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Abstract. The main aim of this paper is to provide the basic information about F-hypercyclic extensions
of binary relations over topological spaces and disjoint F-hypercyclic extensions of binary relations over
topological spaces. Special attention is paid to the case that the topological space under our consideration
has a linear vector structure, when we also analyze F-hypercyclic multivalued linear extensions of binary
relations and disjoint F-hypercyclic multivalued linear extensions of binary relations. We provide several
illustrative examples and results for simple graphs, digraphs and tournaments.

1. Introduction and preliminaries

Let E be a separable Fréchet space. Then a linear operator T on E is said to be hypercyclic iff there
exists an element x ∈ D∞(T ) ≡

∩
n∈N D(Tn) whose orbit {Tnx : n ∈ N0} is dense in E; T is said to be

topologically transitive, resp. topologically mixing, iff for every pair of open non-empty subsets U, V of E,
there exists n ∈ N such that Tn(U) ∩ V ̸= ∅, resp. iff for every pair of open non-empty subsets U, V of E,
there exists n0 ∈ N such that, for every n ∈ N with n ≥ n0, we have Tn(U) ∩ V ̸= ∅.

It would be very difficult to summarize here all relevant results obtained recently in the field of linear
topological dynamics. For further information on the subject, we refer the reader to the monographs [1] by
F. Bayart, E. Matheron and [10] by K.-G. Grosse-Erdmann, A. Peris. Hypercyclic and topologically mixing
properties of various classes of abstract Volterra integro-differential equations have been analyzed in [11]
and [12].

Let A be a multivalued linear operator on E. As a linear submanifold of E × E, A is always contained
in some hypercyclic (chaotic, topologically transitive) multivalued linear operator on E. The analysis of
hypercyclic and topologically transitive multivalued linear extensions has been initiated in [5], where the
authors have also considered disjoint hypercyclic and disjoint topologically transitive multivalued linear
extensions. On the other hand, in the recent research study of C.-C. Chen, J. A. Conejero, M. Kostić
and M. Murillo-Arcila [6], we have analyzed dynamics on binary relations over topological spaces, focusing
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special attention to the finite structures like simple graphs, digraphs and tournaments. This paper has been
recently continued by M. Kostić, M. Murillo-Arcila and Y. Puig [13]-[14], where the authors have analyzed
F-hypercyclic properties of binary relations over topological spaces and their disjoint analogues; here, F
denotes a non-empty collection of certain subsets of N. For more details about F-hypercyclicity and F-
topological transitivity of linear continuous operators on Fréchet spaces, we refer the reader to [2], [9], [17]
and references cited therein.

As mentioned in the abstract, the main aim of this paper is to provide the basic information on F-
hypercyclic extensions of binary relations over topological spaces and disjoint F-hypercyclic extensions of
binary relations over topological spaces. The results are completely new for binary relations over topological
spaces which do not have a linear vector structure, especially, for binary relations over finite topologi-
cal spaces. We analyze F-hypercyclic extensions and disjoint F-hypercyclic extensions for simple graphs,
digraphs and tournaments as well as F-hypercyclic multivalued linear operator extensions and disjoint
F-hypercyclic multivalued linear operator extensions for linear continuous operators on Fréchet spaces,
providing a great number of illustrative examples.

The organization of paper, consisting of four separate sections, is briefly described as follows. After
repeating some elementary facts about binary relations and multivalued linear operators, we provide a basic
information about simple graphs, digraphs and tournaments in Subsection 1.1. In Section 2, we remind
ourselves of recently introduced definitions of various F-hypercyclic and disjoint F-hypercyclic properties
of binary relations over topological spaces ([13]-[14]). Our main contributions are given in Section 3 and
Section 4, where we analyze F-hypercyclic (MLO) extensions and disjoint F-topologically transitive (MLO)
extensions of binary relations.

