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variations
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Abstract. The holes (i.e., the union of the bounded components of the complement in the complex plane),
alongwith the isolated points, of the Weyl and the approximate Weyl spectrum (and their B-Fredholm
avatars) play a decisive role in determining Browder and Weyl theorems type properties for Banach space
operators and their perturbations.

Dedicated to Marigold Maisie Duggal on her birthday

1. Introduction

Let B(X) (resp., B(H)) denote the algebra of operators, equivalently bounded linear transformations, on
a complex infinite dimensional Banach space X (resp., Hilbert space H) into itself. Given A € B(X), let 6(A),
04(A), 0w(A) and 04(A) and o4(A) denote, respectively, the spectrum, the approximate point spectrum,
the Weyl spectrum and the approximate Weyl spectrum of A; let Iy(A), ITj(A), Eo(A) and E}(A) denote,
respectively, the set of finite rank poles (of the resolvent) of A, the set of finite rank left poles of A, the
set of finite multiplicity eigenvalues which are isolated points of 0(A) and the set of finite multiplicity
eigenvalues which are isolated points of 0,(A). Following current terminology [1], we say that A € B(X)
satisfies Browder’s theorem (a-Browder’s theorem) , A € (Bt) (resp., A € (a — Bt)), if 0(A) \ 0w(A) = I1p(A) (resp.,
if 0,(A) \ 04(A) = IT(A)), and A satisties Weyl's theorem ( a-Weyl's theorem), A € (Wt) (resp., A € (a — Wt)), if
0(A)\ 0w(A) = Eo(A) (resp., 0a(A) \ 0aw(A) = Ej(A)). Browder and Weyl type theorems have been considered
in the recent past by a number of authors and there exists in extant literature a large body of information
on Browder and Weyl thoerems, their generalized extensions and their variations (see [1, 2, 5, 6, 9-22, 24]
for further references).

If we let 110,,(A) denote the connected hull of 0;,(A), n0(A)¢ the unbounded component of the comple-
ment of 10, (A) in the complex plane C and 1’0, (A) the union of the holes of 0,,(A), then A € (Bt) if and only
if A has SVEP, the single-valued extension property, on 10,(A)¢ U n’0,,(A). Similarly, A € (a — Bt) if and only if
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Ahas SVEP on 10,,,(A)¢ U1 0a(A), A € (W) if and only if A € (Bt) and Eq(A) N {no,(A)€ Un 04,(A)} = TTp(A)
and A € (a — Wt) if and only if A € (a — Bt) and Ej(A) N {N0a(A)C U1 0ar(A)} = IT5(A).

We show in the following that, when proving Browder and Weyl theorem type results, the action takes
place on the holes and the isolated points of the Weyl spectrum. Thus, A € (Bt) if and only if A has SVEP
on 0(A) N 1f'ow(A) (resp., A € (a — Bt) if and only if A has SVEP on 0,(A) N 7'04(A)), and A € (Wt) if and
only if A € (Bt) and Eo(A) N 0(A) = 0 (resp., A € (a — Wt) if and only if A € (a — Bt) and Ej(A) N 0aw(A) = 0).
Similar assertions hold for the generalized versions, i.e. the B-Browder and B-Weyl versions [12], of these
results. It is seen that A satisfies property (b) [7, 9], 0a(A) \ 04w(A) = I1p(A), if and only if A* has SVEP on
0a(A)N 1 04p(A) (resp., A satisfies property (w) [2, 5], 0.(A) \ 040(A) = Eo(A), if and only if A satisfies property
(b) and Eo(A) N 0aw(A) = 0); A satisfies property (ab) [9], 0(A) \ 0,,(A) = ITj(A), if and only if A" has SVEP on
is00,(A) N1 04(A). Perturbation by commuting Riesz operators preserves SVEP at points [8]. This implies
that Browder’s theorem type results, including property (ab), survive perturbation by commuting Riesz
operators, but this does not extend to Weyl’s theorem type results. A typical result here goes as follows: If
Ris a Riesz operator which commutes with A, then A satisfies property (w) (A satisfies property (b) implies
A + R satisfies property (b)) if and only if A* has SVEP on 0,(A) N 1 04w(A) and Eg(A) N 04w(A) = O (resp., A
has SVEP on (6,(A + R) \ 6,(A)) N 1) 04(A) and Eo(A + R) N 04 (A + R) = 0). We apply these results, and their
generalized versions, to perturbation by commuting (Riesz operators which are) nilpotent, quasinilpotent
and finite rank operators. SVEP does not survive perturbation by non-commuting compact operators.
Given a compact operator K, it is seen that: A satisfies property (b) implies A + K satisfies property (b) (A
satisfies property (w) implies A + K satisfies property (w)) if and only if 0,(A + K) N 1704,(A) C isoo(A + K)
and iso0,(A + K) \ 0,(A) C isoo(A + K) (resp., if and only if A + K satisfies property (b) and isoo,,(A) = 0); if
the complement of 0,,(A) in C is connected, then A € (ab) implies A + K € (ab) for all compact operators K.

2. Notation and terminology

In keeping with standard terminology, we shall denote the spectrum, the approximate point spectrum,
the surjectivity spectrum and the isolated points of the spectrum of an operator A € B(X) by d(A), 0,(A),
0s(A) and isoo(A), respectively. The boundary of a subset S of the set C of complex numbers will be denoted
by 95, the interior of S will denoted by int(S) and we shall write S¢ for the complement of S in C. We shall
denote the open unit disc by 9. An operator A € B(X) has SVEP, the single-valued extension property, at a
point Ay € C if for every open disc D,, centered at Ay the only analytic function f : D,, — X satisfying
(A=A)f(A) = 0is the function f = 0. (Here, and in the sequel, we have shortened A — Al to A—A.) Evidently,
every A has SVEP at points in the resolvent p(A) = C\ 6(A) and the boundary do(A) of the spectrum o(A).
We say that T has SVEP if it has SVEP at every A € C. The ascent of A, asc(A) (resp. descent of A, dsc(A)), is
the least non-negative integer n such that A™(0) = A="*D(0) (resp., A"(X) = A"1(X)): If no such integer
exists, then asc(A) (resp. dsc(A))= oco. It is well known, see [1, 25, 27], that asc(A) < oo implies A has
SVEP at 0, dsc(A) < oo implies A* (= the dual operator) has SVEP at 0, finite ascent and descent for an
operator implies their equality, and that a point A € o(A) is a pole (of the resolvent) of A if and only if
asc(A —A) =dsc(A - A) < co.

An operator A € B(X) is: upper semi~Fredholm at A € C, A € ®y5¢(A) or A — A € O, (X), if A(X) is closed
and the deficiency index a(A — 1) = dim(A — A)71(0) < co; lower semi—Fredholm at A € C, A € Dy5¢(A) or
A—-Aed_(X),if B(A—-A) = dim(X/(A — A)(X)) < o0; A is semi-Fredholm, A € ®,(A) or A — A € D.(X),
if A — A is either upper or lower semi-Fredholm, and A is Fredholm, A € ®(A) or A — A € ®(X), if
A — A is both upper and lower semi-Fredholm. The index of a semi—Fredholm operator is the integer
ind(A) = a(A) — B(A). Corresponding to these classes of one sided Fredholm operators, we have the
following spectra: The upper semi Fredholm spectrum o,5¢(A) = {A € 0(A) : A— A ¢ P (X))}, the lower semi
Fredholm spectrum o15¢(A) = {A € 6(A) : A — A ¢ ®_(X)} and the Fredholm spectrum c,(A) = 0,sr(A) U 015¢(A).
A € B(X) is upper Weyl (resp., lower Weyl, (simply) Weyl) at 0 if it is upper semi Fredholm with ind(A) < 0
(resp., lower semi Fredholm with ind(A) > 0, Fredholm with ind(A) = 0). The upper (or, approximate)
Weyl spectrum, the lower (or, surjectivity) Weyl spectrum and the Weyl spectrum of A are respectively the
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sets 0,(A) = {A € 0,(A) : A ¢ D (A) orind(A—A) £ 0}, 05(A) = {A € 05(A) : A ¢ D_(A) orind(A — A) £ 0}
and 0y (A) = 040w(A) U 05(A). It is well known, [1, Theorems 3.16, 3.17], that a semi- Fredholm operator A
(resp., its conjugate operator A*) has SVEP at a point A if and only if asc(A — A) < oo (resp., dsc(A — A) < o0)
; furthermore, if A — A is Weyl (resp., upper Weyl), i.e. if A € ®(A) and ind(A — A) = 0 (resp., A € D, (A)
and ind(A — A) < 0), then A has SVEP at A implies A € isoc(A) with asc(A — A) = dsc(A — A) < oo (resp.,
A € is00,(A) with asc(A — A) < o). If we let 0,4(A) = {A € 0,(A) : A ¢ D, (A) or asc(A —A) £ oo} and
osp(A) = {A € 05(A) : A & D_(A) or des(A — A) £ oo} denote, respectively, the upper (or approximate) and
the lower (or surjectivity) Browder spectrum of A, then 04(A) = 0,4(A*) and 0,(A) = 0 (A) U 0(A) is the
Browder spectrum of A. (See [1, 25-27, 32] for further information on Fredholm theory, SVEP, and isolated
points.)

A generalization of semi Fredholm and Fredholm operators is obtained as follows. We say that the
operator A € B(X) is semi B-Fredholm, A € ®s¢(X), if there exists an integer n > 1 such that A"(X) is closed
and the induced operator Ap,) = Alan(x), Ajo) = A, is semi Fredholm (in the usual sense). It is seen that if
A € P.(X) for an integer n > 1, then A,y € . (X) for all integers m > 1, and one may (unambiguously)
define the index of A by ind(A) = a(A) — B(A) (= ind(Ayp,)) [12]. Upper semi B-Fredholm, lower semi
B-Fredholm and B-Fredholm spectra of A are then the sets

ouf(A) ={A € 9(A) : A=A is not upper semi B-Fredholm},

of(A) ={A € 0(A) : A— A is not lower semi B-Fredholm}, and

08e(A) = oupf(A) U oips(A).

If we let

0w(A) = {A € 6(A) : A € 0g.(A) or ind(A—A) # 0},

0aw(A) = {A € 0,(A) : A € 0,87(A) or ind(A —A) £0},
osw(A) = {A € 05(A) : A € o1pf(A) or ind(A - A) £ 0},
opp(A) = {A € 6(A) : A € 0g.(A) or asc(A —A) # dsc(A — 1)},
0aBo(A) = {A € 0,(A) : A € 0ypf(A) or asc(A —A) = oo}, and
ospp(A) = {A € 05(A) : A € gjgf(A) or dsc(A — A) = oo}

denote, respectively, the the B-Weyl, the upper B-Weyl, the lower B-Weyl, the B-Browder, the upper B-Browder
and the lower B-Browder spectrum of A, then 0py(A) = 04pw(A) U 0spw(A), 085(A) = 0app(A) U 0585(A), Ospw(A) =
0sBw(A*) and o4pp(A) = 05pp(A*). The following implications are well known [10, Theorems 2.1 and 2.2]:

0w(A) = 0p(A) & 0pw(A) = opp(A) & 0(A)\opw(A) = II(A) & A has SVEP at points in 6(A) \ 05, (A),
and

Oaw(A) = 0p(A) &= 0uw(A) = 0mp(A) &= 0,(A) \ 04Bw(A) = IT(A) & A has SVEP at points in
04(A) \ 0aw(A).
Evidently, 04(A) € 0w(A) and 048(A) € 0pw(A); hence

0aBw(A) = 0app(A) & 0aw(A) = 0w(A) = 00(A) = 0p(A) & 0Bu(A) = opy(A)
(where the one way implications are strict). In keeping with current terminology [10, 12, 17], we say in the
following that an operator

A satisfies generalized Browder’s theorem, or A € (gBt), if opw(A) = ops(A);

A satisfies generalized a-Browder’s theorem, or A € (a — gBt), if 0,50(A) = 0,5p(A).

