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Abstract. The differential equations with piecewise constant arguments (EPCAs, for short) are subjects
of a great number of recent scientific researches. The main aim of this paper is to analyze the existence
and uniqueness of asymptotically Bloch-periodic solutions of abstract fractional nonlinear differential
inclusions with piecewise constant argument in Banach spaces.

.

1. Introduction and preliminaries

It is well known that nonlinear differential equations with piecewise constant argument combine the
properties of nonlinear differential equations and nonlinear difference equations. The equations of this kind
are prototypes of certain sequential continuous models appearing in disease dynamics, and they also have
invaluable importance in mathematical economy.

As mentioned in the abstract, the main aim of this paper is to analyze asymptotical Bloch-periodicity
of solutions for certain classes of abstract fractional nonlinear differential inclusions with piecewise constant
argument. In such a way, we continue a series of our recent research studies whose results are collected in
the monograph [20], as well as the research studies carried out by W. Dimbour, V. Valmorin [9] and M. F.
Hasler, G. M. N’Guérékata [15] (cf. also [3]-[6], [11], [13]-[14], [16], [21], [25] and [27] for some other results
obtained in this field).

The organization of paper is briefly described as follows. In Section 2, we remind ourselves of some known
facts and definitions from the theory of multivalued linear operators in Banach spaces. Section 3 is devoted
to the study of Bloch-periodic functions and asymptotically Bloch-periodic functions in Banach spaces. Our
main contributions are given in Section 4, where we point out that the results of W. Dimbour and V.
Valmorin [9] can be generalized for certain classes of abstract nonlinear fractional differential inclusions with
multivalued linear operators A satisfying the following condition:
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(P) There exist finite constants c, M > 0 and β ∈ (0, 1] such that

Ψ :=
{
λ ∈ C : ℜλ ≥ −c

(
|ℑλ|+ 1

)}
⊆ ρ(A)

and
∥R(λ : A)∥ ≤M

(
1 + |λ|

)−β
, λ ∈ Ψ.

More precisely, in this section, we consider the fractional differential Cauchy inclusion with piecewise constant
argument:

Dγ
t u(t) ∈ Au(t) +A0u

(
⌊t⌋

)
+ g

(
t, u

(
⌊t⌋

))
, t > 0; u(0) = u0, (1.1)

where A0 ∈ L(X), ⌊·⌋ is the largest integer function, g : [0,∞) ×X → X is a given function, and Dγ
t u(t)

denotes the Caputo fractional derivative or order γ. The main aim of Section 5 is to provide the basic
information about asymptotically Bloch-periodic solutions of inclusion (1.1), with A = A being the single-
valued generator of an exponentially decaying C-regularized semigroup of operators. Section 6 is reserved
for some conclusions and final remarks about the topic examined.

We use the standard notation throughout the paper. By (X, ∥ · ∥) we denote a complex Banach space;
L(X) designates the space of all continuous linear mappings from X into X. By I we denote the identity
operator on X. If A is a closed linear operator acting on X, then the domain, kernel space and range
of A will be denoted by D(A), N(A) and R(A), respectively. The symbol Cb([0,∞) : X) denotes the
Banach space consisting of all bounded continuous functions from [0,∞) into X, endowed with the norm
∥f∥∞ := supt≥0 ∥f(t)∥; C0([0,∞) : X) denotes the closed subspace of Cb([0,∞) : X) consisting of functions
vanishing at infinity. We define the space Cb(R : X) similarly. Henceforward, we always assume that
γ ∈ (0, 1] as well as that the operator C ∈ L(X) is injective.

Given s ∈ R in advance, put ⌊s⌋ := sup{l ∈ Z : s ≥ l} and ⌈s⌉ := inf{l ∈ Z : s ≤ l}. The Gamma function
is denoted by Γ(·) and the principal branch is always used to take the powers. Set gζ(t) := tζ−1/Γ(ζ) and
g0(t) := δ-distribution (ζ > 0, t > 0).

Fractional calculus started more than three centuries ago, probably with some works of Leibnitz. It is
a rapidly growing field of research due to its wide and invaluable applications in various fields of science.
For basic information on fractional calculus and fractional differential equations, the reader may consult [2],
[18]-[19], [23]-[24] and references cited therein. In this paper, we use the Wright functions, for which it is
well known that play an important role in fractional caclulus. Let us recall that the Wright function Φγ(·)
is defined by

Φγ(z) :=
∞∑

n=0

(−z)n

n!Γ(1− γ − nγ)
, z ∈ C (γ ∈ (0, 1)).

