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Abstract. In this paper, two new wavelet estimates for a function f having bounded second derivative
and bounded M derivative are obtained by Legendre Wavelet Method.

1. Introduction

At present, the approximation of a function by Fourier series method is at common places of analysis.
Wavelet approximation method is a new tool as well as recent trend to detect and analyze abrupt change
in seismic signal processing. The wavelet approximations of certain function by Haar wavelet have been
determined by several researcher like DeVore [1], Debnath [2], Meyer [3], Morlet [4, 5] and Lal and Kumar
[6]. But till now no work seems to have been done for wavelet approximation of a function by Legendre
wavelet methods. In an attempt to make an advance study in this direction,in this paper, the wavelet
approximation of a function f with 0 < sup | f(z)(x)| < A < o0 and a new Legendre wavelet estimate for

x€[0,1]

a function f with 0 < sup | f (M)(x)| < B < oo, where M is the positive integer, have been obtained. It is
x€[0,1]

important to note that estimate of a function is better and sharper than the estimate having less bounded
derivative, so the comparison of estimated approximations has significant importance in wavelet analysis.

2. Definitions

2.1. Legendre Wavelets

In recent years, wavelets have found their ways into many different fields of science and engineering. Wavelets

constitute a family of functions constructed from dilation and translation of a single function called mother wavelet.
If Y € L*(R) satisfies the ‘admissibility condition’

|f(w >|
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then  is called basic wavelet. The Integral Wavelet Transform of (IWT) on L*(R) is defined by
-1 & t—b
Wy =t [ o (T)dt, feL*(®) @

where a,beR with a # 0. If in addition, both ¢ and 1[1 satisfy ty(t) € LZ(R),wlﬁ(w) € L2(R) then basic wavelet 1
provides a time-frequency window with finite area given by ANPAD. In addition, under this additional assumption,
it follows that { is a continuous function so that the finiteness of Cy in (1) implies {(0) = 0 or equivalently

f Y(t)dt = 0. This is the reason that 1 is called a Wavelet. We note that the admissibility condition (1) is needed in

;btaining the inverse of the IWT.
By setting,

a  [t=b
Ypa(t) = lal? IP(T) @3)
the IWT defined in (2) can be written as

lebf(bl ﬂ) = <fr Ebb,a>‘
In this paper, Legendre Wavelet Y, ,,,(t) have four arqument (k, 1, m, t), where k = 1,2,...71 = 2n — 1, m is the order
of Legendre polynomials and t is the normalized time. Legendre Wavelet defined on the interval [0,1) by

1 nk k ~ n—1 i+1.
Yum(t) = m+ 322 Ly(2't—1), 5 <t<Sp;
B otherwise,

It is mentionable that L,,(t) are well known Legendre polynomials of order m which are orthonormal with respect to
the weight function w(t) = 1 and satisfy the following recursive formula ,

(1) Lo(t) = 1 (i) L1(t) = t and (iii) (m + 1)Ly1(t) = 2m + 1)tL,,(t) — mLy—1(t), wherem = 1,2, ...

The set of Legendre Wavelets are an orthonormal set.

2.2. Function Approximation
A function f € L*(R) defined over [0,1) is expanded as Legendre wavelet series in the form of

f(t) = Z Z Cn,m’]bn,m(t)/ where Cnm = <f/ Hl}n,m> (4)

n=1 m=0
and <., .) denotes the inner product.
If the infinite series in (4) is truncated then it can be written as

2k M1

Spam® =Y Y Comthun(t) = CTW(H) (5)

n=1 m=0
where C and \V(t) are 2¥-\Mx1 matrices given by
C= [Cl,OI C1,1/ s C1,M=1,€2,0,C2,1/ +++) C2M~1/ -+, Czk—lro, C2k—1,1, vey C2k-1,M_1] and
W(t) = [Ebl,o(t), P1,1(8), s P11 (E), Y20(8), P21 (E), ooy Y2121 (E), ooy Yot o(F), Yot 1 (), .., ll’zk*l,M—1(t)] .