We use the standard notation henceforth. Suppose that X, Y, Z and T are given non-empty sets. Let
us recall that a binary relation between X into Y is any subset ρ ⊆ X × Y. If ρ ⊆ X × Y and σ ⊆ Z × T
with Y ∩Z ̸= ∅, then we define ρ−1 ⊆ Y ×X and σ ◦ ρ ⊆ X ×T by ρ−1 := {(y, x) ∈ Y ×X : (x, y) ∈ ρ} and

σ ◦ ρ :=
{
(x, t) ∈ X × T : ∃y ∈ Y ∩ Z such that (x, y) ∈ ρ and (y, t) ∈ σ

}
,

respectively. Domain and range of ρ are defined by D(ρ) := {x ∈ X : ∃y ∈ Y such that (x, y) ∈ X × Y }
and R(ρ) := {y ∈ Y : ∃x ∈ X such that (x, y) ∈ X × Y }, respectively; ρ(x) := {y ∈ Y : (x, y) ∈ ρ} (x ∈ X),
x ρ y ⇔ (x, y) ∈ ρ. Assuming ρ is a binary relation on X and n ∈ N, we define ρn inductively; ρ−n := (ρn)−1

and ρ0 := ∆X := {(x, x) : x ∈ X}. Set D∞(ρ) :=
∩

n∈N D(ρn), ρ(X ′) := {y : y ∈ ρ(x) for some x ∈ X ′}
(X ′ ⊆ X) and Nn := {1, · · ·, n} (n ∈ N). As it is well-known, for any set A we define P (A) := {B |B ⊆ A}.

Any topological space under our examination will be assumed to be non-trivial. If X is a topological
space equipped with a linear vector structure, then we say that any linear subspace A of X × X is a
multivalued linear operator (MLO) on X. In particular, A is a binary relation on X, so that the notions of
D(A), D∞(A), R(A), Ax (x ∈ D(A)) and the MLO An (n ∈ C) are clear. By MLO(X) we denote the class
of all MLOs on X. For more details about MLOs and their applications to the abstract degenerate Volterra
integro-differential equations, the reader may consult the monographs [7] by R. Cross, [8] by A. Favini, A.
Yagi, and [12] by the author.

1.1. Graphs, digraphs and tournaments

Let X = G be finite and equipped with discrete topology, and let ρ be a symmetric relation on G such
that, for every g ∈ G, we have (g, g) /∈ ρ. As it is well-known, (G, ρ) is said to be a (simple) graph.

A digraph is any pair (G, ρ), where G is a finite non-empty set and ρ ⊆ (G × G) \ ∆G; hence, in our
definition, we do not allow G to contain any loop. The elements in G and ρ are called points (vertices) and
arcs respectively; if arc (x, y) ∈ ρ, then we say that x is adjacent to y and write xy for arc(x, y). Two vertices
x and y of a digraph G are said to be nonadjacent iff (x, y) /∈ ρ and (y, x) /∈ ρ. If we replace each arc(x, y)
in G by symmetric pairs (x, y) and (y, x) of arcs, we obtain the underlying simple graph G associated to G.
The notions of outdegree d+(x), indegree d−(x) and degree d(x) := d+(x)+ d−(x) of a vertex x ∈ G as well
as the notions of a semi-walk and a walk in digraph G are defined usually ([4]). Let us recall that a digraph
(G, ρ) is called strongly connected iff for any two different points x and y from G there is an oriented x− y
walk, while (G, ρ) is said to be weakly connected iff for any two different points x and y from G there is an
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x− y semi-walk, which is equivalent to say that the underlying simple graph G associated to G is connected
([4]). For various generalizations, see [6].

Let (G, ρ) be a given digraph, G = {x1, x2, · · ·, xn} being equipped with discrete topology, and let
[A(G)]1≤i,j≤n be its adjacency matrix (defined by aij := 1 if xi is adjacent to xj and aij := 0, otherwise).
Denote, for every k ∈ N, A(G)k = [aki,j ]1≤i,j≤n. As it is well known, the element aki,j of matrix A(G)k

represents the exact number of xi − xj walks of length k in digraph (G, ρ). This fact enables one to simply
reformulate the notion introduced in Definition 2.1 below in terms of appropriate conditions on the adjacency
matrix [A(G)]1≤i,j≤n; see [13] for more details.

The reader may consult the monographs by J. A. Bondy and U. S. R. Murty [3], G. Chartrand and
L. Lesniak [4], and V. Petrović [16] for more details about the theory of graphs and digraphs. Without
any doubt, tournaments are the best studied class of digraphs (for a survey of not updated results on
tournaments, the reader may consult the monograph [15] by J. W. Moon). Let us recall that a tournament
T = (G, ρ) is a digraph in which any pair of different vertices (sometimes also called nodes) x, y ∈ X are
connected by exactly one arc.