We refer the reader to [2] and [18, Section 1.3] for more details about the Mittag-Leffler and Wright functions.
Let 0 < τ ≤ ∞, m ∈ N and I = (0, τ). Then the Sobolev space Wm,1(I : X) is defined in the following

way (see e.g. [2, p. 7]):

Wm,1(I : X) :=

{
f | ∃φ ∈ L1(I : X) ∃ck ∈ C (0 ≤ k ≤ m− 1)

f(t) =
m−1∑
k=0

ckgk+1(t) +
(
gm ∗ φ

)
(t) for a.e. t ∈ (0, τ)

}
.

Then we have φ(t) = f (m)(t) in distributional sense, and ck = f (k)(0) (0 ≤ k ≤ m− 1).
In this paper, we use the Caputo fractional derivatives of order γ ∈ (0, 1]. Let us recall that the Caputo

fractional derivative Dγ
t u(t) is defined for those continuous functions u : [0,∞) → X satisfying that for each

T > 0 one has g1−γ ∗ (u(·)− u(0)) ∈W 1,1((0, T ) : X), by

Dγ
t u(t) :=

d

dt

[
g1−γ ∗

(
u(·)− u(0)

)]
(t), t ∈ (0, T ].
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If γ = 1, then it is worth observing that the Caputo fractional derivative Dγ
t u(t) is well-defined for any

locally absolutely continuous function u : [0,∞) → X (see [1] for the notion).

2. Multivalued linear operators

The main purpose of this short section is to remind the reader of elementary definitions and results from
the theory of multivalued linear operators. For more details about subject, we refer to the monographs by
R. Cross [7], A. Favini-A. Yagi [12] and M. Kostić [19].

A multivalued map A : X → P (X) is said to be a multivalued linear operator (MLO in X, or simply,
MLO) iff the following holds:

(i) D(A) := {x ∈ X : Ax ̸= ∅} is a linear subspace of X;

(ii) Ax+Ay ⊆ A(x+ y), x, y ∈ D(A) and λAx ⊆ A(λx), λ ∈ C, x ∈ D(A).

It is well known that, for every x, y ∈ D(A) and for every λ, η ∈ C with |λ| + |η| ̸= 0, we have
λAx+ ηAy = A(λx+ ηy). Furthermore, A0 is a linear subspace of X and Ax = f +A0 for any x ∈ D(A)
and f ∈ Ax. Set R(A) := {Ax : x ∈ D(A)}. The set A−10 := N(A) := {x ∈ D(A) : 0 ∈ Ax} is called
the kernel of A. The inverse A−1 is defined by D(A−1) := R(A) and A−1y := {x ∈ D(A) : y ∈ Ax}. It is
checked at once that A−1 is an MLO in E, as well as that N(A−1) = A0 and (A−1)−1 = A. If N(A) = {0},
i.e., if A−1 is single-valued, then A is called injective.

Let A and B be two given MLOs in X. Then we define its sum A+B by D(A+B) := D(A)∩D(B) and
(A+B)x := Ax+Bx, x ∈ D(A+B). It is easily verified that A+B is likewise an MLO in X. The product
of A and B is defined by D(BA) := {x ∈ D(A) : D(B) ∩ Ax ̸= ∅} and BAx := B(D(B) ∩ Ax). Then BA is
again an MLO in X and (BA)−1 = A−1B−1. The inclusion A ⊆ B means that D(A) ⊆ D(B) and Ax ⊆ Bx
for all x ∈ D(A). The scalar multiplication of an MLO A with the number z ∈ C is defined as usually.

We say that an MLO operator A is closed iff for any sequence (xn) in D(A) and (yn) in X such that
yn ∈ Axn for all n ∈ N we have that limn→∞ xn = x and limn→∞ yn = y imply x ∈ D(A) and y ∈ Ax. If
the MLO A is not closed, then we can simply prove that its closure A, defined as usual, is a closed MLO in
X. Any multivalued linear operator considered in this paper will be closed.