2.3. Projection P, f
Let P, f be the orthogonal projection of L>(R) onto V,,. Then

0o

Pn(f) = Z an,kqbn,k/ where Ank = <f/ ¢n,k>¢n,k, n= 1/ 2/ 3/

k=—c0

Thus .
P.(f) = Z (f, GuiYuk, (Sweldens and Piessen[7])

k=—00



Shyam Lal, Vivek Kumar Sharma / FAAC 9 (2) (2017), 11-19 13

2.4. Wavelet Approximation

The Wavelet Approximation under supremum norm is defined by

En(f) = lIf = Puflleo = Suplf(x) = P f(x)l, (Zygmund[1], pp.114)

We define
1 4
iy =1 [ifeorac  1<p<e
0

The degree of wavelet approximation E,(f) of f by P,(f) under the norm ||.||,is given by
E.(f) = gjjgallf = Pufllp-

IfE,(f) = 0as n — co then E, (f) is called the best wavelet approximation of f of order n. (Zygmund [1], pp. 115)

3. Theorems

In this paper, we prove the following theorems.

Theorem 3.1. Ifafunction f € L*(R) is defined over [0, 1) such that its second derivative is bounded i.e sup ( f (t)| <
te[0,1]

A < oo and is expanded as Legendre Wavelet series

f(t) = Z Z Cn,mlpn,m(t)/ where Cnm = (f/ lgljn,m)‘ (6)
n=1 m=0
21 M1
Then Legendre Wavelet Approximation Ex y(f) of f by (251, M) partial sums Syc1pg = Y. Y., cumWnm(t) of its
n=1m=0

Legendre Wavelet series (6) in L*[0, 1] is given by

2k-1 M1

EZ",M(f) || Z Z CumPn, m(t)

n=1 m=0

M=2.

(22" M - 3): )

Theorem 3.2. Let a function f € L*(R) be a function whose M derivative is bounded i.e sup ) fM(t)| < oo then
te[0,1]
21 M-1
Legendre Wavelet Approximation of f by Soc1 pr = Y. Y. ComWnm(t), (2571, M) partial sums of its Legendre Wavelet
n=1 m=0
series is given by

2k M1

E2k,M(f) = ||f - SZ’H,MHZ H Z Z CrmnWn, m(t)

n=1 m=0

- 0577z
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4. Proofs

4.1. Proof of the Theorem 3.1

Legendre Wavelet series of f € L2[0,1] is given by

(e8] (o8]
fr= L2 ot
n=1 m=0
2k-1 M-1 21 oo o0
= Cnm¢nm+zzcnnz¢nnz+ Z zcnmwnm"' Z chml,bnm
n=1 m=0 n=1 m=M n=2k-141 m=0 n=2k-141 m=M
21 o oo
= SZ’”M"'ZZCnmI,Dnm"' Z chml,bnm"' Z chmlpnm (7)
n=1 m=M n=2k-141 m=0 n=2k141 m=M
By definition of ¢y, ,,

Gum() = m+12: L, —n), Ll<t<id;
nm -
0, otherwise,

We know that for Legendre Wavelet,

n-1 A+1 2n-2 2n
<t< , t<
2k 2k 2k

If we take n = 26°1 + 1, then

2(2’<-1+1)—2< 2(2’<1+1)2’<< 241
2k <t< 2k 2k‘t< 2k

:>1§t<1+l\7’k.
zk

Since 1, ,, vanishes outside the interval [0, 1), therefore the third and fourth terms in (7) become zero.
In this way,

261 oo

f = SZk’l,M + Z Z Cn,ml#n,m.

n=1 m=M
Then

21 oo

Z Z CrmWnm

n=1 m=M

k-1 oo Zk 1
Z Cn,ml/)n,m/ Z Z Cn,mlljn,m>
n=1 m=M

n=1 m=M

2
If = Sl

(o)

k-1

2 2
2 2 lewal [
n=1m

( , » Other terms vanish due to orthonormality of Wy m. ®)
=M
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Here,

lnlly = [ Guntoipuntot

k 1 2
2 e ) ) i
- (m+ E) 250 L@k = ) T2k - 7) dt

i+l

_ (m+%) 2kam(2kt—ﬁ)Lm(2kt—ﬁ)dt

A=l
2k

i+l

oF
2m + 1
= AmE f L@t - )| dt
-1

2

2k

1
2m+1 du . R
= 2 f L () Sk taking 2t — 7 = u

2
-1

1

2m+1

= 222 [ i du
-1

1
= 1, by orthogonal property of Legendre polynomial and f (Ln())? du =
-1

2m+1°
Thus
9l =1 ©)
Using equation (8) and (9), we have
21 oo
||f - SZ“,M“; = Z Z |Cn,m|2 (10)
n=1 m=M