2. F-hypercyclic and disjoint F-hypercyclic properties of binary relations on topological
spaces

Throughout this section, we assume that X and Y are two given topological spaces as well as that XN

and Y N are equipped with the usual product space topologies (N ∈ N). Suppose that F is a non-empty
collection of certain subsets of N, i.e., F ∈ P (P (N)) and F ̸= ∅. Observe that we do not require here that
F satisfies the following property:

(I) A ∈ F and A ⊆ B imply B ∈ F .

If F satisfies (I), then it is said that F is a Furstenberg family; furthermore, we say that F is a proper
Furstenberg family iff, in addition to the above, ∅ /∈ F . For more details about Furstenberg families and
their importance in the theory of linear topological dynamics, we refer the reader to [9], [2] and references
cited therein.

We need to recall the following definition from [13]:

Definition 2.1. Let (ρn)n∈N be a sequence of binary relations between the spaces X and Y, let ρ be a
binary relation on X, and let x ∈ X. Suppose that F ∈ P (P (N)) and F ̸= ∅. Then we say that:

(i) x is a strong F-hypercyclic element of the sequence (ρn)n∈N iff x ∈
∩

n∈N D(ρn) and for each n ∈ N
there exists an element yn ∈ ρn(x) such that for each open non-empty subset V of Y we have that
{n ∈ N : yn ∈ V } ∈ F ; (ρn)n∈N is said to be strongly F-hypercyclic iff there exists a strong F-
hypercyclic element of (ρn)n∈N;

(ii) ρ is strong F-hypercyclic iff the sequence (ρn)n∈N is strong F-hypercyclic; x is said to be a strong
F-hypercyclic element of ρ iff x is a strong F-hypercyclic element of the sequence (ρn)n∈N;

(iii) x is an F-hypercyclic element of the sequence (ρn)n∈N iff x ∈
∩

n∈N D(ρn) and for each open non-empty
subset V of Y we have that

S(x, V ) :=
{
n ∈ N : ρnx ∩ V ̸= ∅

}
∈ F ;

(ρn)n∈N is said to be F-hypercyclic iff there exists an F-hypercyclic element of (ρn)n∈N;

(iv) ρ is F-hypercyclic iff the sequence (ρn)n∈N is F-hypercyclic; x is said to be an F-hypercyclic element
of ρ iff x is an F-hypercyclic element of the sequence (ρn)n∈N;

(v) (ρn)n∈N is said to be strongly F-topologically transitive iff for every open non-empty subset U ⊆ X
and for every integer n ∈ N there exists an element yn ∈ ρn(U) such that for each open non-empty
subset V of Y we have that {n ∈ N : yn ∈ V } ∈ F ;
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(vi) ρ is strongly F-topologically transitive iff the sequence (ρn)n∈N is strongly F-topologically transitive;

(vii) (ρn)n∈N is said to be F-topologically transitive iff for every two open non-empty subsets U ⊆ X and
V ⊆ Y we have that

S(U, V ) :=
{
n ∈ N : ρn(U) ∩ V ̸= ∅

}
∈ F ;

(viii) ρ is F-topologically transitive iff the sequence (ρn)n∈N is F-topologically transitive.

In any case set out above, the validity of (I) for F yields that the strong F-hypercyclicity (topological
transitivity) implies, in turn, the F-hypercyclicity (topological transitivity) of considered sequence of binary
relations (binary relation, element). This condition also ensures that, for every dynamical property intro-
duced above, say F-hypercyclicity, any extension of an F-hypercyclic binary relation ρ is F-hypercyclic (a
similar statement holds for sequences of binary relations). Furthermore, the following holds ([13]):

(i) The validity of (i), resp. (iii), [(ii), resp. (iv)] implies that
∩

n∈N D(ρn) ̸= ∅ [D∞(ρ) ̸= ∅], while
the validity of (v) [(vi)] implies that D(ρn) ̸= ∅ for all n ∈ N [D(ρn) ̸= ∅ for all n ∈ N] but not∩

n∈N D(ρn) ̸= ∅ [D∞(ρ) ̸= ∅].