Suppose that A is an MLO in X, as well as that C ∈ L(X) is injective and CA ⊆ AC. Then the
C-resolvent set of A, ρC(A) for short, is defined as the union of those complex numbers λ ∈ C for which

(i) R(C) ⊆ R(λ−A);

(ii) (λ−A)−1C is a single-valued linear continuous operator on X.

The operator λ 7→ (λ − A)−1C is said to be the C-resolvent of A (λ ∈ ρC(A)); the resolvent set of A is
defined by ρ(A) := ρI(A), R(λ : A) ≡ (λ − A)−1 (λ ∈ ρ(A)). For more details about C-resolvent sets of
multivalued linear operators, we refer the reader to [12] and [19].

Concerning fractional powers of multivalued linear operators and interpolation spaces used below, the
reader may consult [12] and [19].

3. Bloch-periodic functions and asymptotically Bloch-periodic functions in Banach spaces

Let I = [0,∞) or I = R, let p ≥ 0, and let k ∈ R. A bounded continuous function f : I → X is said to
be (Bloch) (p, k)-periodic, or Bloch-periodic with period p and Bloch wave vector or Floquet exponent k iff

f(x+ p) = eikpf(x), x ∈ I.

The space of all functions f : I → X that are (p, k)-periodic will be denoted by Pp,k(I : X).

Remark 3.1. Note that the Bloch-periodicity is much more general than the notions of periodicity and anti-
periodicity. Indeed, if f(·) is (p, k)-periodic, such that kp = 2π, then the function f(·) is periodic. If kp = π,
then f(·) is anti-periodic.
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Let f, f1, f2 ∈ Pp,k(I : X). Then we have the following:

(a) f1 + f2(·) is (p, k)-periodic;

(b) cf(·) is (p, k)-periodic for c ∈ C;

(c) ft(·) := f(·+ t) is (p, k)-periodic for t ∈ I;

(d) If D : X → X is a linear continuous operator, then Df(·) is (p, k)-periodic;

(e) The function Fa(·) :=
∫ ·+a

a
f(s) ds is (p, k)-periodic for a ∈ I.

It is well known that the space Pp,k(I : X), endowed with the sup-norm, is a closed subspace of Cb(I : X).
Now we will repeat the following well-known definition of an asymptotically (p, k)-Bloch-periodic function

(see e.g. [15]).

Definition 3.2. Let p ≥ 0 and let k ∈ R. A bounded continuous function f : [0,∞) → X is called
asymptotically (p, k)-Bloch-periodic iff there are a Bloch (p, k)-periodic function g : R → X and a function
h ∈ C0([0,∞) : X) such that

f(x) = g(x) + h(x), x ≥ 0. (3.1)

The functions g(·) and h(·) are called principal and corrective parts of f(·), respectively. The space of
all asymptotically (p, k)-Bloch-periodic X-valued functions will be denoted by AP p,k([0,∞) : X).

Notice, finally, that the decomposition of an asymptotically (p, k)-Bloch-periodic X-valued function into
its principal and corrective part is unique (cf. (3.1)).

4. Asymptotically Bloch-periodic solutions for nonlinear fractional differential inclusions with
piecewise constant argument

In this section, we suppose that γ ∈ (0, 1] and A is an MLO in X satisfying the condition (P).

Definition 4.1. We say that a function u ∈ C([0,∞) : X) is a classical solution of the fractional differential
inclusion (1.1) iff the following is satisfied:

(i) The derivative Dγ
t u(t) is well-defined;

(ii) We have that u(0) = u0, g(·, u(⌊·⌋)) ∈ L1
loc([0,∞) : X) and (1.1) is satisfied for a.e. t > 0.

In contrast to [9, Definition 3.1], where the case γ = 1 has been considered, we allow the possibility for the
non-existence of one-sided derivatives at non-negative integer points (this, clearly, has a certain mathematical
sense). Furhtermore, in our analyses, we do not require a priori that the function g : [0,∞) × X → X is
jointly continuous.

Example. Consider the case in which X = C, 0 < ϵ < γ ≤ 1, A = A0 = 0, u0 = 0, u(t) = g1+ϵ(t), t ≥ 0
and g(t, z) := g1+ϵ−γ(t), t > 0, z ∈ C. Then u(·) is a classical solution of (1.1) in the sense of Definition
4.1, Dγ

t u(t) = g1+ϵ−γ(t) is not continuous for t = 0, u(·) is not a classical solution of (1.1), with γ = 1, in
the sense of [9, Definition 3.1] because the right derivative of u(·) does not exist for t = 0, and g(·, ·) is not
continuous on [0,∞)×X.