A hole of a compact subset of C (more generally, of a subset of a topological space) is any bounded
component of its complement [26]. (Thus, a hole of 0,(A) , respectively 0,,(A), for an operator A is a
bounded maximal connected subset of C\ 0,,(A), respectively C\ 04,(A)).The connected hull nS of a compact
subset S of C is the complement of the unique unbounded component of the complement S€ of S in C. It is
clear that for every compact subset S of C,

'S = 1S\ S = UHole(S)
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(i.e., 'S is the union of the holes, equivalently bounded components of C\ S, of S). If E, F are compact
subsets of C, then JE C F C E implies nE = nF (and E can be obtained from F by filling in some of its holes).
If F has no holes, then (F = nF, and hence) JECFCE = EDF =nF =nE D E = E = F. If eitherof A
and A" has SVEP at a point A ¢ 0,(A) for an operator A € B(X), then A ¢ 0,(A); equivalently, A € I1o(A) [1,
Corollary 3.53]. It is evident that if [Ty(A) = 0(A) N 0,(A)C, then int{c(A) N 0w (A)C} = 0 (i.e., 5(A) N 0, (A)C
has empty interior), A has SVEP on 00(A)° and 04,(A) = 0,(A). Since doy(A) C 04(A) C g,(A) for every
operator A € B(X), no,(A) = nop(A) for every operator A € B(X). If K € B(X) is a compact operator and if
1’0, (A) = 0, then (the argument above implies)

ow(A+K)=04(A) = 0w(A+K)=n0y,(A+K)=n0,(A+K)
= 0x(A+K) =0,(A+K),

i.e., given an operator A € B(X), a sufficient condition for A + K to have SVEP on 6,(A)° (= C\ 6,(A)) for every
compact operator K € B(X) is that ' 6,(A) = 0.

3. Some complementary results: Polaroid operators

An operator A € B(X) is said to be polaroid (finitely polaroid) if the isolated points of the spectrum of A are
poles (of the resolvent) of A (resp., finite rank poles of A) ; A is left polaroid (finitely left polaroid) if isolated
points of the approximate point spectrum of A are left poles of A (resp., finite rank left poles of A). Given
A € B(X), it is clear that

ITo(A) C ITH(A) € IT*(A), TTp(A) C TI(A) C IT*(A),

where the reverse inclusions generally fail. A € B(X) is isoloid (finitely isoloid) if points A € isoo(A) are
eigenvalues (resp., finite multiplicity eigenevalues) of A; A is a-isoloid (finitely a-isoloid) if points A € isog,(A)
are eigenvalues (resp., finite multiplicity eigenvalues) of A. It is clear that A is polaroid implies A is isoloid
and A is left polaroid implies A is a-isoloid (where the reverse implications are, in general, false).

The left polaroid and polaroid properties do not survive perturbation by commuting Riesz operators:

The 0 operator is polaroid but its perturbation A = 0 + R by the non-nilpotent quasinilpotent operator

R(x1,x2,x3,...) = (x—zz, ’%, ...) is neither left polaroid nor polaroid. However:

Proposition 3.1. If a Riesz operator R € B(X) is such that [A, R] = 0 and isoo,(A + R) C isog,(A) for an operator
A € B(X), then A is finitely left polaroid implies A + R is finitely left polaroid.

Proof. Since perturbation by Riesz operators preserves o,,(.) [20, 31], 0aw(A + R) = 04(A). Hence, if A is
finitely left polaroid, then A € isoo,(A + R) implies
A € is00,(A) &= A € ITj(A) = {A : A €is00,(A) N Oaw(A)°C)
& A €is00,(A +R) N0og(A+R)¢ & A e TI5(A +R),
i.e., A is finitely left polaroid if and only if A + R is finitely left polaroid. [

It is clear from the (argument) above that if isoo,(A + R) = isoo,(A), then A + R is left polaroid if and only
if A is left polaroid, and if isoo(A + R) = isoo(A), then A + R is polaroid if and only if A is polaroid. The
following proposition provides examples of Riesz operators satisfying this property.

Proposition 3.2. Given operators A, R € B(X) such that [A, R] = 0, if either R is nilpotent (even, quasinilpotent), or
R™ is finite rank for some integer n > 0 and isoo,(A) = isoo,(A + R), then A is finitely left polaroid (finitely polaroid)
if and only if A + R is finitely left polaroid (resp., finitely polaroid).

Proof. The hypothesesimply 0,(A) = 0,(A+R), 6(A) = 6(A+R), 040(A) = 0aw(A+R)and 0,(A) = 0,(A+R). O

Does Proposition 3.2 extend to: “A is left polaroid if and only if A + R is left polaroid?” We have a partial
answer.
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Proposition 3.3. Let A, R € B(X), where [A,R] = 0.

(A) If R" is finite rank for some integer n > 0 and isoo,(A) = isoo,(A + R), then A is left polaroid (polaroid) if and
only if A + R is left polaroid (resp., polaroid).

(B) If R is nilpotent, then A is polaroid if and only if A + R is polaroid.

Proof. (A). Recall from [11] that the semi B-Fredholm spectrum of an operator is stable under finite rank
perturbations. Since 0,(A) = 0,(A + R) and
A €1500,(A + R) N 04pw(A + R)€ & A € is00,(A + R) N 0,5.(A + R)¢
= A €is00,(A) N (A & A €1i500,(A) N Gapw(A)C,
if A is left polaroid, then
A €is00,(A + R) & A €iso0,(A) = A € [T*(A)
= 1 €is00,(A) N 0Bu(A)F & A €is00,(A + R) N 0430(A + R)¢ = A € [I7(A + R),
i.e., A1is left polaroid if and only if A + R is left polaroid. Since 6(A +R) = 0(A), and A € isoo(T) Nopw(T) &=

A € isoo(T) N op(T) for every T € B(X), the argument above proves also that A is polaroid if and only if
A + Riis polaroid.

(B). The hypotheses imply (A + R) = 6(A). Since opp(A + R) = op(A) for nilpotent R [19, Theorem 2.6], if A
is polaroid, then
A €1is00(A + R) &= A €is00(A) & A € [I(A) & A € iso(A) N p,(A)°
= A €isoo(A) Nopy(A)° & A €isod(A + R) Nopy(A + R)¢ & A e II(A + R),

i.e., A is polaroid if and only if A + R is polaroid. [

4. Browder, Weyl theorems: Perturbations

It is well known that if either of A and A* has SVEP, then A satisfies (all four versions of) Browder’s
theorem. A necessary and sufficient condition for A € (Bt) and A € (gBt) (resp., A € (a—Bt)and A € (a—gBt))
is that A has SVEP on 0,,(A)C (resp., 0.(A)°) [1, 10, 18]. We start in the following by proving that it is the
activity on the bounded components n’c,(A) = | Holeo,(A) of A and the isolated points of 0,,(A) (resp.,
1 0aw(A) = |J Holeo,,(A) and isolated points of 04,(A)) which determines if the operator satisfies Browder’s
(resp., a-Browder’s) and Weyl’s (resp., a-Weyl’s) theorem: A € (Bt) (resp., A € (a — Bt)) if and only if A has
SVEP on i 0(A) (resp., ' 04(A)); A € (WE) (resp., A € (a— Wt)) if and only if A € (Bt) and Eg(A) No,(A) = 0
(resp., if and only if A € (a — Bt) and E{(A) N 04u(A) = 0). Given an operator A € B(X), let (for convenience)
E(A) and E,(A) denote, respectively, the sets E(A) = {A € 0(A) : A does not have SVEP at A}, and E,(A) =
{A €0,(A): A doesnot have SVEP at A}.

Theorem 4.1. If A € B(X), then:

(i) A € (Bt) &= nou(A)NEA) =0.

(ii) A € (a — Bt) &= 1’ 04(A) N E,(A) = 0.
(iii) A € (gBt) & n’0pu(A) N E(A) = 0.

(iv) A € (a — gBt) & 1/ 0,8,(A) N EL(A) = 0.

The proof of the theorem proceeds through a few steps, which we state below as lemmas, starting with the
result that A has SVEP on 10, (A)¢ and 10,,(A)¢ for every A € B(X).

Lemma 4.2. For operators A € B(X), both A and A* have SVEP on 16,(A)€ and 10 4,(A)° .

Proof. The component 10, (A)¢ (resp., 10a(A)C) being unbounded, intersects the resolvent set p(A) =
C\ 0(A). Consequently, asc(A — A) = dsc(A — A) < o0, a(A — A) = 0 for all but a countable set of A which are
isolated poles of A. Hence A, also A", has SVEP everywhere on r]aw(A)C (resp., T]Guw(A)C). O
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Lemma 4.2 extends to 105, (A)C and 104p,(A)C.
Lemma 4.3. For operators A € B(X), both A and A* have SVEP on nan(A)C and noﬂBw(A)C.

Proof. The proof in both the cases is similar; we consider points A € naan(A)C. Take a point A € T]Gqu(A)C.
There exists a large enough positive integer ny = ny(A) such that A + % € O, (A),ind(A - A — %) < 0 for
all n > ng [23, Theorem 4.7]. The operator A — A and (A — A) — 1 commute and satisfy the property that
lim; e [|(A—A) — %II = ||A — Al|. Hence, since (A + % € naﬂw(A)C implies) A has SVEP at A + %, A has SVEP
at A. Since 10spw(A) = N04Bw(A), A* also has SVEP on no,p,(A). O

Remark 4.4. An (instructive) alternative argument proving Lemmas 4.2 and 4.3 goes as follows. The
inclusions do,(A) C 0aw(A) € 04(A) and dopw(A) C 0upw(A) C 0pw(A) imply N0w(A) = n0w(A) and Noap,(A) =
N0pw(A). Since the unbounded components 1o, (A) and nog,(A) intersect the resolvent p(A), A — A is
invertible except perhaps for a countable set consisting of the poles of A.

Lemma 4.5. For operators A € B(X):
(i) W oBu(A) N E(A) = 0 &= 1'0,(A) N E(A) = 0.
(ii) ' Oapw(A) N Bg(A) = 0 &= 1/ 0a(A) N Ef(A) = 0.