(ii) In the case of consideration parts (vii) and (viii), we do not need to have that D(ρn) = ∅ for all n ∈ N
[D(ρn) ̸= ∅ for all n ∈ N]; if ∅ /∈ F , then the validity of (vii) [(viii)] implies that D(ρn) ̸= ∅ for all
n ∈ N [D∞(ρ) ̸= ∅].

(iii) If X = Y and (ρn)n∈N is a sequence of symmetric binary relations on X, then for every two open
non-empty subsets U ⊆ X and V ⊆ X, we have S(U, V ) = S(V,U). Especially, if ρ is a symmetric
binary relation on X, then ρn is symmetric as well (n ∈ N) and therefore S(U, V ) = S(V,U) for the
sequence (ρn ≡ ρn)n∈N.

The following is a disjoint analogue of Definition 2.1; see [14] for more details:

Definition 2.2. Suppose that F ∈ P (P (N)), F ̸= ∅, N ≥ 2, (ρj,n)n∈N is a sequence of binary relations
between the spaces X and Y (1 ≤ j ≤ N), ρj is a binary relation on X (1 ≤ j ≤ N) and x ∈ X. Then we
say that:

(i) x is a strong dF-hypercyclic element of the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N iff for each n ∈ N there
exist elements yj,n ∈ ρj,n(x) (1 ≤ j ≤ N) such that for every open non-empty subsets V1, · · ·, VN of
Y, we have {n ∈ N : y1,n ∈ V1, y2,n ∈ V2, · · ·, yN,n ∈ VN} ∈ F ; the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N
are called strongly dF-hypercyclic iff there exists a strong dF-hypercyclic element of (ρ1,n)n∈N, · ·
·, (ρN,n)n∈N;

(ii) x is a strong dF-hypercyclic element of the binary relations ρ1, · · ·, ρN iff x is a strong dF-hypercyclic
element of the sequences (ρn1 )n∈N, · · ·, (ρnN )n∈N; the binary relations ρ1, · · ·, ρN are called strongly
dF-hypercyclic iff there exists a strong dF-hypercyclic element of ρ1, · · ·, ρN ;

(iii) x is a dF-hypercyclic element of the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N iff x ∈
∩

1≤j≤N,n∈N D∞(ρj,n)
and for every open non-empty subsets V1, · · ·, VN of Y, we have (V = (V1, V2, · · ·, VN ))

S(x,V) :=
{
n ∈ N : ρ1,nx ∩ V1 ̸= ∅, ρ2,nx ∩ V2 ̸= ∅, · · ·, ρN,nx ∩ VN ̸= ∅

}
∈ F ;

the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N are called dF-hypercyclic iff there exists a dF-hypercyclic
element of (ρ1,n)n∈N, · · ·, (ρN,n)n∈N;

(iv) x is a dF-hypercyclic element of the binary relations ρ1, · · ·, ρN iff x is a dF-hypercyclic element of
the sequences (ρn1 )n∈N, · · ·, (ρnN )n∈N; the binary relations ρ1, · · ·, ρN are called dF-hypercyclic iff there
exists a dF-hypercyclic element of ρ1, · · ·, ρN .

Definition 2.3. Suppose that F ∈ P (P (N)), F ̸= ∅, N ≥ 2, (ρj,n)n∈N is a sequence of binary relations
between the spaces X and Y (1 ≤ j ≤ N), and ρj is a binary relation on X (1 ≤ j ≤ N). Then we say that:
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(i) the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N are strongly dF-topologically transitive iff for every open non-
empty subset U ⊆ X and and for every open non-empty subsets V1, ···, VN of Y, there exists an element
x ∈ U such that, for every integers n ∈ N and j ∈ NN , there exists an element yj,n ∈ ρj,nx so that
{n ∈ N : yj,n ∈ Vj for all j ∈ NN} ∈ F ;

(ii) the binary relations ρ1, ···, ρN are called strongly dF-topologically transitive iff the sequences (ρn1 )n∈N, ··
·, (ρnN )n∈N are strongly dF-topologically transitive;

(iii) the sequences (ρ1,n)n∈N, · · ·, (ρN,n)n∈N are dF-topologically transitive iff for every open non-empty
subset U ⊆ X and and for every open non-empty subsets V1, · · ·, VN of Y, we have that {n ∈ N : (∃x ∈
U) ρj,nx ∩ Vj ̸= ∅ for all j ∈ NN} ∈ F ;

(iv) the binary relations ρ1, · · ·, ρN are dF-topologically transitive iff the sequences (ρn1 )n∈N, · · ·, (ρnN )n∈N
are dF-topologically transitive.

