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Abstract. The following question is attempted: Given two commuting matrices A and B with complex
(real) entries such that AB is unitarily (orthogonally) diagonalizable, when will it happen that A and B are
diagonalizable?

1. Introduction

We work with either the field of complex numbers C or the field of real numbersR. The vector space of
all square matrices with real and complex entries will be denoted, respectively, by Mn(R) and Mn(C). The
transpose and adjoint of a matrix A will be denoted by At and A∗, respectively. We assume throughout that

Cn (respectively, Rn) is equipped with the Euclidean inner product ⟨x, y⟩ =
n∑

i=1

xiyi for x = (xi), y = (yi) ∈ Cn

(respectively, ⟨x, y⟩ =
n∑

i=1

xiyi) and Mn(C) (respectively, Mn(R)) is equipped with the Hilbert-Schmidt trace

inner product ⟨A,B⟩ = trace(B∗A) for A,B ∈Mn(C) (respectively, ⟨A,B⟩ = trace(BtA)). A complex matrix A is
said to be unitarily diagonalizable if there exists a unitary matrix U such that U∗AU = D for some diagonal
matrix D. A real matrix A is said to be orthogonally diagonalizable, if there exists a (real) orthogonal matrix
Q and a diagonal matrix D such that QtAQ = D. Notice that in this case, A becomes a symmetric matrix and
so the matrix D must have only real entries on the diagonal. Let us recall the finite dimensional spectral
theorem, which states that a square matrix is normal (real symmetric) if and only if it is unitarily (real
orthogonally) similar to a diagonal matrix. Let us also recall that a linear map T : Mn(C) −→ Mn(C) is said
to be unitarily diagonalizable if there exists an orthonormal basis of Mn(C) with respect to which the matrix
representation of T is diagonal. A similar definition holds for orthogonal diagonalizability.
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The question we are interested is the following:
Given two matrices A and B with complex (real) entries with the following properties:
(1) AB , 0.
(2) AB = BA.
(3) AB is unitarily (orthogonally) diagonalizable.
(4) Either A or B is unitarily (orthogonally) diagonalizable.
When does it happen that A and B are diagonalizable?

Let us first observe the following:

Theorem 1.1. Suppose A and B are complex matrices such that 0 , AB = BA with A diagonalizable, and B
non-diagonalizable. If A is invertible, then AB is not diagonalizable.

Proof. Since AB = BA and A is given to be diagonalizable, if AB were diagonalizable, then A and AB would
be simultaneously diagonalizable. Let S be an invertible matrix such that S−1(AB)S = D, and S−1AS = D′,
where D and D′ are diagonal matrices with D′ invertible. Then, S−1BS = (D′)−1D, a diagonal matrix. This
contradiction proves the result.

Our motivation to study the problem stated above comes from maps of the form X 7→ AXB for fixed
matrices A and B. Such maps typically appear in linear preserver problems (Refer [2] for some interesting
problems and techniques). For fixed matrices A and B, consider the linear maps LA and RB on Mn(C) or
Mn(R) defined by LA(X) = AX, RB(X) = XB. Note that LARB = RBLA. For a field F and the set Mm,n(F) of
m × n matrices over F, a linear preserver ϕ is a linear map ϕ : Mm,n(F) −→ Mm,n(F) that preserves a certain
property or a relation. Most such maps are of the form ϕ(X) = AXB for some invertible matrices A and B
of orders m × m and n × n, respectively, or m = n and ϕ(X) = AXtB for some invertible matrices A and B
of order n × n. Both these maps are called standard maps. The first such problem was perhaps studied by
Frobenius, who proved that any determinant preserver is of the form AXB or AXtB with det(AB) = 1. Other
properties of matrices such as rank, inertia, trace, invertibility, functions of eigenvalues and so on, were
investigated later on. For instance, rank preservers on the space of complex as well as real matrices are
of the above form. There are two types of preserver problems one usually considers. Given a subset S of
Mm,n(F), what are the linear maps ϕ on Mm,n(F) such that ϕ(S) ⊆ S. The other one is to characterize those
linear maps ϕ on Mm,n(F) such that ϕ(S) = S. For some general techniques on linear preserver problems,
one may refer to [2] and the references cited therein. It is therefore natural to consider the properties of
these maps LA and RB. More about these maps will be added later.