Next,

1
Com = f(X) Yum dx
/

i+l
2k 1

_ ff(x) (1 + %)2 24 L,@" — ) dx

1
n+t
- ff( ok
-1
1

1
2m+1\2 A+t 1 d L ..&-L
(5 ) [ #055) gag O Loa@a, Lo = =252

1
2m+1\2 _« dt ) N
) ( 5 ) 2: L (8) % taking x—n=t

-1
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n + t
= (m) ff (Lm+1(t) — L1 (1)) dt

1 : i+t n + t (L1 (t) = L (1)
(m) {(f( )(Lm+1(t)— - 1(t)) ff o }

,intergrating by parts

11
_ 1 f ,(ﬁ+t
23+ (2 + 1)

2k

m+1(t) - Lm—l(t)) dt

1
n+t n+t
(23k+1(2m+1)) ff L1 (t) df+(m) ff L1 (t) dt
]

= L +1, say. (11)
1
) (1) L () = L) L0 - L0
b= ( 23k+1(2m + 1)) ff amv3 ke =g
-1
_ fl () 4 (La = Lutt
a 23k+1(2m +1) 2k dt 2m + 3
-1
1 g i+t ., n + t
T (23k+1(2m + 1)) 2m+3 {(f ( )(Lm+2 m(t) ff 2k Zk (Ensat) = Ln(£) dt} ’
, integrating by parts
1 " n + t
= —( 23k+1(2m n 1)) M+ 3 { ff 2k 2k m+2(t) - Lm(t)) dt}
_ 7" Tl + t (Lm+2(t) m(t))
B ( 25k+1(2m +1 ) ff 2m+3 (12)
Similarly,
1
t L (8) = L), (1) L,(#) = L}, (1)
L= (m) 7 (5) = b i = 5
-1

1

’ 1’1+t m(t)_ mZ(t)

(23k+1(2m+1) ff 2k dt( 2m -1 )
-1

]' % 1 ’ fl /I +t
(23k*1(2m+1)) Zm—l{(f (n )(L’”(t ’“(t)) ff nzk 2k () = Lu2(8))d }

,integrating by parts

1 1
1 : /l
- (23k+1(2m+ 1)) 2m—1 {0 ff Zk ?.k (Ln(t) = Lin2(t)) dt}
-1

1

_ 1/ 1“l+t m t)_ m— Z(t))
- (25k+1(2m+ 1)) f P\ ) o1 9 (13)
-1
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By equation (11), (12) and (13), we have

1

1

_ 1 : 7 i+t (Lm+2(t) B Lm(t)) _ (Lm(t) m Z(t))
C”"”_(25k+1(2m+1)) ff ( 2k ){ 2m+3 2m —1 }
Thus,
2 _ 7 1’1 +t (Lm+2(t) B Lm(t)) _ (Lm(t) m Z(t))
}C"/m) - ( 25k+1 2m + 1)) ff { 2m+3 2m -1 }
1
_ (1T +t (Lm+2(t) - Lm(t)) (Lm(t) m Z(t))
- 25k+1(2m+1) ff (2k ){ 2m+3  2m-1 }
-1

25k+1(2m +1)

25k+1(2m +1)
25k+1(2m +1)
25k+1(2m +1)

|
|
)
)
).
).