Proof. The proof in both the cases is similar; we prove (ii). Since 04p:(A) C 04(A) if and only if 170, (A)C U
17 Gaw(A) C N05w(A) U 1 0,481(A) and since 10,,,(A)C N E,(A) = 0 = 10,8,(A)C N E,(A), we have

U,Gqu(A) N Eu(A) =0= n/auw(A) n E‘a(A) =0.

Conversely, assume that 1704,(A) N E,(A) = 0. (Thus A has SVEP on 0,4,(A)¢.) Take a A € 17/ d,4p(A), and
apply the srgument of the proof of Lemma 4.3 to conclude that A has SVEP at A. The choice of the point A
having been arbitrary, it follows that A has SVEP on n/0,p,(A). O

Corollary 4.6. For operators A € B(X):
(i) 0, (A)° NE(A) = 0 < 0p,(A)° NE(A) = 0.
(ii) an(A)c NE,(A) =0 = Gan(A)C N Eq(A) = 0.

Proof. Immediate from the lemmas above since 0x(A)C = 10:(A) U n01(A), Oxy = O OF Oay, and
Gwa(A)C = nUwa(A)C U T],Gwa(A)/ OxBw = OBy O Ogpyw. [

Proof of Theorem 4.1. We prove statements (iii) and (iv); statements (/) and (ii) are similarly proved (else,
apply Lemma 4.5). Since A has SVEP on 105,(A)¢ and 10,5,(A)° for every A € B(X),

9(A) N apu(A) = {o(A) N 1oB(A)C} U {0(A) N 1y 0pu(A)}
= {II(A) N 108(A)} U {0(A) N 1) 05 (A)),
and
0a(A) N 0a5(A)C = {0a(A) N 10a3(A)C) U {0a(A) N 1Y Gaio(A))
= {Hu(A) N T]aan(A)C} U {Ga(A) N n/Oan(A)}-
Hence A € (gBt) (resp., A € (a—gBt))if and only if 6(A)N1 05, (A) = TI(A)N 0pw(A) (resp., 0,(A)N1N 04pw(A) =
IT*(A) N 1 04pw(A)). Equivalently, A € (gBt) (resp., A € (a — gBt)) if and only if 7’0, (A) N E(A) = 0 (resp.,
10 0apw(A) N Ey(A) = 0). O
If R € B(X) is a Riesz operator which commutes with an operator A € B(X), then:
(I) 0x(A + R) = 0x(A), where 0y, = 04 OF 04 [20, 31];
(II) A + R ((A + R)*) has SVEP at a point A if and only if A (resp., A*) has SVEP at A [8].
Hence:
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Corollary 4.7. Given operators A, R € B(X), if R is a Riesz operator which commutes with A, then 1/ 0,(A + R) N
Ex(A +R) = 0 ifand only if nf 0x(A) N Ex(A) = 0, where 0y = 0y 07 04y and (correspondingly) By = E or &,.

It is immediate from Corollary 4.7 that

A+Re(x—Bt) = Ac(x—Bt),A+Re (x—gBt) < A€ (x —gBt),
where (x — Bt) = (Bt) or (a2 — Bt) and (x — gBt) = (gBt) or (a — gBt). Corollary 4.7 applies in particular to
commuting (with A) finite rank, quasinilpotent and compact operators R.

Weyl's Theorems. Given an operator A € B(X), let E(A) = {A € 0(A) : 0 < a(A — A)} (denote the set of
eigenvalues of A) and E*(A) = {A € 0,(A) : 0 < a(A — A)}. We say that the operator A € B(X) satisfies
generalized Weyl’ theorem, A € (gWt), if 6(A) N 05,(A)C = E(A);

generalized a-Weyl’ theorem, A € (a — gWt), if 6,(A) N 04p(A)C = E*(A).

The following implications
(a—gWt) = (gWt) = (Wt), (a—gWt) = (a - Wt) = (Wt)

hold, but the reverse implications are in general false [1, 12, 16-18]. It is evident that (xWt) = (xBt), where
(x.) = (.)or(g..)or (a—..) or (a—g.). Also, if A € (Bt) (resp., A € (gBt)), then 6(A) N 6, (A)¢ = TIo(A) C Eo(A)
(resp., 6(A) Nop(A)¢ = TI(A) C E(A)); similarly, if if A € (a — Bt) (resp., A € (a— gBt)), then 6,(A) N 04,(A)C =
IT5(A) € Ei(A) (resp., 0,(A) N 048w(A)¢ = TTI°(A) C E*(A)). Thus, a necessary and sufficient condition for an
A € (Bt) to satisfy A € (Wt) is that Eq(A) C ITp(A) (resp., A € (gBt) to satisfy A € (gWt) is that E(A) C II(A));
similarly, a necessary and sufficient condition for an A € (a — Bt) to satisfy A € (a — Wt) is that Ej(A) C TTj(A)
(resp., A € (a — gBt) to satisfy A € a — (gWt) is that E*(A) C IT°(A)). Since

ES(A) = {Eg(A) N Gaw(A)C} U {ES(A) N 0aw(A)}

and since Ej(A) N 0a(A)° C IT5(A), a sufficient condition for Ej(A) C ITj(A) is

E{(A) N 04w(A) = Ej(A) Nisooaw(A) = 0.

Similarly, a sufficient condition for Eg(A) € I1p(A) is Eo(A) N isoow(A) = 0. These conditions are necessary
too.

Theorem 4.8. A necessary and sufficient conditon for an operator A € B(X) to satisfy:
(i) A € (Wt) is that 7 0,(A) N E(A) = 0 and Eo(A) N isoo,(A) = 0.
(i1) A € a — (Wt) is that 1 04,(A) N Eg(A) = 0 and Ef(A) N is00,(A) = 0.
(iii) A € (gWt) is that ' o, (A) N E(A) = 0 and E(A) N isoop,(A) = 0.
(iv) A € (a — gWt) is that 1) 0,8(A) N Ey(A) = 0 and E*(A) N is00,p,(A) = 0.

Proof. The proof in all cases is similar: We prove (iv). Since (2 — gWt) implies (a — gBt), the necessity
of the condition 1'04p,(A) N E,(A) = 0 is clear (see Theorem 4.1). To see the necessity of the condition
E*(A) Nisoo,4pw(A) = 0, assume that A € (a — gBt) and that there exists a A € E*(A) N is00,p,(A). Then, since
0 < a(A — 1), there does not exist an integer d > 0 such that (A — 1)?(X) is closed. Consequently, A ¢ IT°(A),
and hence A ¢ is00,(A) N 045 (A)C (implies A ¢ E*(A), since A € (a — gWt) implies [T°(A) = E“(A).) This
being a contradiction, we must have E*(A) N isoo,p,(A) = 0. To prove the sufficiency of the conditions, we
start by observing that the condition 1’ g,4p(A) N E,(A) = 0 implies A € (a — gBt), hence d,(A) N 0apw(A)° =
[T*(A) C E“(A). Let A € E*(A). Then A has SVEP at A, and hence A € 0,5,(A)¢ implies A € TT(A). This, if
(E*(A) N 04Bw(A) =) EY(A) Nisooapw(A) = 0, implies E*(A) C IT°(A). Since the reverse inclusion is true for
every operator A, E’(A) = I1*(A), i.e., the conditions are sufficient. [

Remark 4.9. Examples of classes of operators satisfying the hypotheses of Theorems 4.1 and 4.8 abound.
Let (7“HN) denote the class of operators A € B(X) such that every part of A (A part of A is its restriction
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to a closed invariant subspace), and the inverse of every invertible part of A, is normaloid (i.e., its spectral
radius equals its norm). Operators A € (7 HN) have have SVEP on 1/0,,(A) (equiavelntly, SVEP on
0aw(A)€) and are polaroid [16]. Hence operators A € (7T HN) satisfy Theorem 4.1 and Theorem 4.8 (i)
and (iii). Prominent examples of (7 HN) operators include hyponormal (Hilbert space) operators and
paranormal operators [1, 16-18, 25]. Banach space operators A € Hy(p) for which the quasinilpotent part
Ho(T-A) = {x e X :lim, e |[(A — /\)"xII% =0} = (A-A)77(0) for some integer p > 0 and all complex A [1, Page
172], in particular subscalar operators, are another important example of polaroid operators with SVEP.
Operator A € B(X) satisfying 0,(A) = 04,(A) satisfy Theorem 4.1; furthermore, if also 0,(A) is connected
(as, for example, is the case when A € B({F), 1 < p < oo, is a weighted right shift [1, 27]), then A satisfies
Theorem 4.8. Analytic Toeplitz operators A¢ (with symbol f) satisfy o(Ty) is connected and o(T) = 0,(T¥):
Hence analytic Toeplitz operators satisfy Theorem 4.8 (i) and (iii).

Unlike the situation for Browder theorem type results, results of the type of Weyl’s theorem do not
survive perturbation by commuting Riesz operators. Consider, for example, the operator A = [0 € B((* &
%), I the identity operator and 0 the zero operator. Then o(A) = 0,(A) = {0,1} = E(A) = E%(A),0py =
0aw(A) = 0, and A satisfies both generalized Weyl’s theorem and a-generalized Weyl’s theorem. Let F be
the finite rank operator defined by F(x1,x2,%3,...) = (—x1,0,0,...) and let R = F @ Q, where Q € B({?) is a
non-nilpotent injective quasinilpotent operator. Then the operator A + R satisfies 0(A) = 0,(A+R) = {0,1} =
E(A+R) = EY(A+R), 0pw(A + R) = 0sw(A + R) = {0}. Clearly, A + R ¢ (gWt) and A + R ¢ (a — gWt). Observe
here that the operator A of the example is isoloid (indeed, a-isoloid), but not finitely isoloid (or finitely
a-isoloid). The following theorem, which generalizes a number of extant results [2, 5, 12, 17, 18, 29, 30],
says that the (necessary) condition A is finitely isoloid (resp., finitely a-isoloid) is sufficient for the transfer
of (Wt) and (gWt) (resp., (a — Wt) and (a — gWt)) from A to A + R for commuting Riesz operators R.

Theorem 4.10. Let A, R € B(X), where R is a Riesz operator which commutes with A. If A is finitely isoloid, then
A € (Wt) implies A + R € (Wt), A € (gWt) implies A + R € (gWt) and if A is finitely a-isoloid, then A € (a — Wt)
implies A+ R € (a — Wt), A € (a — gWt) implies A + R € (a — gWt).

Proof. The proof in all the cases is similar: We prove A € (@ — gWt) = A + R € (a — gWt), leaving it to the
reader to make the minor changes in the argument required to prove the remaining cases. The hypothesis
Ac@a—-gWt) = Aec(a—-gBt)=A+Re(a—gBt)
& 0, (A+R)Nou(A+RC =TI"(A+R) CEY(A +R).
We prove E*(A + R) C IT°(A + R). Let A € E*(A + R). Then there exists a neighbourhood N¢(1), € > 0, of A
such that p ¢ 0,(A + R) for all u € N.(A)\ {A}. Since p ¢ 0,(A + R) implies p € 0,(A + R)° (equivalently,
L € 0au(A)°), it follows from (A € (a — gBt) implies) A € (a — Bt) that p € IT§(A) implies p € I1%(A) for every
p € Ne(A) \ {A}. Observe that for every A € E*(A + R) either A ¢ 0,(A), or A € isoc,(A), or A € accoa(A). If
A ¢ 0,(A), then
A € 04(A)° = A € 04(A + R)° = A € IT}(A +R)

(since A € E*(A + R) implies A + R has SVEP at A). Again, if A € isog,(A), then (A being finitely a-isoloid)
A€ENA) = A€0,(A)F°,A hasSVEPat A

& A€0m(A+R)C A+R hasSVEPat A
& Aellj(A+R)= A eIl"(A+R).