2. Results

We present the main results in this section. We prove our results for complex matrices. Proofs for real
matrices follow with obvious modifications. It is well known that if A and B commute, then there exists an
orthonormal vector that is an eigenvector for both A and B (Refer Observation 1.3.18 and Lemma 1.3.19,
[1]). If, in addition, A and B are also unitarily diagonalizable, then A and B are simultaneously unitarily
diagonalizable (Refer Theorem 1.3.21, [1]). Our first main result is the following.

Theorem 2.1. Let A,B ∈Mn(C) be two commuting matrices such that AB , 0 and both A as well as AB are unitarily
diagonalizable. Further, assume that the algebraic multiplicity of the eigenvalue 0 of A is at most 1. Then B is also
unitarily diagonalizable.

Proof. Note first that A and AB commute, as AB = BA. Therefore, A and AB are simultaneously unitarily
diagonalizable. Thus, there is a common basis B of orthonormal eigenvectors for AB and A. We claim that
B forms a basis of eigenvectors for B. Let us discuss two cases.

Case(i): Suppose 0 is not an eigenvalue of A. Then A is invertible. Let x ∈ B be an eigenvector of A
corresponding to an eigenvalue λ. Then, Bx = (1/λ)B(λx) = (1/λ)BAx = (1/λ)ABx = (λ′/λ)x, where λ′ is
the eigenvalue of AB for which x is an eigenvector. Thus, x is an eigenvector for B.
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Case(ii): Suppose 0 is an eigenvalue of A of algebraic multiplicity 1. Then, the corresponding eigenspace is
one dimensional. Let u ∈ B be an eigenvector of A corresponding to the eigenvalue 0. If Bu = 0, then u will
be an eigenvector of B corresponding to the eigenvalue 0. Let us therefore assume that Bu , 0. Consider
the subspace span{u}. Since AB = BA, we see that u is an eigenvector of B.

Remark 2.2. The proof of the above theorem can be adapted to two arbitrary linear maps T1 and T2 on Mn(C), instead
of matrices A and B, by suitably modifying the assumptions. This will be used later on in Theorem 2.10.

We state below as a corollary, an analogous result for real matrices.

Corollary 2.3. Let A,B ∈ Mn(R) be two commuting matrices such that AB , 0 and both A as well as AB are
orthogonally diagonalizable. Further, assume that the algebraic multiplicity of the eigenvalue 0 of A is at most 1.
Then B is also orthogonally diagonalizable.

The assumption on A in Corollary 2.3 cannot be dropped, as the following examples illustrate.

Example 2.4. Consider the matrices A =
(

0 1
−1 0

)
and B =

(
0 −1
1 0

)
. Then AB = BA = I, which is orthogonally

diagonalizable. However, A and B have complex eigenvalues. Now consider the matrices C =
(
1 −1
0 1

)
and

D =
(
−1 −1
0 −1

)
. Then CD = DC = −I, which is again orthogonally diagonalizable. However, neither C nor D is

diagonalizable.

Example 2.5. Consider the matrices A =

0 0 0
0 0 0
0 0 2

 and B =

1 2 0
0 1 0
0 0 1

. Then, AB = BA = A, which is

orthogonally diagonalizable, whereas B is not. Note that the geometric multiplicity of the eigenvalue 0 of A equals 2,
which is also its algebraic multiplicity.

The following is a contrapositive of Theorem 2.1. We present its proof for the sake of completeness. It is
worth noting that the proof follows an entirely different approach, namely, simultaneous triangularization
of two commuting matrices.

Theorem 2.6. Suppose A and B are complex matrices such that 0 , AB = BA with A and AB both being unitarily
diagonalizable, and B non-diagonalizable (and hence is not unitarily diagonalizable). Then 0 must be an eigenvalue
of A of algebraic multiplicity at least 2.

Proof. Since A and B commute, they are simultaneously unitarily triangularizable (by Theorem 2.3.3, [1]).
Let T1 and T2 be the respective triangular matrices obtained as a result of triangularization. Since A is
unitarily diagonalizable and B is non-diagonalizable, T1 is a diagonal matrix and then there will exist
distinct indices i, j such that i < j, with (T2)i j , 0. Since T1 and T2 commute and T1T2 is diagonal, we have
(T1)ii = (T1) j j = 0. This proves the result.