In order to define the notion of mild solution of (1.1), we need some preliminaries from [19]. Assume
first that γ ∈ (0, 1). Let the contour Γ := {λ = −c(|η| + 1) + iη : η ∈ R} be oriented so that ℑλ increases
along Γ. Set T (0) := I and

T (t)x :=
1

2πi

∫
Γ

etλ
(
λ−A

)−1
x dλ, t > 0, x ∈ X.
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Then (T (t))t≥0 ⊆ L(X) is a semigroup on X,

∥T (t)∥ = O
(
e−cttβ−1

)
, t > 0 (4.1)

and T (t)x → x, t → 0+ for any x ∈ X belonging to the space D((−A)θ) with θ > 1 − β (x ∈ Xθ
A with

1 > θ > 1− β); see [12] for the notion. Define, for every ν > −β,

Tγ,ν(t)x := t−γ

∫ ∞

0

sνΦγ

(
st−γ

)
T (s)x ds, t > 0, x ∈ X and Tγ,0(0) := I.

Then we know that the integral which defines the operator Tγ,ν(t) is absolutely convergent as well as that
∥Tγ,ν(t)∥ = O(tγ(ν+β−1)), t > 0.

Following E. Bazhlekova [2] and R.-N. Wang, D.-H. Chen and T.-J. Xiao [26], we define

Sγ(t) := Tγ,0(t), Pγ(t) := γTγ,1(t)/t
γ and Rγ(t) := tγ−1Pγ(t), t > 0.

Then we know (see [20]) that Sγ(t)x → x, t → 0+ for any x ∈ X such that T (t)x → x, t → 0+, as well as
that there exists a finite constant M > 0 such that∥∥Sγ(t)

∥∥ ≤Mtγ(β−1), t > 0,
∥∥Rγ(t)

∥∥ ≤Mtγβ−1, t > 0, (4.2)

∥∥Sγ(t)
∥∥ ≤Mt−γ , t ≥ 1 and

∥∥Rγ(t)
∥∥ ≤M2t

−γ−1, t ≥ 1. (4.3)

If γ = 1, then we define Sγ(·) := Rγ(·) := T (·).

Definition 4.2. Let γ ∈ (0, 1], and let u0 ∈ X be such that Sγ(t)u0 → u0, t→ 0+. A function u ∈ C([0,∞) :
X) is said to be a mild solution of the fractional differential inclusion (1.1) iff g(·, u(⌊·⌋)) ∈ L1

loc([0,∞) : X)
and

u(t) = Sγ(t)u0 +

∫ t

0

Rγ(t− s)
[
A0u

(
⌊s⌋

)
+ g

(
s, u

(
⌊s⌋

))]
ds, t > 0. (4.4)

In the case that γ = 1 and the function g : [0,∞) × X → X is jointly continuous, the notion of mild
solution of (1.1) is equivalent with that one introduced in [9, Definition 3.2]. In the case that γ ∈ (0, 1),
the argumentation used in the proof of [26, Lemma 4.1] shows that any classical solution of (1.1) has to
satisfy the equation (4.4), provided that the mapping g(·, u(⌊·⌋)) is Laplace transformable (cf. [1, Section
1.4]); here, we would like to observe that it is not clear how we can prove the above fact in the case that the
mapping g(·, u(⌊·⌋)) does not satisfy this condition.

The following two lemmae and Theorem 4.5 below can be deduced by using the growth rates of operator
families Sγ(·) and Rγ(·) (cf. (4.1) for the case γ = 1, and (4.2)-(4.3) for the case γ ∈ (0, 1)) and the
arguments contained in the proofs of [9, Lemma 3.1, Lemma 3.2, Theorem 3.3]; the only thing worth noting
is that the semigroup property of T (·) has not been used in the proofs of afore-mentioned results. For the
sake of completeness, we will present here only the most important details of the proof of Lemma 4.3:

Lemma 4.3. Let A0 ∈ L(X), let p ∈ N, and let k ∈ R. Define the nonlinear operator Λ1 on AP p,k([0,∞) :
X) through (

