A Cline’s formula for the generalized Drazin-Riesz inverses

Mohammed Karmounia, Abdelaziz Tajmouatib

aCadi Ayyad University, Multidisciplinary Faculty, Safi, Morocco.
bSidi Mohamed Ben Abdellah University, Faculty of Sciences Dhar Al Mahraz, Laboratory of Mathematical Analysis and Applications, Fez, Morocco.

\textbf{Abstract.} Let X be Banach space, A, B, C be bounded linear operators on X satisfying operator equation $ABA = ACA$. In this note, we show that AC is generalized Drazin-Riesz invertible if and only if BA is generalized Drazin-Riesz invertible. So, we generalize Cline’s formula to the case of the generalized Drazin-Riesz invertibility.

1. Introduction and Preliminaries

Throughout, X denotes a complex Banach space and $\mathcal{B}(X)$ denotes the Banach algebra of all bounded linear operators on X. An operator $T \in \mathcal{B}(X)$ is Riesz, if $T - \lambda I$ is Fredholm in the usual sense for every $\lambda \in \mathbb{C}\setminus\{0\}$ [1]. Recall that a bounded operator $T \in \mathcal{B}(X)$ is said to be a Drazin invertible if there exists a positive integer k and an operator $S \in \mathcal{B}(X)$ such that

$$ST = TS, \quad S^2T = S \quad \text{and} \quad T^{k+1}S = T^k.$$

The concept of Drazin invertible operators has been generalized by Koliha [6] by replacing the third condition in this definition with the condition that $TST - T$ is quasi-nilpotent. Recently, Živković-Zlatanović SC and M D. Cvetković [10] introduced and studied a new concept of pseudo-inverse to extend the Koliha concept to “generalized Drazin-Riesz invertible”. In fact, an operator $T \in \mathcal{B}(X)$ is said to be generalized Drazin-Riesz invertible, if there exists $S \in \mathcal{B}(X)$ such that

$$TS = ST, \quad STS = S \quad \text{and} \quad TST - T \text{ is Riesz}.$$

In this case S is called a generalized Drazin-Riesz inverse of T. Until now we will be considered that the generalized Drazin-Riesz inverse is not unique. Živković-Zlatanović SC and M D. Cvetković also showed that T is generalized Drazin-Riesz invertible iff it has a direct sum decomposition $T = T_1 \oplus T_0$ with T_1 is invertible and T_0 is Riesz. The generalized Drazin-Riesz spectrum of $T \in \mathcal{B}(X)$ is defined by

$$\sigma_{DRI}(T) = \{\lambda \in \mathbb{C}, \quad T - \lambda I \text{ is not generalized Drazin-Riesz invertible}\}$$

2010 Mathematics Subject Classification. Primary 15A09, 47A53, 47A10.

Keywords. Cline's formula; generalized Drazin-Riesz inverse.

Received: 7 April 2017; Accepted: 4 March 2018

Communicated by Dijana Mosić

Email addresses: med89karmouni@gmail.com (Mohammed Karmouni), abdelaziz.tajmouati@usmba.ac.ma (Abdelaziz Tajmouati)
Jacobson’s Lemma [2] asserts that if $A, B \in \mathcal{B}(X)$, then

$$AB - I \text{ is invertible } \iff BA - I \text{ is invertible.} \quad (1)$$

As extensions of Jacobson’s lemma, Corach et al. [4] investigated (1) under the assumption $ABA = ACA$. They studied common properties of AC and BA in algebraic viewpoint and also obtained some nice topological analogues. For an associative ring R with unit, R.E Cline [3] showed that if $a, b \in R$ such that ab is Drazin invertible then so is ba and in this case the Drazin inverse of ba is $(ba)^D = b((ab)^D)^2a$. This formula is so-called Cline’s formula. Recently, Cline’s formula for Drazin and generalized Drazin in a ring under the condition $aba = aca$ was extended respectively by Zeng and Zhong [9] and Lian and Zeng [7]. In this note, we establish Cline’s formula for the generalized Drazin-Riesz inverse for bounded linear operators under the condition $ABA = ACA$.