If the binary relations ρ1, · · ·, ρN are dF-hypercyclic (dF-topologically transitive), then we also say that
the tuple (ρ1, · · ·, ρN ) is dF-hypercyclic (dF-topologically transitive) and vice versa. For our later purposes,
it will be necessary to recall the following fact from [14]:

(D) Suppose that the binary relations ρ1, ρ2, · · ·, ρN on X are dF-hypercyclic (dF-topologically transitive).
Then any of them is F-hypercyclic (F-topologically transitive) provided that ρ1 = ρ2 = · · · = ρN or
that condition (I) holds for F .

3. F-hypercyclic (MLO) extensions and F-topologically transitive (MLO) extensions

The main aim of this section is to provide the basic information on F-hypercyclic (F-topologically
transitive) extensions of binary relations and F-hypercyclic (F-topologically transitive) multivalued linear
operator (MLO) extensions of binary relations. For anything that follows, the next example will be crucially
important:

Example. Suppose that N ∈ F , ρ := X × X and X is equipped with arbitrary topology. Then ρ is F-
hypercyclic with any element x ∈ X being the hypercyclic vector of ρ, and ρ is F-topologically transitive,
as well. On the other hand, there exists a great number of concrete situations in which ρ = X × X
cannot be strongly F-hypercyclic; for example, let X = {a, b, c, d}, τ = {∅, {a, b}, {c, d}, {a, b, c, d}} and
F = {N, 2N}. Then there is no strong F-hypercyclic vector x for ρ because, if we suppose the contrary,
then for the sequence (yn) in X satisfying the requirements prescribed in Definition 2.1(i) we need to have
{n ∈ N : yn = a or yn = b} ∈ F and {n ∈ N : yn = c or yn = d} ∈ F , which immediately leads to the fact
that y2n needs to be simultaneously an element of the set {a, b} and an element of the set {c, d}, for any
n ∈ N; this is a contradiction. A similar line of reasoning shows that ρ = X × X cannot be strongly F-
topologically transitive for F = {N, 2N}.

Based on the conclusions obtained, in the sequel of this section we will always assume that X is a
topological space and N ∈ F . We will limit ourselves to the study of F-hypercyclicity and F-topological
transitivity.

Let ρ be a binary relation on X. Define

S(ρ) :=
{
ρ′ ⊆ X ×X : ρ ⊆ ρ′

}
.

Then it is said that an element ρ′ of S(ρ) is an F-hypercyclic (F-topologically transitive) extension of ρ
iff ρ′ ∈ S(ρ) and ρ′ is F-hypercyclic (F-topologically transitive). The set consisting of all F-hypercyclic
(F-topologically transitive) extensions of ρ, denoted by SF

h (ρ) (SF
tt (ρ)), is non-empty since it contains the

full relation X×X (see the previous example). In the case that F is a collection of all non-empty subsets of
N, then we say that ρ′ is a hypercyclic (topologically transitive) extension of ρ and denote by Sh(ρ) (Stt(ρ))
the set consisting of all such binary relations. Similar agreement and notation will be used for any (quasi,
disjoint) extension defined below, so that, e.g., quasi F-hypercyclic extension will be quasi hypercyclic
extension with F being the collection of all non-empty subsets of N.
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Consider now the following extensions of a binary relation ρ on X :

ρ̃F :=
∩{

ρ′ ∈ S(ρ) : ρ′ is F-hypercyclic
}

and
ρ̂F :=

∩{
ρ′ ∈ S(ρ) : ρ′ is F-topologically transitive

}
.

We call ρ̃F , resp. ρ̂F , the quasi F-hypercyclic, resp. the quasi F-topologically transitive, extension of ρ.
Assume also that X is a linear vector space. Then we define

S(ρ) :=
{
A′ ∈ MLO(X) : ρ ⊆ A′}.