Λ1φ
)
(t) :=

t∫
0

Rγ(t− s)A0φ
(
⌊s⌋

)
ds, t ≥ 0,

for any φ ∈ AP p,k([0,∞) : X). Then Λ1 is well-defined and maps AP p,k([0,∞) : X) into itself.
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Proof. The function φ ∈ AP p,k([0,∞) : X) can be written as φ = ψ + θ, where ψ ∈ Pp,k(R : X) and
θ ∈ C0([0,∞) : X). Further on, we can write

(
Λ1φ

)
(t) = Ψ(t) + Θ(t), t ≥ 0, where

Ψ(t) :=

t∫
−∞

Rγ(t− s)A0ψ
(
⌊s⌋

)
ds, t ∈ R

and

Θ(t) :=

t∫
0

Rγ(t− s)A0θ
(
⌊s⌋

)
ds−

0∫
−∞

Rγ(t− s)A0ψ
(
⌊s⌋

)
ds, t ≥ 0.

Using the proof of [9, Lemma 3.1] and the estimates (4.1)-(4.3), it can be easily checked that Θ ∈ C0([0,∞) :
X). Hence, it is enough to prove that Ψ ∈ Pp,k(R : X). It can be simply proved that Ψ ∈ Cb(R : X) [20],
so that the final conclusion follows by using the fact that p ∈ N and the following simple computation:

Ψ(t+ p) =

t+p∫
−∞

Rγ(t+ p− s)A0ψ
(
⌊s⌋

)
ds =

t∫
−∞

Rγ(t− s)A0ψ
(
⌊s+ p⌋

)
ds

=

t∫
−∞

Rγ(t− s)A0ψ
(
⌊s⌋+ p

)
ds = eikp

t∫
−∞

Rγ(t− s)A0ψ
(
⌊s⌋

)
ds = eikpΨ(t), t ∈ R.

Lemma 4.4. Let p ∈ N, let k ∈ R, and let g : R×X → X be a bounded mapping such that:

(i) For all (t, x) ∈ R×X, we have g(t+ p, eikpx) = eikpg(t, x);

(ii) There exists L > 0 such that for all (t, x) ∈ R×X, we have ∥g(t, x)− g(t, y)∥ ≤ L∥x− y∥;

(iii) The mapping t 7→ g(t, ψ(⌊t⌋)), t ∈ R is measurable for all ψ ∈ Pp,k([0,∞) : X), and the mapping
t 7→ g(t, θ(⌊t⌋)), t ≥ 0 is measurable for all θ ∈ AP p,k([0,∞) : X).

Define (
Λ2φ

)
(t) :=

t∫
0

Rγ(t− s)g
(
s, φ

(
⌊s⌋

))
ds, t ≥ 0,

for any φ ∈ AP p,k([0,∞) : X). Then the nonlinear operator Λ2 is well-defined and maps AP p,k([0,∞) : X)
into itself.

Theorem 4.5. Let p ∈ N, let k ∈ R, and let g : R×X → X be a bounded mapping such that the conditions
(i)-(iii) of Lemma 4.4 hold. If A0 ∈ L(X) and

(
∥A0∥+ L

) ∫ ∞

0

Rγ(t) dt < 1,

then the equation (1.1) has a unique asymptotically Bloch-periodic solution.

Therefore, we are in a position to analyze the existence and uniqueness of asymptotically Bloch-periodic
solutions of nonlinear Poisson heat equations with piecewise constant argument in Lp-spaces ([12], [19]) and
nonlinear fractional differential equations with piecewise constant argument in Hölder spaces ([28]).



M. Kostić, D. Velinov / FAAC 9 (2) (2017), 27–36 33

5. Applications of C-regularized semigroups

Throughout this section, we assume that γ ∈ (0, 1] and a closed linear operator A = A generates an
exponentially decaying C-regularized semigroup (T (t))t≥0 (with the meaning clear and a tolarated abuse
of notation). We introduce the operator families Tγ,ν(·), Sγ(·), Pγ(·) and Rγ(·) as in the previous section
(ν > −1)). Then there exists a number c > 0 such that {z ∈ C : ℜz > −c} ⊆ ρC(A) and the estimates
(4.1)-(4.3) hold with β = 1.