2. Main Results

The following lemma will be needed in the sequel.

Lemma 2.1. Suppose that $A, B, C \in \mathcal{B}(X)$ satisfy $ABA = ACA$. Then

$$AC \text{ is Riesz } \iff BA \text{ is Riesz.}$$

Proof.

$$AC \text{ is Riesz } \iff \lambda I - AC \text{ is Fredholm for all } \lambda \in \mathbb{C} \setminus \{0\}$$

$$\iff \lambda I - BA \text{ is Fredholm for all } \lambda \in \mathbb{C} \setminus \{0\}$$

$$\iff BA \text{ is Riesz}$$

see [8, Theorem 2.8].

Theorem 2.2. If $A, B, C \in \mathcal{B}(X)$ satisfy $ABA = ACA$. Then

$$AC \text{ is generalized Drazin-Riesz invertible } \iff BA \text{ is generalized Drazin-Riesz invertible.}$$

In this case if S is a generalized Drazin-Riesz inverse of AC then $T = BS^2A$ is a generalized Drazin-Riesz inverse of BA.

Proof. Suppose that AC is generalized Drazin-Riesz invertible, then there exists $S \in \mathcal{B}(X)$ such that

$$S(AC) = (AC)S, \quad S(AC)S = S \quad \text{and} \quad (AC)S(AC) - (AC) \text{ is Riesz}$$

Let $T = BS^2A$. We have

$$T(BA) = BS^2ABA = BS^2ACA = BSA$$

and

$$(BA)T = (BA)BS^2A$$

$$= BABACS^2A$$

$$= BACAC^2A$$

$$= BACS^2A = BSA.$$

Then $T(BA) = (BA)T$.

\[
T(BA)T = BS^2A(BA)BS^2A
= BS^2ABABACS^3A
= BS^2ACACACS^3A
= BS^2ACSA
= BSSA = BS^2A = T.
\]
Hence \(T(BA)T = T\).

Now, let \(Q = I - ACS\). \(QAC = (I - ACS)AC = AC - ACSAC\) is Riesz.

We have
\[
BA - (BA)^2T = BA - BABABS^2A
= BA - BABABACS^2SA
= BA - BACACACS^2SA
= BA - BACSA
= B(I - ACS)A
= BQA
\]
and
\[
ABQA = AB(I - ACS)A
= ABA - ABACSA
= ACA - ACACSA
= AC(I - ACS)A = ACQA
\]
Then \((QA)B(QA) = QACQA = (QA)C(QA)\), and since \(QAC\) is Riesz by lemma 2.1 \(BA - (BA)^2T = BQA\) is Riesz. Consequently, \(BA\) is generalized Drazin-Riesz invertible with \(T = BS^2A\) is a generalized Drazin-Riesz inverse of \(BA\).

Conversely, if \(BA\) is generalized Drazin-Riesz invertible with a generalized Drazin-Riesz inverse \(T\), \(AC\) is generalized Drazin-Riesz invertible with \((AT)^2C\) is a generalized Drazin-Riesz inverse of \(AC\). Indeed:
\[
(AC)AT^2C = ACAT^2C = ABAT^2C = ATC.
\]
\[
(AT^2C)(AC) = AT^2CAC = A(BAT^2)TCAC
= AT^3BACAC
= AT^3BABAC
= AT^3C.
\]
Hence \((AC)(AT^2C) = (AT^2C)(AC)\).

\[
(AT^2C)(AC)(AT^2C) = AT^2CACAT^2C
= AT^3BACACAT^2C
= AT^3BABACAT^2C
= AT^3BABABAT^2C
= AT^2BABAT^2C
= AT^2C.
\]
Let $Q = I - BAT$

$BAQ = (I - BAT)BA = BA - BATBA$ is a Riesz operator.