Then it is said that an element A′ of S(ρ) is an F-hypercyclic (F-topologically transitive) MLO extension
of ρ iff A′ ∈ S(ρ) and A′ is F-hypercyclic (F-topologically transitive). It is clear that the validity of
condition (I) implies that, if ρ′ is an F-hypercyclic (F-topologically transitive, resp. A′ ∈ MLO(X) is an
F-hypercyclic MLO, A′ ∈ MLO(X) is an F-topologically transitive MLO) extension of ρ and ρ′ ⊆ ρ′′ (resp.,
A′′ ∈ MLO(X) and A′ ⊆ A′′), then ρ′′ is an F-hypercyclic (F-topologically transitive, resp. A′′ is an F-
hypercyclic MLO, A′′ is an F-topologically transitive MLO) extension of ρ, as well. The set consisting of all
F-hypercyclic MLO (F-topologically transitive MLO) extensions of ρ, denoted by SF

h,MLO(ρ) (S
F
tt,MLO(ρ)),

is non-empty. The quasi F-hypercyclic MLO and quasi F-topologically transitive MLO extension of ρ are
defined respectively through

ρ̃F,MLO :=
∩{

A′ ∈ S(ρ) : A′ is F-hypercyclic
}

and
ρ̂F,MLO :=

∩{
A′ ∈ S(ρ) : A′ is F-topologically transitive

}
.

It is clear that any F-hypercyclic (F-topologically transitive) MLO extension of ρ is already F-hypercyclic
(F-topologically transitive) extension of ρ. Furthermore, we have:

Proposition 3.1. (i) span(ρ̃F ) ⊆ ρ̃F,MLO and span(ρ̂F ) ⊆ ρ̂F,MLO.

(ii)
∩

ρ′∈Sh(ρ)
span(ρ′) ⊆ ρ̃F,MLO and

∩
ρ′∈Stt(ρ)

span(ρ′) ⊆ ρ̂F,MLO.

(iii) Suppose that F satisfies (I). Then
∩

ρ′∈Sh(ρ)
span(ρ′) = ρ̃F,MLO and

∩
ρ′∈Stt(ρ)

span(ρ′) = ρ̂F,MLO.

Proof. For (i), it suffices to observe that ρ̃F ⊆ ρ̃F,MLO and ρ̂F ⊆ ρ̂F,MLO by definition as well as that
ρ̃F,MLO and ρ̂F,MLO are vector subspaces of X × X. The proof of (ii) is trivial and therefore omitted.
Suppose now that F satisfies (I). For the proofs of inclusions ρ̃F,MLO ⊆

∩
ρ′∈Sh(ρ)

span(ρ′) and ρ̂F,MLO ⊆∩
ρ′∈Stt(ρ)

span(ρ′), it suffices to observe that for each F-hypercyclic (F-topologically transitive) relation ρ′

containing ρ, we have that span(ρ′) is an F-hypercyclic MLO (F-topologically transitive MLO) extension
of ρ due to condition (I).

We continue by stating a few illustrative examples and remarks about F-hypercyclic (F-topologically
transitive) extensions of simple graphs; unless stated otherwise, we will denote by x1, x2, · · ·, xn the nodes
of G. In [6], we have shown that the graph G is connected iff G is hypercyclic (topologically transitive) iff
G is (Devaney) chaotic; if this is the case, then any element of G is a hypercyclic element of ρ. As the next
example shows, the situation is far from being clear and so simple for F-hypercyclicity:

Example. Let G = {x1, x2, x3, x4} be equipped with discrete topology, let G be the unoriented square
x1x2x3x4, and let F0 contain, besides the set N, the collection of all non-empty subsets of N containing
only odd numbers. Then, for every i ∈ N4 and n ∈ 2N + 1, we have that xi /∈ ρnxi, which simply implies
that G do not possess any of the introduced F0-dynamical properties from Definition 2.1; furthermore, G is
F-hypercyclic (F-topologically transitive) iff {2N, 2N+ 1} ⊆ F . Assume now that 2N /∈ F or 2N+ 1 /∈ F .
Then there exist two subcases: N \ {1} ∈ F or N \ {1} /∈ F . In the first subcase, we can add the unoriented
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arc x1x3 or x2x4 to G; then the resulted graph G′ will be both F-hypercyclic and F-topologically transitive,
so that the quasi F-hypercyclic (quasi F-topologically transitive) extension of G will be the graph G itself.
In the second subcase, the complete graph K4 is not F-hypercyclic (F-topologically transitive) and therefore
there is no F-hypercyclic (F-topologically transitive) extension of G within the class of simple graphs; it
can be easily seen that any F-hypercyclic (F-topologically transitive) extension of G contains the binary
relation ρ′ obtained as the union of G and four loops xi 7→ xi (i ∈ N4), which is a quasi F-hypercyclic (quasi
F-topologically transitive) extension of G.