We define the classical solution of the fractional differential inclusion (1.1) as in Definition 4.1. The
notion of a mild solution of (1.1) is introduced in the following definition.

Definition 5.1. Let γ ∈ (0, 1], and let u0 ∈ R(C). A function u ∈ C([0,∞) : X) is said to be a mild solution
of the fractional differential inclusion (1.1) iff g(·, u(⌊·⌋)) ∈ L1

loc([0,∞) : X),∫ t

0

Rγ(t− s)
[
A0u

(
⌊s⌋

)
+ g

(
s, u

(
⌊s⌋

))]
ds ∈ R(C), t > 0 (5.1)

and

u(t) = Sγ(t)C
−1u0 + C−1

∫ t

0

Rγ(t− s)
[
A0u

(
⌊s⌋

)
+ g

(
s, u

(
⌊s⌋

))]
ds, t > 0. (5.2)

In the case that γ ∈ (0, 1), we can use again the argumentation contained in the proof of [26, Lemma
4.1] to see that any classical solution of (1.1) has to satisfy the equation (4.4), provided that the mapping
g(·, u(⌊·⌋)) is Laplace transformable and u0 ∈ R(C). In the case that γ = 1, we can prove the following
proposition:

Proposition 5.2. Suppose that u0 ∈ R(C) and g(·, u(⌊·⌋)) ∈ L1
loc([0,∞) : X). If u(·) is a classical solution

of (1.1), then u(·) is a mild solution of (1.1).

Proof. Let t > 0 be fixed. Set v(s) := T (t − s)u(s), s ∈ [0, t]. The function v(·) is differentiable for a.e.
s ∈ [0, t] due to the fact that u(·) is a classical solution of (1.1); furthermore, since A generates (T (t))t≥0,
we have

dv(s)

ds
= −AT (t− s)u(s) + T (t− s)u′(s) = −AT (t− s)u(s) + T (t− s)Au(s)

+ T (t− s)A0u
(
⌊s⌋

)
+ T (t− s)g

(
s, u

(
⌊s⌋

))
,

for a.e. s ∈ [0, t]; see also [9, p. 1728]. Hence,

dv(s)

ds
= T (t− s)A0u

(
⌊s⌋

)
+ T (t− s)g

(
s, u

(
⌊s⌋

))
, for a.e. s ∈ [0, t]. (5.3)

Integrating (5.3) over [0, t], we obtain

Cu(t)− T (t)u(0) =

t∫
0

T (t− s)
[
A0u

(
⌊s⌋

)
+ g

(
s, u

(
⌊s⌋

))]
ds.

Since u(0) = u0 ∈ R(C), this immediately implies (5.1)-(5.2), finishing the proof.

Moreover, the following analogues of Lemma 4.3, Lemma 4.4 and Theorem 4.5 hold good:

Lemma 5.3. Let C−1A0 ∈ L(X), let p ∈ N, and let k ∈ R. Define the nonlinear operator Λ1 on
AP p,k([0,∞) : X) through

(
Λ1φ

)
(t) :=

t∫
0

Rγ(t− s)C−1A0φ
(
⌊s⌋

)
ds, t ≥ 0,

for any φ ∈ AP p,k([0,∞) : X). Then Λ1 is well-defined and maps AP p,k([0,∞) : X) into itself.
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Lemma 5.4. Let p ∈ N, let k ∈ R, and let C−1g : R×X → X be a bounded mapping such that:

(i) For all (t, x) ∈ R×X, we have C−1g(t+ p, eikpx) = eikpC−1g(t, x);

(ii) There exists L > 0 such that for all (t, x) ∈ R×X, we have ∥C−1g(t, x)− C−1g(t, y)∥ ≤ L∥x− y∥;

(iii) The mapping t 7→ C−1g(t, ψ(⌊t⌋)), t ∈ R is measurable for all ψ ∈ Pp,k([0,∞) : X), and the mapping
t 7→ C−1g(t, θ(⌊t⌋)), t ≥ 0 is measurable for all θ ∈ AP p,k([0,∞) : X).

Define (
Λ2φ

)
(t) :=

t∫
0

Rγ(t− s)C−1g
(
s, φ

(
⌊s⌋

))
ds, t ≥ 0,

for any φ ∈ AP p,k([0,∞) : X). Then the nonlinear operator Λ2 is well-defined and maps AP p,k([0,∞) : X)
into itself.