Consider now A € accoa(A). There exists an infinite sequence {u,,} € N¢(A) \ {A} such that (u, converges to
pand) w, € IT5(A) for all n. Since this implies i, € gq(A + R)¢, and A + R has SVEP at tn,

pn € ITH(A + R) = p, € II"(A + R) C E"(A +R)

for all n. Since A € E“(A + R) is isolated, this is a contradiction. Hence (acco,(A) N E*(A + R) = 0 and) every
A € E*(A + R)is an element of [T'(A + R), i.e.,, E*(A+ R) C[T"(A+ R). O



B. P. Duggal /FAAC 9 (1) (2017), 1-23 9

It is clear from the proof above that the hypotheses of Theorem 4.10 ensure Eo(A + R) N isoo,(A + R) =
and E(A + R) N isoopy(A + R) = 0 in part (i) of the theorem; similarly, Ef(A + R) N isoda(A + R) = 0 and
E*(A + R) Niso0pw(A + R) = 0 in part (ii) of the theorem. More generally:

Proposition 4.11. Given an operator A € B(X), a necessary and suﬁ‘icient condition for:
(i) Eo(A) € Io(A), equivalently Eo(A) = I1o(A), is that Eo(A) Nisoo,(A) =

(it) Ej(A) C TT3(A), equivalently E{(A) = TT5(A), is that Ej(A) N zsooaw(A)

(iii) E(A) € T1(A), equivalently E(A) = I1(A), is that E(A) N isoop,(A) =

(iv) E°(A) € T1*(A), equivalently E*(A) = I1(A), is that E*(A) N isoo,,Bw(A) =0

Proof. The proof in all cases being similar, we prove (iv). If E*(A) C I1°(A), and if there exists a A €
E*(A) Nisoo,pw(A), then (being a left pole of the resolvent of A) A ¢ 0,8,(A) — a contradiction. Conversely, if
we assume that E*(A) Nis00,s,(A) = 0 and that there exists a A € E*(A) such that A ¢ TI%(A), then (A — 1)4(X)
is not closed for any integer d > 0. Reason: If (A — A)?(X) is closed for an integer d > 0, then, since A € E*(A)
implies A has SVEP at A, A € T1°(A). Consequently, A € 0,p,(A) N E*(A) — again a contradiction. [J

5. Variations on Browder, Weyl Theorems

The a-Browder and a-Weyl theorems are obtained from (their classical counterparts) Browder and Weyl
theorems o(A) N 05, (A)° = Th(A) and 6(A) N 0,(A)C = Eo(A) by replacing 6(A) by 0,(A), 04(A) by 04u(A),
ITy(A) by ITj(A) and Eo(A) by Efj(A); similarly, the generalized versions of the Browder and Weyl theorems
(resp., the a- generahzed versions of the Browder and Weyl theorems) are obtained upon replacing o,,(A),
ITy(A) and Eo(A) by 0pw(A), TI(A) and E(A) (resp., 0aw(A), IT5(A) and Ej(A) by 048,(A), [17(A) and E*(A)). A
number of further variations, obtained by making other suitably meanmgful choices, have been considered
in the recent past (see [2, 5,9, 13-15] for a flavour of the type of variations considered). Prominenet amongst
the variations to have attracted some attention are the properties (a), (ab) (w) and their generalized versions.
We say that an operator A € B(X) satisfies property:

(b) if 04(A) N 04u(A)C = TTo(A);
(gb) if 54(A) N Gapw(A)C = TI(A);
(ab) if 5(A) N 0, (A)C = T (A);
(gab) if 6(A) N 0, (A)C = TT°(A);
(w) if 0,(A) N 04 (A)C = Eo(A);
(gw) if ,(A) N 0aBw(A)C = E(A).

A number of the properties of operators satisfying the above defined properties lie on the surface and
are easily adduced. Thus, if A € B(X) satisfies property (b), A € (b), then A has SVEP on 0,,(A)°, A* has
SVEP on 04(A) N 04(A)° = 04(A) N 04(A)°, A € (a — Bt) and IT3(A) = ITy(A); A may however fail to satisfy
a-Weyl's (even, Weyl’s) theorem. In this section we relate these properties to their spectral picture, study
relations between these properties and consider the permanence of these properties under perturbation by
commuting Riesz operators. In the process, we generalize a number of known results. We start with a
characterization of properties (b) and (w).

Theorem 5.1. Given an operator A € B(X):
(i). A € (w) = A € (b) & A" has SVEP on 6,(A) N 1 0,(A) (equivalently, 6,(A) N 1) 04(A) C isoc(A)).
(ii). A € (w) & A € (b) and Ey(A) N is00,,(A) = 0.
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Proof. (i). The defintion of property (w) implies that if A € (w), then both A and A* have SVEP on
04(A) N 04(A)C. Since A has SVEP on 0,(A) N 04(A)C implies 0,(A) N 0ar(A)C = ITH(A)(C Ej(A)), if also A
has SVEP on 6,(A) N0, (A)C, then 6,(A) N0 (A)¢ = IT5(A) = ITp(A). Hence A € (w) implies 0,(A)N04(A)C =
IT5(A) = Io(A) = Eo(A). In particular, A € (w) implies A € (b). It is clear that if A" has SVEP ata A € Oaw(A)C,
then A € 6, (A)C. Since an operator T and its adjoint T* have SVEP on the unbounded component o, (T)¢, A*
has SVEP at A € 6,(A) N104,(A)C if and only if A € g,(A) N 10, (A)C. (Indeed, since do(A) C Tauw(A) C T4(A)
implies 104 (A) = 7104(A), 02(A) N 0w (A)C = 0,(A) N 10,(A)C.) Since A € (b) &> 0,(A) N 0aw(A)C = TTh(A),
we have that A, A* have SVEP on 6,(A) N 040(A)¢ = {04(A) N 1702(A)C} U {02(A) N 1 04(A)}, equivalently,
04(A) N 04(A) C is00(A).

(ii). The implication

A€ (w) = A€ (b),Eo(A) N 0ap(A) = 0( Ep(A) NiS004(A) = 0)

being evident from the argument of the proof of (i) above, we prove the reverse implication. As seen above,
the hypothesis A € (b) implies A* has SVEP on 0,(A) N 64,(A)C; hence 6,(A) N 0,,(A)¢ = TIh(A) € Eo(A).
Consider a A € Eg(A) such that A ¢ TTy(A). Since 0 < a(A — 1) < o0, (A — A)?(X) is not closed for any integer
d > 0. Hence A € 044(A). Since already A is isolated in 6(A), A € is004,(A). This being a contradiction of our
assumption Eg(A) N is004,(A) = 0, we must have A € I1y(A). Hence Eg(A) C11p(A). O

An argument similar to the one above proves the following:

Corollary 5.2. Given an operator A € B(X):
(i). A € (gw) = A € (gb) & A has SVEP on ¢,(A) N 1) 04pw(A) (equivalently, 0,(A) N 1 04pw(A) C isoc(A)).

(ii). A € (gw) & A € (g9b) and E(A) N is00,,,(A) = 0.
More is true, as we now prove.

Theorem 5.3. For operators A € B(X):

(). Ae(gh) = Aec().

(ii). A € (gw) = A € (w).

(iii). A € (b) and A* has SVEP on 6(A) N 1) 04(A) implies A € (gb).

(iv). A € (w) is left polaroid (or, polaroid) and IT5(A) C Tlo(A) implies A € (gw).

Proof. (i). We start by observing that the hypothesis A € (b) is equivalent to (A € (a — Bt), ITj(A) = Tlp(A),
equivalently) A € (a — Bt), A" has SVEP on ¢,(A) N 0aw(A)C, and the hypothesis A € (gb) is equivalent to
A€ (a—gBt), A" has SVEP on 0,(A) N0pw(A)C. Since A € (a— Bt) if and only if A € (a — gBt) [10], and since
04(A) N 04 (A)C C 0a(A) N 0apw(A)C, A € (gb) implies A € (a — Bt) and A* has SVEP on 6,(A) N 0(A)C, ie.,
A € (D).

(ii). If A € (gw), then A € (gb) (implies A € (b)) and E(A) N isooapw(A) = 0. Assume now that there
exists a A € Eg(A) N is00a(A). Then (A — A)4(X) is not closed for any integer d > 0. Consequently, if
A € (gw), then A € 048,(A) and hence, since A € Eg(A) implies A € Eg(A) N is00.8u(A) € E(A) N is004pw(A),
E(A)Niso0,pw(A) # 0. This being a contradiction, we must have Ey(A) Nisod,,(A) = 0. Conclusion: A € (w).

(iii). Evidently, A* has SVEP on d(A) N 0,(A)C if and only if A* has SVEP on 6(A) N 0(A) =
0(A") N ' 0s(A¥), and A* has SVEP on 6(A) N 0,45,(A)C if and only if A* has SVEP on 6(A) N 1 0upw(A) =
0(A*) N ' ospw(A¥). Consider a A € nospw(A*). There exists a large enough integer n > 0 such that
A+ 1€ a(A) N 0g(A7)C [23], and hence if A* has SVEP on 0(A) N 1)/04w(A), then A* has SVEP at A + . The
operators A* — A and A* — A — 1 being quasinilpotent equivalent, A* has SVEP at A [27, Proposition 3.4.11].
The choice of the point A having been arbitrary, it follows that A* has SVEP on 6(A) N 0,4p.(A)€. Combining
this with the fact that A € (b) implies

A€ (a—Bt) & A€ (a—gBt) = 0,(A) N0u(A)C = TT(A),
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we conclude that A € (gb) (Whenever A* has SVEP on ¢,(A) N1/ 0,(A), equivalently, whenever A* has SVEP
on IT%(A)).

(iv). We prove that A € (b) and I1(A) = E(A): This would then imply A € (gw). If A € (w), then A € ()
and A* has SVEP at points in 0,(A) N 0,4,(A)¢ where A has SVEP. Since

(A) N 0a(A)° = {0a(A) N 0a(A)°} U {{o(A) \ 00(A)) N 0ae(A)°),

and since
A €{0(A) \ 0a(A)} N 0a(A)¢ = A € TIE(A) \ 04(A) = 0,

the hypothesis IT}(A) C T1y(A) (equivalently, ITj(A) = [1y(A)) implies A* has SVEP on TTj(A). Hence A" has
SVEP at points in 0,(A) N 04,(A)¢ where A has SVEP, and this (by (iii) above) implies

A € (gb) & 0,(A) N 05,(A)° = TI(A) C E(A).