Concerning the complete graph Kn, where n ≥ 2, we have the following elementary observations:

Example. Let Kn be equipped with discrete topology. We consider two possible cases:

(i) n = 2 : Then Kn is F-hypercyclic (F-topologically transitive) iff {2N, 2N + 1} ⊆ F . If 2N /∈ F
or 2N + 1 /∈ F , then the situation is quite similar to that one examined in the former example: if
N \ {1} ∈ F , then adding any of two loops x1 7→ x1 or x2 7→ x2 to G has as a result that the obtained
binary relation ρ′, with the meaning clear, is F-hypercyclic (F-topologically transitive). If N\{1} /∈ F ,
then the full relation is the only F-topologically transitive extension of G, which is not the case for
F-hypercyclic extensions: adding the loop x1 7→ x1 to Kn has as a result that the obtainted binary
relation ρ′ is F-hypercyclic with x1 being its F-hypercyclic vector.

(ii) n ≥ 3 : Then Kn is F-hypercyclic (F-topologically transitive) iff N \ {1} ∈ F . In the case that
N \ {1} /∈ F , the smallest F-topologically transitive binary relation containing Kn is the full relation,
while adding the loop x1 7→ x1 to Kn has as a result that the obtainted binary relation ρ′ is F-
hypercyclic with x1 being its F-hypercyclic vector.

Let G be equipped with discrete topology. If ∅ /∈ F , then the F-hypercyclicity (F-topological transitivity)
of G implies that G is connected. On the other hand, if ∅ ∈ F and G is not connected, then G cannot be
F-hypercyclic (F-topologically transitive) and any F-hypercyclic (F-topologically transitive) extension of
G contains at least one unoriented arc connected two nodes belonging to different components of G.

In the remaining part of this section, we will examine F-hypercyclic (F-topologically transitive) MLO
extensions. For this, we need to recall the following facts from [5]. Suppose that A ∈ L(X), where X is a
Fréchet space whose topology is induced by the fundamental system (pn)n∈N of increasing seminorms and
L(X) denotes the space consisting of all linear continuous mappings from X into X. We endow X with the
F -norm ∥ · ∥ := d(0, ·), where the translation invariant metric d : X ×X → [0,∞) is defined by

d(x, y) :=

∞∑
n=1

1

2n
pn(x− y)

1 + pn(x− y)
, x, y ∈ X.

Let us recall that this metric satisfies, among many other properties, the following ones: d(x + u, y + v) ≤
d(x, y)+ d(u, v) and d(cx, cy) ≤ (|c|+1)d(x, y), c ∈ K, x, y, u, v ∈ X. Set L(x, ϵ) := {y ∈ X : d(x, y) < ϵ}.

We know that any MLO extension A of A has the form Ax = Ax+W, x ∈ X, where W = A0 is a linear
subspace of X ([5]). Inductively, we can show that

Anx = Anx+
n−1∑
j=0

Aj(W ), n ∈ N, x ∈ X. (3.1)

This formula enables one to profile the quasi F-hypercyclic MLO extension of A in the following manner:
Denote by T the set consisting of all linear submanifolds W of X such that, for every open non-empty subset
V of X, we have that

SW (x, V ) :=

{
n ∈ N : (∃ω0, ω1, · · ·, ωn−1 ∈ W )Anx+

n−1∑
j=0

Ajωj ∈ V

}
∈ F .