Theorem 5.5. Let p ∈ N, let k ∈ R, and let C−1g : R × X → X be a bounded mapping such that the
conditions (i)-(iii) of Lemma 5.4 hold. If C−1A0 ∈ L(X) and

(
∥C−1A0∥+ L

) ∫ ∞

0

Rγ(t) dt < 1,

then the equation (1.1) has a unique asymptotically Bloch-periodic solution.

Remark 5.6. The boundedness of mapping C−1g(·, ·) is taken only for the sake of convenience. In Theorem
5.5, we can assume that this mapping is Stepanov-like bounded, in a certain sense; see e.g. [20, Proposition
2.7.5]. A similar statement holds in the case of consideration of Theorem 4.5.

Remark 5.7. The condition (iii) of Lemma 5.4 automatically holds if C−1g(·, ·) is continuous. A similar
statement holds in the case of consideration of Lemma 4.4.

The results of this section clearly apply in the analysis of existence and uniqueness of asymptotically
Bloch-periodic solutions of nonlinear differential equations with piecewise constant argument in Lp(Rn)
spaces (see e.g. [18] and references cited therein).

6. Conclusions and final remarks

The Weyl-Liouville fractional derivative Dγ
t,+u(t) of order γ ∈ (0, 1) is defined for those continuous

functions u : R → X such that t 7→
∫ t

−∞ g1−γ(t−s)u(s) ds, t ∈ R is a well-defined continuously differentiable
mapping, by

Dγ
t,+u(t) :=

d

dt

∫ t

−∞
g1−γ(t− s)u(s) ds, t ∈ R;

see e.g. the paper [22] by J. Mu, Y. Zhoa and L. Peng for further information in this direction. Set
D1

t,+u(t) := −(d/dt)u(t). Using the computation carried out in [22, Lemma 6], it seems very reasonable to
define the notion of a mild solution of the following nonlinear fractional Cauchy inclusion with piecewise
constant argument

Dγ
t,+u(t) ∈ −Au(t) +A0u

(
⌊t⌋

)
+ g

(
t, u

(
⌊t⌋

))
, t ∈ R, (6.1)

where A is an MLO satisfying the condition (P), A0 ∈ L(X), ⌊·⌋ is the largest integer function, and
g : [0,∞)×X → X is a given function, by

u(t) :=

∫ t

−∞
Rγ(t− s)

[
A0u

(
⌊s⌋

)
+ g

(
s, u

(
⌊s⌋

))]
ds, t ∈ R.



M. Kostić, D. Velinov / FAAC 9 (2) (2017), 27–36 35

Therefore, the results of W. Dimbour, V. Valmorin [9] and M. F. Hasler, G. M. N’Guérékata [15] enable one
to analyze the existence and uniqueness of Bloch-periodic solutions of nonlinear fractional Cauchy inclusion
(6.1), as well.

In [15], M. F. Hasler and G. M. N’Guérékata have investigated the existence and uniqueness of (asymp-
totically) Bloch-periodic solutions of some semilinear integro-differential equations in Banach spaces. Ap-
plications have been given in the study of the following semilinear integro-differential equation

u′(t) = Au(t) +

t∫
−∞

a(t− s)Au(s) ds+ f(t,Du(t)), t ∈ R, (6.2)

where A is a closed linear operator satisfying certain conditions, D ∈ L(X), a ∈ L1
loc([0,∞)) and f(·, ·)

obeys some properties. We would like to note that the assertions of [15, Lemma 4.1, Theorem 4.2] hold even
if the considered operator families are not strongly continuous at the point t = 0. We can simply apply this
observation in the analysis of existence and uniqueness of Bloch-periodic solutions of the following Cauchy
inclusion

u(t) ∈ A
∫ t

−∞
a(t− s)u(s) ds+ f(t), t ∈ R (6.3)

and its semilinear analogue

u(t) ∈ A
∫ t

−∞
a(t− s)u(s) ds+ f(t, u(t)), t ∈ R,

where A is an MLO satisfying the condition (P); see the papers by C. Cuevas, C. Lizama [8] and H. R.
Henŕıquez, C. Lizama [17] for more details on the subject.
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