And

\[
AC - (AC)^2(AT^2C) = AC - ACACAT^2C = AC - ACACA(BAT^2)TC = AC - ACACABAT^3C = AC - ABACABAT^3C = AC - ABABABAT^3C = AC - ABABAT^2C = AC - ABATC = A(I - BAT)C = AQC.
\]

\[
AQCA = A(I - BAT)CA = ACA - ABATCA = ABA - ATBACA = ABA - ATBABA = ABA - ABATBA = A(I - BAT)BA = AQBA.
\]

Now, we have $(AQ)B(AQ) = (AQ)C(AQ)$. Since BAQ is a Riesz operator, by lemma 2.1 $AC - (AC)^2(AT^2C) = AQC$ is Riesz.

\[\square\]

In the case $B = C$, we have the following theorem.

Theorem 2.3. If $A, B \in B(X)$. Then

AB is generalized Drazin-Riesz invertible \iff BA is generalized Drazin-Riesz invertible

Then from Theorem 2.2 we have

Theorem 2.4. If $A, B, C \in B(X)$ satisfy $ABA = ACA$. Then

\[
\sigma_{gDR}(AC) = \sigma_{gDR}(BA)
\]

Corollary 2.5. If $A, B \in B(X)$. Then

\[
\sigma_{gDR}(AB) = \sigma_{gDR}(BA)
\]

Let H be complex Hilbert space. For $T \in B(H)$, let $T = U|T|$ be the polar decomposition of T, where $|T| = (T^*T)^{\frac{1}{2}}$. The Aluthge transform of T is given by $\tilde{T} = |T|^{\frac{1}{2}}U|T|^{\frac{1}{2}}$. Set $B = |T|^{\frac{1}{2}}$ and $A = U|T|^{\frac{1}{2}}$. Then $AB = T$ and $BA = \tilde{T}$. From corollary 2.5, we have the following corollary.

Corollary 2.6. Let $T \in B(H)$, then

\[
\sigma_{gDR}(T) = \sigma_{gDR}(\tilde{T})
\]

Remark 2.7.

1) Generalized inverses are not unique in general. For example, consider a regular operator A and suppose that B is a generalized inverse of A. One can then easily verify that the operator BAB is also a generalized inverse of A. It is well known that if a generalized Drazin inverse (Drazin inverse) exists then it is unique. A logical question to ask is whether generalized Drazin-Riesz inverses are unique provided they exist.

2) Živković-Zlatanović SC and M D. Cvetković [10] showed that T is generalized Drazin-Riesz invertible iff there exists a bounded projection P on X which commutes with T such that $T + P$ is Browder in the usual sense [1] and TP is Riesz. Does it exist a unique projection satisfy previous conditions?
Now, we present an additive result concerning generalized Drazin-Riesz invertible operators.

Proposition 2.8. Let \(A, B \in \mathcal{B}(X) \) be generalized Drazin-Riesz invertible operators such that \(AB = BA = 0 \). Then \(A + B \) is generalized Drazin-Riesz invertible.

Proof. Suppose that \(A \) and \(B \) are generalized Drazin-Riesz invertible operators, then there exist \(S \in \mathcal{B}(X) \) and \(R \in \mathcal{B}(X) \) such that

\[
AS = SA \quad S^2A = S \quad \text{and} \quad A - ASA \text{ is Riesz},
\]

and

\[
BR = RB \quad R^2B = R \quad \text{and} \quad B - BRB \text{ is Riesz}.
\]

We will prove that \(S + R \) is a generalized Drazin-Riesz inverse of \(A + B \).

Since \(AB = BA = 0 \), we have \(AR = RA = 0 \), \(BS = SB = 0 \) and \(RS = SR = 0 \). Then

\[
(A + B)(S + R) = (S + R)(A + B)
\]

and

\[
\]

Now, we have

\[
(A + B) - (A + B)(A + B)(S + R) = (A + B) - (A^2 + AB + AB + B^2)(S + R)
= (A + B) - (A^2 + B^2)(S + R)
= (A + B) - (A^2S + B^2R)
= A - A^2S + B - B^2R
\]

Since \(A - A^2S \) and \(B - B^2R \) are Riesz and commute, by [1, Theorem 3.112] \((A + B) - (A + B)(A + B)(S + R) \) is Riesz. \(\square \)

Acknowledgements:

We wish to thank the referee for his valuable comments and suggestions.

References