Consider now a A € E(A). Since A is left polaroid (resp., polaroid) by hypothesis, A € E(A) implies A € IT%(A)
and A" has SVEP at A (resp., A € II(A)). In either case A € I1(A), which then implies E(A) C II(A). O

Remark 5.4. (I) The hypothesis A* has SVEP on 6(A) N d,4,(A)€ (equivalently on 6(A) N1’ 045(A)) in Theorem
5.3(iii) can not be replaced by A* has SVEP on d,(A) N 0,(A)°. (Thus A € (b) does not imply A € (gb).) To
see this, let A = U ® 0, where U € B(H) is the forward unilateral shift and 0 € B(H) is the zero operator.
Then 6,(A) = daw(A) = D U {0}, TI(A) = 0, A ¢ (gb). Notice that A* has SVEP on 6,(A) N 04 (A)C = 0, and A*
does not have SVEP on 6(A) N 0,,(A)¢ = D\ {0} = 6(A) N ' 04w(A). Notice further that IT5(A) = {0} and A
does not have SVEP on TTj(A).

(II) The reverse implication A € (w) = A € (gw) in Theorem 5.3 fails for the reason that Eg(A)Nisod,(A) = 0
does not, in general, imply E(A) N isoo,pw(A) = 0. Consider the operator A = Q& 0 € B(X ® X), where Q is
an injective quasinilpotent operator. Then A € (w) and E(A) Nisoo,p,(A) = {0} # 0. Observe that A is not left
polaroid. Indeed, the example A = U@ 0 of part (I) of the remark shows that the condition A is left polaroid
is essential. We have 0,(A) N 04(A)° = 0 = Eg(A), 04(A) N 0apw(A)C = {0} # Eg(A), TIA(A) = TTp(A) = 0 and A
is not left polaroid.

The following theorem characterizes operators A € B(X) such that A € (ab), or, A € (gab).

Theorem 5.5. Let A € B(X).

(A). The following conditions are mutually equivalent:
(i) A € (ab).

(it) A" has SVEP on 1’ 0(A) and o,(A) NTTH(A) = 0.
(iii) A" has SVEP on TTj(A) N 1 0 (A).

(iv) A* has SVEP on is00,(A) N 1) 0a(A).

(B). The following conditions are mutually equivalent:
(i) A € (gab).

(ii) A* has SVEP on 1)/ 0py(A) and op,,(A) NTT°(A) = 0.
(iii) A* has SVEP on IT*(A) N 1) 0w (A).

(iv) A* has SVEP on is00,(A) N 1) 0apw(A).

Proof. The proof in both the cases is the same ( simply replace ITj(A), [1y(A), and 0,,(A) by T1%(A), TI(A) and
0Bw(A), respectively, in the following). We prove (A). Recall that A has SVEP on ITj(A), and that A has SVEP
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at a point in 0,,(A) if and only if A and A* have SVEP at the point. If A € (ab), then

a(A) N 0y (A)° = TI§(A)

IT%(A) N 04,(A) = 0, A* has SVEP on 0,,(A)°

IT5(A) N ow(A) = 0, A" has SVEP on n’aw(A)C

IT3(A) C 0,(A)¢, A" has SVEP on 0,(A)°

TT5(A) € 0,(A)° N a(A) = Tly(A) S TIj(A)

a(A) N0, (A)° = TIG(A),

i.e, (i) & (ii). To prove (i) < (iii), we start by observing that (i) implies A* has SVEP on ITj(A) N {a(A) N
0w(A)°) = TT3(A) N 0,(A)C. Hence A* has SVEP on IT3(A) N 1)'0,(A)C, and (i) = (iii). To prove the reverse
implication (iii)) = (i), we note that if A* has SVEP on ITj(A) N 17 0w(A)C, equivalently if A* has SVEP on
I13(A) N 0, (A)C, then TT3(A) N 04, (A)¢ = TTE(A) N 0a(A)C = TTo(A) N 0, (A)C. Hence (iii) implies

[

TT§(A) = TI§(A) N 0a(A)¢ = TIo(A) N 0, (A)C = 6(A) N0 (A)°,

ie., (iii) = (i). To complete the proof, we prove next that (iil) <= (iv). Recalling A* has SVEP at a
A € 04(A)C if and only if A € 0, (A)¢ (and A* has SVEP at 1), we have

(1ii) A" has SVEP on TIj(A) N 10, (A)
A" has SVEP on II}(A) N a4,(A)°
A* has SVEP on {is00,(A) N 04(A)C} N 04,(A)C
A* has SVEP on is00,(A) N 64,(A)¢
A* has SVEP on is00,(A) N 04u(A)¢
A" has SVEP on is00,(A) N 1 04(A),

ie., (i) & (iv). O

10010107

Remark 5.6. Operators A € B(X)such that A € (b) have SVEP on 6,(A)N0,(A)C and satsify 0,(A)N0 (A =
04(A) N 0, (A)C. Since A has SVEP on 0,(A) N 0,44(A)¢ implies A has SVEP on a(A) N 65,(A)° (this is simply
(a—Bt) = (Bt)), A € (b) implies IT{(A) = 02(A) N0 (A)C = 0,(A) N, (A C a(A)No,(A)C = TTH(A) C IT5(A).
Hence A € (b) = A € (ab). The reverse implication does not hold: Consider the operator A = U & U",
where U € B(H) is the forward unilateral shift, when it is seen that 6(A) = 0,(A), 5(A) N6, (A)C = I15(A) =0
(implies A € (ab)) and A ¢ (a— Bt) (implies A ¢ (b)). The reverse implication requires additional hypotheses.
For example, if 0,)(A) \ 040(A) = 0, then

A€ @) & 0(A)Nou(A)° =TI(A)
= 0,(A) N0u(A)€ =TIH(A) (since A* has SVEP on IT5(A))
= 0,(A) Nw(A)° =TIH(A) (since 04,(A) = au(A))
— Ae(D).

6. Variations: Perturbation by commuting Riesz operators

Unlike the Browder theorems, properties (b), (w) and their generalized versions do not survive perturba-
tion by commuting Riesz operators (even finite rank and quasinilpotent variety). Property (ab) is, however,
inherited by A + R from A for commuting Riesz operators R.

Theorem 6.1. If A, R € B(X), where R is Riesz and [A, R] = 0, then:
(A) A € (ab) = A + R € (ab).
(B) A € (b) = A + R € (b) if and only if one of the following mutually equivalent conditions holds:
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(i) A* has SVEP on is00,(A + R) N 0,4, (A)C.

(ii) A* has SVEP on ITj(A + R).

(iii) TI§(A + R) C TIp(A + R).

(iv) A* has SVEP on {0,(A + R) \ 0,(A)} N 17’ 0 (A).

(O A e (w) = A+ R e (w)ifand only if Eg(A + R) N is004(A + R) = 0, and one of the equivalent conditions (i)
to (iv) of (B) above holds.

Proof. (A).Recall from Theorem 5.5(A) that A € (ab) if and only if A* has SVEP on 17'04,(A) and 0., (A)NIT{(A) =
0. Since n'0w(A) = '0w(A + R), and since A* has SVEP at a point if and only if (A + R)* has SVEP at the
point, A* has SVEP on 1’0, (A) if and only if A* has SVEP on 1’0 (A + R). Again, since
0w(A + R) NITH(A + R)
= 0u(A+R)N{A€0m(A+R):A+R hasSVEP at A}
= 0u(A)N{A € 04(A)° : A has SVEP at A} = 0,(4) N IT5(A),
0w(A +R)NITH(A + R) = 0 & 0,(A) NTIH(A) = 0.
Hence A € (ab) & A + R € (ab).

(B). In the following we start by proving the necessity of condition (ii), prove next the equivalence of
conditions (i) to (iv), and then prove that condition (iv) is sufficient.
If A € (b), then (0,(A) N 04 (A)C = IT5(A) = TIp(A) implies) A € (a — Bt), which then implies that
A+ Re(a-Bt),ie.,
0a(A+R) N 0a(A+ R)° =TI (A +R) (2II(A+R)).

Hence, if A + R € (b), then necessarily (A + R)", equivalently A*, has SVEP on IT{(A + R).
The equivalences (i) & (ii) < (iii) follows from the following:
i500,(A + R) N 0,40(A)C = is004(A + R) N 04w(A + R)©
= {A€0m(A+R)°:A+R hasSVEPat A} =TII3(A+R), and

A* has SVEP on isod(A + R) N 0,,,(A)° &= A* has SVEP on ITH(A + R)
& IIH(A+R) =TIp(A+R) (& IIj(A + R) C ITy(A + R)).
We prove next that (if) & (iv). The hypothesis A € (b) implies A* has SVEP on
Oa(A) N Oaw(A)C {Oa(A) N T]Ow(A)C} U {Ua(A) N n,gaw(A)}
{02(A) N N0w(A + R)€} U {04(A) N1 040(A + R)}
Since 0,(A+R) N1 04(A) = {(02(A + R) N 04(A) N1 0o (A)} U{(0a(A + R) \ 0,(A)) N1 0,40(A)}, A has SVEP on
04(A) N0a(A)C, equivalently A* has SVEP on 73(A + R), if and only if condition (iv) is satisfied. To complete
the proof, we prove next that A € (b) and condition (iv) imply A + R € (b). If A € (), then (as seen above, A”
and hence) (A + R)* has SVEP on 0,(A) N 17'04(A + R). We have:
A+Re() & (A+R) hasSVEPon 0,(A+R) N7 0m(A+R)
& (A+R)" hasSVEP on {{g,(A + R) N d,(A)} N1 0a(A + R)}
U {{oa(A + R)\ 0a(A)} N1 000(A + R)}
& (A+R)" hasSVEPon {0,(A+R)\ 0.(A)} N1 0a(A + R).
(O). Sufficiency. Recall from Theorem 5.1(ii) that

A€ (w) &= A€ (b), Eo(A)Nisoc,u(A) = Eg(A) Nom(A) =0,
and from (B) above that A € (b) if and only if one of the hypotheses (i) to (iv) is satified. Since

ITH(A+R)N Gaw(A)C CTIo(A + R) = 0,(A + R) N 6400(A + R)® =TIp(A + R) C Eg(A + R),
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the sufficiency would follow once we have proved
Eo(A + R) Nis00,(A + R) =0 = Eo(A + R) C I1o(A + R).

For every A € Eg(A + R) such that A € Eg(A),
A ¢ Eo(A) Nis00y,(A) = Eo(A) Nisoc,u(A + R)
= A ¢ Ey(A+R)Nisoo,,(A+ R)
(= A¢E(A+R)N0m(A+R) &= Aellj(A+R)).
Consider next A € Eg(A + R) such that A ¢ Eq(A) (= 04(A) N 0,(A)C). Since

A ¢ 000(A)° = A ¢ 04(A + R = A ¢ Eg(A + R) N o(A + R,

we must have (A € 0,4,(A)¢ and) A ¢ g,(A). But then (A, consequently) A + R has SVEP at A, which then
forces A € IT{(A +R). Since A € Eg(A+R) implies (A+R)"has SVEP at A, A € TTj(A + R) implies A € ITo(A +R).
Necessity. The necessity of the condition Ey(A + R) Nisoo,w(A + R) = @ is immediate from the equivalence

A+Re(w) < A+Re (b),Ey(A+R)Nisoo,,(A+R) =0.