25k+1(2m +1)

EET
(=
EET
(=
(=
(=
(=

25k+1(2m + 1))

n+t

17

(14)

2

dt

{(2m — DLyo(f) — (4m + 2)Ly(t) +
2k

I

i @1 = 1)Lysa(t) — (4m + 2)Lon(t) +

(2m + 3)Lmz(t)}

(2m + S)Lm Z(t)

2m+3)(2m-1)
u [l

-1

)

f! ( 2m+3)2m-1)

2111 = V)Lysa(t) — (411 + 2)Ln(t) + 111 + 3) Lo (t)

flo

Il

{(2771 — DL (t) -

2m +3)2m —1)

(4m + 2)L,,(t) + (2m + 3)L,y—2(t)
@2m+3)2m-1)

fl

(4m +2)L,,(t) + 2m + 3)L,,— z(t)|
(2m + 3)22m — 1)2

{I(Zm B 1)Lm+2( )

(t) + (4m + 2)2 L3 (t) + (2m + 3)*L2 _,(t)

(2m + 3)2(2m — 1)?

f {(2771 B 1)zL‘m+2
-1

, other terms vanish due to orthogonal property of Legendre polynomial

1
1

25"+1 2m+1 )((Zm +3)2(2m—1)2

|

-1

24A2

(=
(=
(==
(==
|

25k+1(2m + 1)(2m — 1)2(2m — 3)

|

flo

fo

b

(2m-1) fL,2n+2(t)dt+(4m+2) L2 (t)dt+(2m+3) fLMth‘

1 2 2

25k+1(2m n 1))((2m T 3)22m — 1)2),(2'71 BT U P U i e 3]
1 [ 2 2 2 2

25k+1(2m T l))((2m T 32@m - 1)2)_(2’" R R U i P S C L v 3]
1 12(2m + 3)?

25k+1(2m Ty \@m+arem-12)| @mn-23)
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Hence,

24A2
25k+1(2m + 1)(2m — 1)2(2m — 3)
12 A?
25k(2m — 3)4’
By equation (9) and (15), we have

2
|c,,,m| <

> 2.

2 LS 1242
||f_s2k’1rM||2 = Z{ ZI\‘/I 2m — 3)* 25k
12A2
Hence,

1
||f - SZk’l,M”z = O(m), M 2 2

Thus, this theorem (3.1) is completely established.

4.2. Proof of the Theorem (3.2)

A function f is M times differentiable therefore by Taylor’s expansion, we have

hM—l
MY

M
fla+h) = fue1 = f(a) + % f'(a) + FMD(g) + 7\7 F™(a + Oh)

M

fM+1—fM+h fM(a+9h) where 0 < 6 <1 and fiy = f(a)+1,f(ﬂ)+ o+

Then,
hM
fme1 = fm = MfM(a + Oh), where 0 < 6 < 1.

Using this and dividing the interval [0, 1] in [%, ’;—kl] subintervals, we have,

1 . 2
”f - SZk‘l,M”i = f f(x) Z Z Cn,ml,bn,m dx
0 n=1 m=0
2k-1 EA 21 M-1 2
= Y [ o= Y Y contun @
=0 Y n=1 m=0

IA

S (&) s o] o

Il
O%H
—
S
—_
N—
z
i
=5
h=y
=
~_~~
=
2
N
Y
R

I
—_
|H
_
N
—_
N
2|~
=
N —
N
Rcr)
=
ey
S
=z
~~
=
~

18

(15)

(16)
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2 1 1\ 2
||f_52k—1,M||2 < (MW) xil[,(lfl]’f(M)(Xﬂ

Hence,

ISl < (zie) sup 1)
Therefore,

1 1

ExnlN =lf =Sl = () = sup |7 = O (s
Hence, this has been proved.
5. Conclusions

1
Since M!2Mk > (2M—3)3 2%, M > 2. Therefore < 1 M > 2. Thus, estimate of a function

MI2ME = op-3)3 0%
having more bounded derivative is better and sharper than the function of less bounded derivative.

6. Remarks

In the Theorem(3.1),

—0ask —> 00, M — o0

Exep(f) = O( L ) = Gt

22%c(2M -3)3) 2% (2M - 3)2

and also in Theorem(3.2),

1 C
Exm(f) = O(M! 2Mk) = v ZZMk —0ask — oo, M — oo,
where C; and C; are positive constants.

Therefore, Legendre Wavelet approximation estimated is best possible in each of the Theorems (3.1) and
(3.2).
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