Let us now consider the linear maps LA and RB introduced in the introduction. Once again, we consider
the complex case first. As noted before, LARB(X) = RBLA(X) for all X ∈ Mn(C). Recall that a linear map
T : Mn(C) −→Mn(C) is said to be unitarily diagonalizable if there exists an orthonormal basis of Mn(C) with
respect to which the matrix representation of T is diagonal. The following result is an easy observation.

Theorem 2.7. Consider a linear map L on Mn(C) of the form X 7→ AXB for some unitarily diagonalizable matrices
A and B. Then, L is unitarily diagonalizable.



Chandrashekaran Arumugasamy, Sachindranath Jayaraman / FAAC 8 (2) (2016), 31–35 34

Proof. Let λi and µ j be the eigenvalues of A and B, respectively. Let the corresponding linearly independent
orthonormal eigenvectors of A and B∗ be denoted by xi and y j. Define Xi j := xiy∗j. We then have L(Xi j) =
λiµ jXi j. Thus, Xi j is an eigenvector of L corresponding to the eigenvalue λiµ j. It is easy to verify that the
collection of matrices {Xi j : 1 ≤ i, j ≤ n} is an orthonormal set in Mn(C), and so is a linearly independent set.
It follows that L is unitarily diagonalizable.

The following corollary follows immediately from the above theorem.

Corollary 2.8. If A,B ∈ Mn(C) are unitarily diagonalizable, then the maps LA and RB on Mn(C) defined by
LA(X) = AX, RB(X) = XB are both unitarily diagonalizable.

It is the converse of Theorem 2.7 that is more interesting. Before proceeding further, we point out two
useful facts that will be used in the following theorem.

Lemma 2.9. Let A ∈Mn(C) and consider the map LA on Mn(C) as above. Then
(i) A and LA have the same set of eigenvalues.
(ii) The minimal polynomials of A and LA are the same.

Proof. Suppose λ is an eigenvalue of LA. Then, there exists a nonzero matrix X such that LA(X) = λX = AX.
If x is a nonzero column of X, then, Ax = λx. Thus, λ is an eigenvalue of A. On the otherhand, take any
eigenvector x of A corresponding to an eigenvalue λ of A and form the matrix all of whose columns are the
vector x. Then, AX = λX. Thus, λ is an eigenvalue of LA. This proves (i).
Let us denote the minimal polynomial of A by m(x). Then, for any X ∈Mn(C), we have m(A)X = m(LA)(X) =
0. Therefore, the polynomial m(x) annihilates LA and so, its minimal polynomial divides m(x). On the
otherhand, let p(x) be any polynomial such that p(LA) = 0. Then, we have p(LA)(I) = 0. But, p(LA)(I) =
p(A)I = p(A). Therefore, p(x) is divisible by m(x). This proves (ii).

It is easy to see that a similar conclusion holds for the map RB. We now prove the converse of Theorem 2.7.

Theorem 2.10. Let L be a unitarily diagonalizable linear transformation on Mn(C) of the form X 7→ AXB for some
A and B such that either A or B is unitarily diagonalizable and is invertible. Then B is also diagonalizable.

Proof. Notice that L = LARB = RBLA. The linear maps LA and RB are invertible if and only if A and B are
invertible. Since A is unitarily diagonalizable, it follows from Theorem 2.7 that the map LA is unitarily
diagonalizable. It now follows from Theorem 2.1 and Remark 2.2, that RB is unitarily diagonalizable. In
fact, LA and RB are simultaneously unitarily diagonalizable. Therefore the minimal polynomial of RB splits
as a product of distinct linear factors. But we know from Lemma 2.9 that the minimal polynomials of RB
and B are the same. It follows that B is diagonalizable.

We end with a few remarks.
(1) Consider the maps LA and LB, where A and B are as in Example 2.5. Then, LALB = LBLA = LA, which is
unitarily diagonalizable. However, LB is not diagonalizable. Note that 0 is an eigenvalue of LA of algebraic
multiplicity at least 2. The matrices E11 and E12 are two linearly independent eigenvectors of LA. (Ei j is the
matrix with 1 at the i jth entry and 0s elsewhere.)
(2) Theorems 1.1, 2.1 and 2.6 and Lemma 2.9 hold for matrices with entries from an arbitrary field by
replacing unitary similarity with similarity.
(3) The proof of Theorem 2.1 can be extended to a family F of matrices with entries over any field that
are pairwise commuting, one of the matrices in each pair being diagonalizable with 0 as an eigenvalue of
algebraic multiplicity at most 1, and the product diagonalizable.
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