Furthermore, since
A+Re() & 0.,(A+R)N0uw(A+RC =TIH(A +R)
=  0(A+R)Nom(A+RC =TI)(A+R)=TIH(A +R)
= IIj(A+R) CTIH(A +R),
the condition I'T(A + R) N 04w(A + R)¢ € TTp(A + R) too is necessary. [J
Theorem 6.1 extends to operators A € (gab), A € (gb) and A € (gw)

Theorem 6.2. Let A, R € B(X), where R is a Riesz operator such that [A,R] = 0. Then:
(A) A € (gb) = A + R € (gb) if and only if TI*(A + R) N 0,4p,(A + R)€ C TI(A + R).

(B) A € (gab) = A + R € (gab) if and only if is05,(A + R) N 0aw(A + R)¢ C is00,(A + R) N opw(A + R)¢
(equivalently, I1"(A + R) CTI(A + R)).

(©) For left polaroid operators A, A € (gw) = A + R € (gw) if and only if (A + R)* has SVEP on I'T°(A + R) and
E(A+R)Nisoca(A +R) = 0 (equivalently, if and only if TI"(A + R) C TI(A + R) and E(A + R) Nis00,,(A +R) = 0).

Proof. (A). Since TT{(A + R) C IT"(A + R) and 045,(A + R) C 040(A + R),
II3(A + R) N 04(A + R)® CTI%A + R) N 045(A + R)C.

Hence the hypothesis IT*(A+R)Nop,(A+R)C C TI(A+R) implies (A+R)* has SVEP on IT(A +R)N0 4 (A+R)C =
IT3(A + R) N 0,(A)C (= TIA(A + R)). Consequently,

Ae(gh)y=Ac(b)=>A+Re(b).

Recall from Theorem 5.3(iii) that if (A + R)* has SVEP on IT*(A + R) = (is00,(A + R) N dupu(A + R)¢ =)
IT*(A + R) N 048u(A + R)C, then
A+Re(b)= A+Re(gb).
Hence the condition IT*(A + R) N 04, (A + R)¢ C TI(A + R) is sufficient for A € (gb) to imply A + R € (gb).
To see the necessity of the condition, assume A € (gb) implies A + R € (gb). Then
Ae(gbh)=A+Re(gb) = A+Re(a—ygBt)
& 0,(A+R)N0pu(A+R)C =TI(A +R),
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and
A+ R € (gh) = 04(A + R) N 05p(A + R)¢ =TI(A + R).

Hence
IT*(A + R) = 64(A + R) N 0upw(A + R)° =TI(A + R).

(B). The hypothesis A € (gab) implies A € (ab), and hence A + R € (ab) (see Theorem 6.1(A)). Since

A+Re(@) = A+Re(Bt)y = A+Re(gBt)
& 0(A+R)Nopu(A+R)FC =TI(A +R) CII"(A +R),

and since
IT°(A + R) = is00,(A + R) N 6,45,(A + R)C,
the hypothesis isoo,(A + R) N 04pw(A + R)€ C i500,(A + R) N 0y (A + R)C implies
IT(A + R) = is00,(A + R) N 0p,(A + R) =TI(A + R).

(Recall that A € is00,(A + R) N 0p,(A + R)C if and only if A € isod(A + R) N (A + R)C.) This proves the
sufficiency of the condition.

Conversely, if A € (gab) implies A + R € (gab), then

0(A) N opw(A)C IT*(A) = o(A + R) N 0pw(A + R)¢

is00,(A + R) N 043,(A + R)¢ = TI°(A + R).

Hence, since

Ae(gab) = Ae(gBt) = A+Re(gBT)
— 0(A+R)Nopy(A+R) =TI(A+R)
= {A:A€is00,(A + R)Nopu(A + R)CY,

we must have
{A: A €1i5004(A + R) N 0apw(A + R)C)
=  {A:A€iso0,(A +R) N opw(A + R)C}
{A: A €is00,(A + R) N 0pw(A + R)C)
{A: A €iso0,(A + R) Nopw(A + R)C).

=
-

(O). The hypothesis A € (gw) implies A € (w). Since ITj(A + R) C IT"(A + R), the hypothesis (A + R)* has
SVEP on I'T*(A + R) implies (A + R)" has SVEP on ITj(A + R) (and hence ITj(A + R) N g,(A + R)¢ =TIy(A +R)).
Again, since Eg(A + R) € E(A + R), E(A + R) Niso0,u(A + R) = 0 implies Eg(A + R) N isooaw(A + R) = 0.
Consequently,

A€ (gw) = A€ (w) = A+ R € (w).

Assume now that A + R is left polaroid. Then, since (already (A + R)* has SVEP on IT*(A + R), and therefore)
IT"(A+R) = II(A+R), Theorem 5.3(iv) applies and we conclude that A+ R € (gw). This proves the sufficiency.

The necessity of the conditions (A + R)* has SVEP on IT*(A + R) and E(A + R) N 04w(A + R) = 0 is immediate
from A + R € (gw) if and only if 0,(A + R) N 0a4(A + R)® = E(A + R) (once one observes the fact that
EA+R)NOpu(A+R)=0=EA+R)NomA+R)=0.) O
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7. Perturbation by commuting finite rank, nilpotent and quasinilpotent operators

Theorems 6.1 and 6.2 subsume a number of extant results on the perturbation of operators satisfying
either of the properties (b), (ab), (w) and their generalizations. In the following we consider but a few of these
results on perturbation by commuting finite rank, nilpotent and quasinilpotent operators , starting with the
result that A € (b)) & A+R € (b) for R either quasinilpotent or finite rank such that isoo,(A) = isoo,(A +R).
But before that we recall that if [A, R] = 0 and: (i) R is quasinilpotent, then 04(A + R) = 0x(A), 0x = 0 or g,;
(ii) R" is finite rank, then acco(A + R) = acca(A).

Proposition 7.1. Given A, R € B(X) such that [A,R] =0, if:
(A) R is quasinilpotent, then A € (b) &< A+ R € (b).
(B) R" is finite rank for some integer n > 0 and isoc,(A) = is00,(A + R), then A € (b) & A+ R € (b).

Proof. The proof in both the cases is almost a direct consequence of the fact that if [A,R] = 0 and R is
quasinilpotent, or, R" is finite rank with iso0,(A) = isoo,(A + R), then 0,(A) = 0,(A + R). Since A* has SVEP
at a point if and only if (A + R)* has SVEP at the point, and since 0,(A) N1’ 04(A) = 0,(A +R) N1 040(A + R),

Ae() & A" hasSVEPon 0,(A) N1 0m(A)
= (A+R)" hasSVEPon 0,(A +R) N1 0.(A+R),
ie,Ae(b)= A+Re (). O

Remark 7.2. Since 6,(A)N040(A+R)C = {(0,(A)N0a(A+R))NGu(A+R)CIU{(0,(A)\ 0a(A+R)Noag(A+R)CY,
and if A is polaroid d,(A) \ 0,(A + R) N 04u(A + R)¢ = is00(A) N 0,(A + R)¢ whenever (A + R)* has SVEP on
04(A) N 04(A)C, the hypothesis isoo,(A) = is00,(A + R), in the case in which R" is finite rank in Proposition
7.1, may be replaced by a hypothesis guaranteeing isos(A) N g,(A + R)¢ = 0.

The equivalence of Proposition 7.1 extends to property (gb) for commuting nilpotent, and finite rank
operators satisfying 0,(A) = 0,(A + R).

Proposition 7.3. Given operators A, R € B(X) such that [A,R] = 0 and either (i) R is nilpotent, or, (ii) R" is finite
rank with 0,(A) = 0,(A + R), then A € (gb) if and only if A + R € (gb).

Proof. 1f (i) is satisfied, then 0,(A + R) = 0,(A) and (since semi B-Fredholm spectrum is stable under
perturbations by finite rank operators [11, Proposition 2.7]) 0,p.(A + R) = 0,484(A). Hence A* has SVEP on
04(A) N 1Y 048w(A) if and only if (A + R)* has SVEP on 0,(A + R) N 1’048w(A + R). This ensures A € (gb) <
A + R € (gb). If A is nilpotent, then A (A*) has finite ascent if and only if A + R (resp., (A + R)*) has finite
ascent [19, Lemma 2.5]. Hence, for A € ,p,(A)°, Aisa pole of the resolvent of A if and only if A is a pole of
the resolvent of A + R. This implies A € (gb) <= A+ R e (gb). O

The equivalence A € (gb) < A +R € (gb) fails for commuting quasinilpotents R. Let T = U®0 € B({?&(?),
where U is the forward unilateral shift and 0 is the zero operator. Let Q € B({?) be a non-nilpotent
quasnilpotent operator, and R = 0 ® Q. Define the operator A € B(? ® () by A = U® Q. Then 0,(A) =
ID U {0} = 0,80(A), II(A) =0 and A € (gb) and the operator T = A — R satisfies 0,(T) = dD U {0}, 0450 (T) =
D, TI(T) = {0} and TI(T) = 0. Hence g,(A — R) N 0apw(A — R)® =TI"(A —R) and A — R ¢ (gb).

Remark 7.4. The above example is in a way typical of operators for which A € (gb) does not imply
A + R € (gb) for comuting quasinilpotent (indeed, Riesz) operators R ( see Theorem 6.2(A), which says that
we must have IT(A + R) C TI(A + R)).

We consider next implications A € (w) = A + R € (w) and A € (gw) = A + R € (gw) for commuting finite
rank and quasinilpotent operators R. If R is either nilpotent, or if R" is finite rank with isoc,(A) = isoo,(A+R),
and [A,R] = 0, then ¢,(A) = 0,(A + R) and 0,,(A) = 0(A + R). Hence, if A € (w), then Eg(A) =
02(A)N0 4 (A)C = 0,(A+R)N0 4 (A+R)C = TTy(A+R) C Eo(A+R). The reverse inclusion Eq(A+R) C Ey(A) fails.
Consider, for example, the operator A + R, where A € B(£?) is the operator A(x1, x2,x3,...) = (0, %xl, %xz, )
and R € B({?) is the nilpotent, finite rank operator R(xq,x2,x3,...) = (0,—%3{1,0, ...), when it is seen that
(Eo(A + R) Nis004,(A + R) # 0 and) Eq(A + R) € Eo(A).
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Proposition 7.5. If A, R are the operators of Proposition 7.3, then A € (w) &= A + R € (w) if and only if
Eo(A + R) = Eo(A).

