ L2(Ω)) belongs to the space L(L2(Ω)). Let β ∈ (−π, π]. Then the equation (2.3) holds with l = 1, which
enables us to verify that, for every θ ∈ (0, π/2), there exists a sufficiently large number ωβ,θ > 0 satisfying
that the function qβ,θ(z) := z−2P−1

ze−iβ ∈ L(X), z ∈ ωβ,θ + Σθ+(π/2) is well-defined, strongly analytic and that for
each θ′ ∈ (0, θ) the operator family {z−2(z − ωβ,θ)P−1

ze−iβ : z ∈ ωβ,θ + Σθ′+(π/2)} ⊆ L(X) is equicontinuous.
As in the proof of Theorem 2.2, we obtain that for each f ∈ X there exists an X-valued analytic mapping

z 7→ W1
β, f (z), z ∈ Σπ/2 satisfying that, for every θ ∈ (0, π/2), one has

∫ ∞
0 e−ztW1

β, f (t) dt = z−2P−1
ze−iβ f ,ℜz > ωβ,θ

and the set {e−ωβ,θzW1
β, f (z) : z ∈ Σθ′ } is bounded in X ( f ∈ X, θ′ ∈ (0, θ)). Define W1

β(z) f := W1
β, f (z), z ∈ Σπ/2,

f ∈ X. Then, for every θ ∈ (0, π/2), {e−ωβ,θzW1
β(z) : z ∈ Σθ} ⊆ L(X) is an equicontinuous operator family. On

the other hand, there exist finite constants R > 0 and c > 0 such that the set {|z|−1|(λ−λk)z− ζλk| : |z| ≥ R, k ∈
N \ {k0}} is bounded from below by c, so that we can apply Parsval’s equality once more in order to see that:

z−1P−1
z f =

1
ζ + z

[
λz
ζ + z

− ∆
]−1

f =
∞∑

k=1,k,k0

⟨ϕk, f ⟩
(λ − λk)z − ζλk

ϕk +D f → D f , |z| → ∞ ( f ∈ X);

similarly, we have that the operator family {z−2BP−1
ze−iβ : |z| ≥ R} ∈ L(X) is equicontinuous and that z−1BP−1

z f →
0, |z| → ∞ ( f ∈ X), so that we can define a strongly analytic operator family (W1

β,B(z))z∈Σπ/2 ⊆ L(X) satisfying

that, for every θ ∈ (0, π/2), the operator family {e−ω
′
β,θzW1

β,B(z) : z ∈ Σθ} ⊆ L(X) is equicontinuous for some
number ω′β,θ > 0. Since lim|z|→∞ z−1P−1

z f = D f ( f ∈ X), an application of [11, Theorem 1.2.5(ii)/(iii)] yields
that, for every f ∈ X and θ ∈ (0, π/2),we have limz→0,z∈Σθ W1

β(z) f = D f .
Define

W1(z) :=


W1

0(z), z ∈ Σπ/2,
eiπ/2W1

π/2(ze−iπ/2), if z ∈ eiπ/2Σπ/2,
e−iπ/2W1

−π/2(zeiπ/2), if z ∈ e−iπ/2Σπ/2,
eiπW1

π(ze−iπ), if z ∈ eiπΣπ/2,
D, if z = 0,

and W1
B(z) by replacing the operators W1

0(z), W1
π/2(ze−iπ/2), W1

−π/2(zeiπ/2), W1
π(ze−iπ) and D in the above

definition by the operators W1
0,B(z), W1

π/2,B(ze−iπ/2), W1
−π/2,B(zeiπ/2), W1

π,B(ze−iπ) and 0, respectively (z ∈ C).
Then there exists a finite constant ω > 0 such that the operator families {e−ωzW1(z) : z ∈ C} ⊆ L(X) and
{e−ωzBW1(z) : z ∈ C} ⊆ L(X) are equicontinuous as well as that, for every f ∈ X, the mappings z 7→ W(z) f ,
z ∈ C and z 7→ BW(z) f , z ∈ C are entire; cf. also [10, Proposition 2.4.2, Corollary 2.4.3]. Furthermore, it is
not difficult to see that (W1(t))t≥0 ⊆ L(X, [D(B)]) is a once integrated evolution family generated by A, B in
the sense of considerations from [1, Section 2].

By [1, Theorem 2.3] and an elementary analysis, we may conclude that for each function u0 ∈ H2(Ω) ∩
H1

0(Ω), orthogonal to the eigenfunction(s) ϕk for k = k0, there exists a unique strong solution t 7→ u(t), t ≥ 0
of problem (2.4) with the property that there exists a finite constant ω′ > 0 such that the mappings t 7→ u(t),
t ≥ 0 and t 7→ Bu(t), t ≥ 0 can be analytically extended to the whole complex plane, as well as that the sets
{e−ω′zu(z) : z ∈ C} and {e−ω′zBu(z) : z ∈ C} are bounded. This result slightly improves the assertion of [19,
Theorem 5.1.3(ii)] in L2 spaces.
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