Proof. The proof is immediate from the argument above which shows that A € (w) implies Eg(A) = 04(A +
R)N0a(A+R)C C Eg(A+R),and A+R € (w) implies Eg(A+R) = 0,((A+R)—R)N0aw((A+R)—R)C C Eg(A). O

The equality Eo(A) = Eo(A + R) in the above proposition may be achieved in a number of ways. Thus, if A
is left polaroid (or, polaroid) and A € (w), then (0x(A + R) = 0x(A), ox = 0 or g, and)

A€ Ey(A+R) = Ae€iso0,(A+R)=is00,(A),(A+R)" has SVEP at A
(resp., A € isoo(A + R) = isoo(A) if A is polaroid)
= A ell(A) C E(A);

since0 < a(A+R—-A) <o = 0<a(A—-A) <00, A € Ep(A). Again, if A € (w) and A + R is left polaroid (or,
polaroid), then
A€Ey(A+R)= A eIlj(A+ R) = A eIIy(A) C Ep(A).

The hypothesis A € (w) is isoloid (Recall: A is isoloid if A € isoo(A) = A € E(A)) implies Eo(A + R) = Eo(A)
(and, by symmetry, the hypothesis A + R € (w) is isoloid implies Eg(A) = Eo(A + R)).

Perturbation by commuting quasinilpotents fails to satisfy the condition Eo(A + R) N isooaw(A + R) = 0.
Consider the operators A = 0 and R(x1, X2, X3, ...) = (3X2, 33, ...). Then A € (w), R € B(£?) is (a non-injective)
quasinilpotent, 0,(A + R) = 040(A + R) = {0}, IT{(A + R) = ITo(A + R) = 0, Eo(A + R) = {0} (# Eo(A) = 0) and
A+ R ¢ (w). The following proposition shows that A € (w) implies A + R € (w) for commuting injective
quasinilpotent operators R, and for commuting quasinilpotent operators R for which the operator A is
finitely left polaroid.

Proposition 7.6. Given operators A, R € B(X) such that R is a quasinilpotent which commutes with A, if:

(i) Either R is injective, or A is finitely left polaroid, then A € (w) if and only if A + R € (w). (ii) A is left polaroid,
then A € (w) implies A + R € (w) if and only if 6,8,(A)C N i800,(A) = 0.

Proof. (i). We prove the forward implication for the case in which R is an injective quasinilpotent; the proof
of the backward implication follows by symmetry. For this we prove that

TT4(A + R) = TIg(A + R), Eo(A + R) N iso0,(A +R) = 0

(see Theorem 6.1(C)). The operator R being quasinilpotent, [A, R] = 0 implies 0,(A) = 0,(A + R), 0a(A) =
0mw(A + R), and A (A*) has SVEP at a point if and only if A + R (resp., (A + R)*) has SVEP at the point. If
A € (w), then

Eo(A)

04(A) N 04(A)€ = 04(A + R) N 0(A + R)C
ITH(A + R) (since A+ R has SVEP on Ey(A))
ITo(A + R) (since (A + R)" has SVEP on Ey(A)).

Recall now from [18, Theorem 8.4.8, Page 133] (else, see the proof of [2, Theorem 2.13]) that if R is injective,
then I'y(A) = TIp(A + R) = Eo(A + R) = 0; hence Eo(A + R) N 04(A + R) = 0. (Indeed, A € (w) = Ep(A) =
Eo(A + R) = 0,(A) N 00(A)C = 0(A + R) N 0o A+ R)C = 0.)

We prove next the case in which A is finitely left polaroid. Here, since A is finitely left polaroid if and
only if A + R is finitely left polaroid (see Proposition 3.2), it would suffice to prove the forward implication
A € (w) = A+ R € (w). Furthermore, since A € (w) implies IT{(A + R) = Ilp(A + R) (a straightforward
consequence, as seen above, of the fact that the definition of A € (w) implies both A and A* have SVEP
on 04(A) N 04(A)€), we have only to prove that Eg(A + R) N isoda,(A + R) = 0. Assume that there exists a
A € Eg(A + R) Niso0,4(A + R). Then, since

A € is00,(A + R) = A €is00,(A)
= A €TI%(A) = 04,(A) N 0ar(A)° = 04(A + R) N (A + R)E,
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A ¢ 040(A + R). This being a contradiction, we must have Ey(A + R) Nisooa,(A + R) = 0.

(ii). It is clear from the argument of the proof of (i) above that if A € (w) is left polaroid, then TTj(A + R) =
T[To(A+R), Eg(A) € Eo(A+R) and A € Eg(A+R) implies A € IT°(A) = is00,(A) N0ap(A)C, A* has SVEP at A.
Since is00,(A) N 0,45 (A)C = {(i500,(A) N G480 (A)C) N (Taw(A) U 0400 (A)E)} = {(i5004(A) N 04Bw(A)C) N aw(A)C} =
i800,(A) N 04 (A)C if and only if
(iSOO‘u(A) N Uan(A)C) N Gaw(A) =)= Gqu(A)C N iSOO'gw(A) = (Z)/

we have A € Eg(A + R) implies A € TI{(A) (= Io(A) = Eo(A), since A € (w)) if and only if OaBw(A)C N
i500,4(A) = 0. Thus Eg(A + R) C Eo(A) (implies Eg(A + R) = Eg(A) and Eo(A + R) Niso0,(A + R) = 0, implies
A+ R € (w)) if and only if 0,5,(A)° Nis004(A) = 0. O

Property (gw) does not, as one would expect, survive perturbation by commuting finite rank and

nilpotent operators . If we let A € B(£?) be the quasinilpotent operator A(x;,x2,x3,...) = (0, =, %2,---),

then 0,(A) = 0upw(A) = {0}, E(A) = 0 and A € (gw). Let R € B({?) be the finite rank (nilpotent) operator
R(x1,x2,x3,-++) = (0, —%,O, --+), then 0,(A + R) = 0430w(A + R) = E(A + R) = {0} and A + R ¢ (gw). However,
just as for property (w), a satisfactory situation prevails for the case in which either A is left polaroid and R
is the finite rank operator of Proposition 7.3, or, A is polaroid and R is the operator of Proposition 7.3.

Proposition 7.7. Let A, R € B(X), where [A,R] = 0.

(i) If A is left polaroid and R is the finite rank operator of Proposition 7.3, then A € (gw) if and only if A + R € (gw).
(ii) If A is polaroid and R is the operator of Proposition 7.3, then A € (gw) if and only if A + R € (gw).

(iii) If X = H is a Hilbert space and the operator R is nilpotent, then A € (gw) if and only if A + R € (gw).

Proof. (i). We prove the forward implication; the reverse implication follows by symmetry (since A is left
polaroid if and only if A + R is left polaroid by Proposition 3.3). Since the left polaroid hypothesis on A
implies
A€EA+R) = A€ell’(A+R),(A+R)" hasSVEPat A,0<a(A+R-A)
= A€llA+R),0<a(A+R-A)=Ae€EA+R),

we have

A € E(A) = A €isoo(A) =isod(A + R),0 < a(A—-A)
= AelllA+R),0<a(A+R-A)= A€ EA+R).

(We remark here that if «(A + R — A) =0, then A ¢ ,(A + R) = 0,(A).) Thus
E(A)CE(A+R)CE((A+R)-R)=E(A) = E(A) = E(A +R).

Since A € (gw) implies E(A) N i5004,(A) = 0, we must have E(A + R) N is00,,(A + R) = 0. Already we have
IT"(A + R) =II(A + R). Hence A + R € (gw).

(if). Again, we prove the forward implication. (Recall from Proposition 3.3 that A is polaroid if and
only if A + R is polaroid.) Suppose A € (gw). If R is the finite rank operator of the statement, then
0aBw(A) = 048w(A + R) (see the proof of Proposition 7.3), and if R is the nilpotent operator of the statement,
then ogy(A) = opy(A + R) [19, Theorem 2.6]. Since 0,(A) = 0,(A + R), 0 = 0 or g,, if R is the finite rank
operator of the statement, then
I[I"(A+R) = {A:A€0,(A+R)N0mu(A+RC,A+R hasSVEP at A}

{A:A€0,(4)Nopu(A)F,A and A* have SVEP at A

(since A € (gw))}
{A:A€0,(A+R)N0u(A+RC,A+R and (A +R)*
have SVEP at A} =TI(A + R)
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and if R is the nilpotent operator of the statement, then
IT"(A +R) {A: A €0.(A+R)N0u(A+RE,A+R has SVEP at A}
{A:A€0,(4)Nowpwu(A)¥,A and A* have SVEP at A}
(A A €0,(A) Nogp(A)FC) ={A: A €aa(A+R)Nogy(A+R)C)
{A:Aell"(A+R),(A+R)" hasSVEP at A} =TI(A +R).
The polaroid property of A implies
A€eEA+R) = A€isod(A+R),0<a(A+R-A7A)
— A€isoo(A),0<a(A+R-A) = A €isoc(A),0 <a(A-A)
= A€EA)=E(A+R)—R)= A€ E(A+R).
Hence E(A + R) = E(A), E(A + R) Nisooaw(A + R) = E(A) Nis00,,(A) = 0, and A + R € (gw).
(iif). If X is a Hilbert space, then o4p, = 045w(A + R) (see [6, Theorem 4.4] and [18, Corollary 2.9]). O

Property (gw) does not travel from A to A + R for commuting quasinilpotents (even, commuting injective
quasinilpotents). Let, for example, A = U ® Q € B({* @ %), where U is the forward unilateral shift and Q is
an injective quasinilpotent. Let R = —(Q ® Q). Then 0,(A) = dD U {0} = 0,84(4), E(A) =0, A € (gw)and
0a(A+R) = 9D U0}, 0upw(A+R) = 9D, E(A+R) =0,A+R ¢ (gw). Requiring A is finitely polaroid, however,
does the trick.

Proposition 7.8. Iftheoperators A, R € B(X)aresuchthat [A,R] = 0, A s finitely polaroid and R is a quasinilpotent,
then A € (gw) if and only if A + R € (gw).

Proof. In view of the fact that A is finitely polaroid if and only if A + R is finitely polaroid, Proposition 3.2,
it would sulffice to prove the forward implication. If A is finitely polaroid, then

A € (gw) & 0,(A) N 05(A)C = E(A) = Eg(A).

Since A € 045,(A)¢ and 0 < a(A — A) < o0 imply A € 0,5(A)°,
Ac(gw) =  04(A) N ow(A)F = Eo(A)
& 0(A+R)Nouw(A+RC =Ey(A+R) (Proposition 7.6)
=  04(A+R)N0uw(A+R) =EA+R)
(since A + R s finitely polaroid). [J

We end this section with the result that the hypotheses of Proposition 7.6 (ii) are sufficient for the transfer
of property (gw) from A to A + R for commuting quasinilpotents R.

Proposition 7.9. Let A, R € B(X), where R is a quasinilpotent operator such that [A, R] = 0. Ifi5004.0(A)N0apw(A) =
0, then A € (gw) implies A + R € (gw).

Proof. If i5004(A) N 0apw(A) = 0, then (the argument of the proof of Proposition 7.6 (ii) implies that)
i800,(A) N 04p(A)C = i800,(A) N 04(A)C. The hypothesis A € (gw) implies
E(A) = 0.,(A)N0u(A)C ={A: A €iso0,(A) N 0apu(A)C, A" has SVEP at A}
= {A: A €is00,(A) N ou(A)F, A" has SVEP at A}
= {A:A1€is00,(A+R)No,u(A+ R)C, (A+R)" has SVEP at A}
= {A:A€eIIj(A+R),(A+R)" has SVEP at A}
= {A:Aellp(A+R),0<a(A+R-A7A)
(since a(A+R—-A)=0 forces A ¢ d(A) =0(A+ R))}
fA:A1ell(A+R),0<a(A+R—-A)} CEA+R).

N
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Again, since

E(AA+R) = {A:Ae€isoo(A+R),0<a(A+R-A)
= {A:A€isoo(A),0<a(A+R-1))
= {A:A€ell’(A),A” hasSVEPat A,0<a(A-A)
(since a(A—-A)=0= A ¢0(A) =ad(A+R))}
= {A:A€ell(A),0<a(A—-A)} CEA),

we have
E(A+R)=TI(A+R) = E(A) = E(A + R) N 0,5,(A + R) = 0.

Finally, since A € I1°(A+R) implies (A € iso0,(A +R) implies) A € is00,(A), A € TT*(A) = i500,(A) N5 (A)C =
E(@)=E(A+R)=TI(A+R). O

8. Perturbation by non-commuting compact operators

Compact operators K € B(X) being Riesz, the results above cover the transfer of propertise (Bt), (Wt),
(gw) etc. from A € B(X) to A+K for commuting K. The commutativity here is essential, (in a number of cases)
for the reason that SVEP does not survive perturbation by (not necessarily commuting) compact operators.
lol %l_ uu ) € B(H & H), U the forward
8 61 uu ) € B(H & H). Since the
operator A has SVEP and is polaroid (with 0(A) = 0,(A) = 04(A) = 04w(A) = dD and IT{(A) = T1°(A) =
ITh(A) = TI(A) = Ej(A) = Eo(A) = E*(A) = E(A) = 0, A satisfies (all) the properties (thus far) considered.
However, the operator A + K, which satisfies 6(A + K) = 0,(A + K) = D and 04(A + K) = 0,0(A + K) = 9D,
does not satisfy any of the properties (Bt), (Wt), (w), (gw) etc. Observe that /0, (A) = 7' 0w(A) = D (the
open unit disc), i.e., the Weyl and the a-Weyl spectra of A have holes. The absence of holes leads to (some)
positive results (see [21, 22, 28, 33]). Thus, if an operator A € B(X) is such that ,,(A) (resp., 04(A)) has no
holes, then A + K € (Bt) (resp., A + K € (a — Bt)) for every compact operator K € B(X) [21, Theorem 4.1];
if also isooy(A) = 0 (resp., is004(A) = 0), then A + K € (Wt) (resp., A + K € (a — Wt)) for every compact
operator K € B(X) [21, Theorem 6.4]. For operators A € B(X) such that 0(A) = 0,(A), a sufficient condition
for A + K € (Bt) for every compact operator K € B(X) is that n'c(A) is a finite union of the holes of (A) [22,
Theorem 3.2]. Again, if the component €2,(A) = {A € P,(4) : ind(A — A) < 0} is connected for an A € B(X),
then A + K € (gb) for every compact operator K € B(X) if and only if A* has SVEP on 0,(A) N 04(A)C
[21, Theorem 5.2]. Observe from Theorem 5.1 above that A + K € (b) (resp., A + K € (w)), for operators
A, K € B(X) with K compact, if and only if (A + K)* has SVEP on 0,(A + K) N 1/044,(A) (resp., if and only
if (A + K) € (b) and Eo(A + K) N is004,(A) = 0). The example of the operator B = U & U, U € B(H) the

8 81 +Ul )andA = B — K shows that A € (b) does

not imply A + K € (b). Observe that i'0,(A + K) = 17/ 04(A) = D and 0,(A + K) N 0ae(A + K)© & is00,(A + K)
(= 0). Again, if welet A € U® 0 € B({? @ (%), then 0,(A) = 04(A) = D U {0}, TI(A) = 0 and A € (b). Let
E € B(£?) be the compact operator E(x1, x2,x3,...) = (0, ’%, ’%, ...). Then the operator K = 0@ E is compact and
the operator A + K satisfies 0,(A + K) = 9D U {0, %, %, b, 0a(A+ K) = 0D U {0}, TTo(A) =0 and A+ K ¢ (b).
Observe that 0,(A + K) N 04(A +K)© ¢ isod,(A +K) (= 0). The following theorem shows that the hypotheses
0a(A + K) N 040(A + K)¢ C is00,(A + K) and is00,(A + K) N 6,(A)° C isoo(A + K) are both necessary and

sufficient for A € (b) to imply A + K € (b).

A pertinent example here is that of the unitary operator A = (

unilateral shift, and its perturbation by the compact operator K =

forward unilateral shift, the compact operator K = (

Theorem 8.1. Given operators A, K € B(X) with B compact, A € (b) implies A + K € (b) if and only if 0,(A + K) N
0a(A + K)¢ Cis00,(A + K) and isoo,(A + K) N 0,(A)° C isoo(A + K).
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Proof. Sufficiency. Assume that a,(A +K)N0a(A+K)C C isoo,(A +K) and isoo,(A +K)No,(A)C C isoo(A +K).
The hypothesis A € (b) implies both A and A* have SVEP on 0,(A) N 1 04(A). Since A* has SVEP at a point
A € 1 040(A) implies A € 0, (A), if A € (D), then

{A: A €0,(A) N1 04p(A), A" has SVEP at A}

{A: A €0,(A)Nn0,(A), A has SVEP at A}

{A:Aea(A)Nnou(A+K),A has SVEP at A}.

Assume now that A € (b), and consider the set

{A:A e (A+K)N1'ou(A+K))

{A: A e (0,(A+K)Na(A) N1ow(A + K)}

U{A 1 A € (04(A + K) N 0,(A)°) N 1 0(A + K))

51US; (say).

Since 0,(A) N1 0a(A + K) = 0,(A) N1 0aw(A) C TI(A) C 0(A + K)E,
S1 C {A:Aea(A+K)Noyu(A+K)C)

C {A:A€is00,(A+K)Nou(A+ K} CITH(A +K).

Again, if isoo,(A + K) \ 0,(A) € isoo(A + K), then

Sy € {A: A eisoo(A + K)N7'om(A + K)} CTIH(A + K).

Hence

Ga(A + K) N 0400(A + K)© ITy(A + K) = iso0,(A + K) N 0,(A + K)©

0a(A + K) N 040(A + K)°,
ie, A+Ke ().
Necessity. If A + K € (b), then iso0,(A + K) N 0,(A)° C is00,(A + K) N 0,44(A)C C TTp(A + K) C isoa(A + K)
and
{A: A €0,(A+K)Now(A+KE,(A+K) has SVEP at A}
{A:A€0,(A+K) Noyu(A+KC, (A+K) has SVEP at A}
ITo(A + K) C ITj(A + K) C iso0,(A + K).

This completes the proof. [J

Operators A € B(X) such that 0,(A) = 0,(A) satisfy property (b). If also such an operator A satisfies
0a(A + K) N 04o(A)¢ C isoa(A + K) for a compact operator K € B(X), then A + K € (b): This follows from
Theorem 8.1, since 6,(A) = 0,4u(A) implies 6,(A +K) N 0,(A) N1 04ip(A) = 0 and 6,(A + K) N 02(A) N 0ap(A)C =
9a(A + K) N 0au(A)C.

Corollary 8.2. Operators A € B(X) such that 6,(A) = oa(A) satisfy property (b). Furthermore, if K € B(X) is a
compact operator such that 6,(A + K) N 1)/ 04(A) C is00(A + K), then A + K € (D).

Animportant example of the class of operators A € B(X) satisfying 0,(A) = 04, (A) is that of the operators
satisfying the abstract shift condition A®(X) = \U,-; A"(X) = {0} [27, Page 78]. (Weighted right shift operators
A € B(fF), 1 £ p < oo, are an interesting subclass of the class of operators satisfying the abstract shift
condition [27].) Let A denote the class of non-quasinilpotent operators A € B(X) satisfying the abstract shift
condition. Then 0,(A) is connected for operators A € ‘A, and it follows from [21, Theorem 6.4] that A + K is
polaroid for compact operators K € B(X). Hence:

Corollary 8.3. If A € A and K € B(X) is a compact operator such that 6,(A + K) N 1 040(A) C isoo(A + K), then
A+ K e (w).
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Proof. Corollary 8.2 implies that A+K € (b). Sinceisooy,(A) = 0, A+Kispolaroid. Hence Eo(A+K) C ITo(A+K)
(& Eo(A + K) =ITp(A + K)). This implies A + K € (w). O

The argument above leads us to:

Theorem 8.4. Given operators A, K € B(X), with K compact, a sufficient condition for A € (w) implies A + K € (w)
is that A € (b) implies A + K € (b) and isoc,(A) = 0.

Proof. Evident, since A € (w) implies (A € (b), hence) A + K € (b), and isoo,(A) = 0 implies ITy(A + K) =
Eo(A+K). O

The example of the unitary operator A € B(H @ H) and the compact operator K € B(H & H) considered
above (at the begining of this section) shows that A € (ab) does not imply A + K € (ab) (i.e., property (ab) is
not stable under perturbation by compact operators). The following theorem gives a sufficient condition.

Theorem 8.5. Given A € B(X), a sufficient condition for A € (ab) to impliy A + K € (ab) for every compact operator
K € B(X) is that 6,,(A)C is connected.

Proof. We start by proving that A + K has SVEP on aw(A)° = 040(A + K)© for all compact operators K.
Suppose to the contrary that there exists a compact operator K such that A + K does not have SVEP at a point
A € 04,(A+K)C. Thenasc(A+K—A) = co. The component a,,(A+K)® being connected p,(A+K) = C\0d,(A+K)
intersects 0,4, (A+K)C. Hence the continuity of the index at points A € 0,,(A+K)® implies that a(A+K-A7) = 0
atevery A € g,,(A + K)C, except perhaps for a countable subset (where a(A + K — A) > 0). In any case, A + K
has SVEP at A, consequently asc(A + K — A) < co. This being a contradiction, we must have A + K’ has SVEP
on g4u(A + K)¢, and hence (A + K € (2 — Bt), i.e.,) 04(A + K) N 04(A + K)¢ = IT4(A + K). Assume now that
A € (ab). Then o(A) N 6,(A)C = IT5(A), and hence A* has SVEP on ITj(A). Since
A" has SVEP on IIj(A) <= A" has SVEP on Oa(A)°
== Uuw(A + K)C = Uuw(A)C = O'w(A)C = Gw(A + K)Cz

and since A + K has SVEP on (0,,(A + K)¢ =) 0,(A + K)C,

IT3(A + K) {A: A €is004(A + K) N 040(A + K)©)
{A: A €is00,(A + K) N oyy(A + K)©}
= {A: A €isoo,(A + K) N (isoo(A + K) N o,(A + K)©)}
{A: A €isoo(A + K) N oy(A + K)©)

= {AelIlj(A+K):(A+K)" has SVEP at A}.

Hence A+ K € (ab). O
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