Then ÃF,MLO = A+
∩
T . We can similarly profile the quasi F–topologically transitive MLO extension of

A.
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Calculating precisely F-hypercyclic (F-topologically transitive) extensions and F-hypercyclic
(F-topologically transitive) MLO extensions of binary relations, even certain multiples of the identity oper-
ators, is a non-trivial problem:

Example. (i) Suppose that X is a finite-dimensional Banach space and A ∈ L(X). Then we have seen in
[5, Example 4.1(a)] that A cannot be hypercyclic (topologically transitive) as well as that the only
hypercyclic (topologically transitive) MLO extension of A is X×X. If ∅ /∈ F , this immediately implies
that A cannot be F-hypercyclic (F-topologically transitive) as well as that the only F-hypercyclic
(F-topologically transitive) MLO extension of A is X ×X. The situation is quite different in the case
that ∅ ∈ F : then any continuous linear operator on a Fréchet space is F-hypercyclic with zero vector
being its F-hypercyclic vector.

(ii) Suppose that X is a Fréchet space, A ∈ L(X), W is a dense linear subspace of X and Ax := Ax+W,
x ∈ X. Then we know that for each n ∈ N and for each pair U, V of open non-empty subsets of X,
we have AnU ∩ V ̸= ∅; see [5, Example 4.2]. Hence, our standing assumption N ∈ F yields that A is
F-topologically transitive.

(iii) Suppose that X is a Fréchet space and A ∈ L(X). Then A may or may not be F-topologically
transitive and the most simplest example is provided by the operator A = cI, where I denotes the
identity operator on X and c ∈ K, with K being the field of scalars. Then we have the following:

(a) If c = 0 or c = 1, then A is F-topologically transitive iff ∅ ∈ F . In the case that ∅ /∈ F , we can
use the part (ii) and an elementary line of reasoning to see that any F-topologically transitive
MLO extension A of A has the form Ax := Ax+W, x ∈ X, where W is a dense linear subspace
of X (see also [5, Example 4.1(iii)]).

(b) Suppose |c| = 1 and c ̸= 1. If K = R, then c = −1 and A is F-topologically transitive iff
{∅, 2N, 2N + 1} ⊆ F . Suppose now K = C. Then the result is same for c = −1, when any F-
topologically transitive MLO extension A of A has the form Ax := Ax + W, x ∈ X, where W
is a dense linear subspace of X, provided that ∅ /∈ F or 2N /∈ F or 2N + 1 /∈ F . Speaking-
matter-of-factly, if ∅ /∈ F and W is not dense in X, then there exists v ∈ X and ϵ > 0 such
that B(v, ϵ) := {x ∈ X : d(x, v) ≤ ϵ} ⊆ X \ W. Then, for a small ball U around zero and
V = L(v, ϵ/3) = {x ∈ X : d(x, v) < ϵ/3}, we have [(−1)nU +W ] ∩ V = ∅ for all n ∈ N so that
{n ∈ N : AnU ∩ V ̸= ∅} = ∅ and the MLO A defined above cannot be F-topologically transitive.
If 2N /∈ F , then we can take U = V = L(v, δ/3), where δ = d(2v,W ) := infw∈W d(2v, w), so
that {n ∈ N : AnU ∩ V ̸= ∅} = 2N and A cannot be F-topologically transitive; to verify the last
equality, it is enough to show that (U +W ) ∩ V ̸= ∅ and (−U +W ) ∩ V = ∅. The first equality
is trivial while the second one can be simply deduced by assuming the contraposition. Indeed, if
we assume that (−U +W ) ∩ V ̸= ∅, then there exist ω ∈ W and two elements v1, v2 ∈ V such
that ω = v1 + v2, wich is a contradiction since ∥2v − (v1 + v2)∥ ≤ ∥v − v1∥ + ∥v − v2∥ < 2δ/3.
If 2N + 1 /∈ F , then we can take V = L(v, δ/3), and U = −V, with δ being defined in the same
manner. Otherwise, we recognize the following subcases:

(b1) there exist natural numbers p and q such that p < q, (p, q) = 1 and c = eiα with α = 2πp/q.
Then A is F-topologically transitive iff F contains the sets ∅, qN, qN + 1, · · ·, qN + q − 1
and their finite unions. Assume now that A is not F-topologically transitive. Then a similar
argumentation as in the case c = −1 shows that any F-topologically transitive MLO extension
A of A has the form Ax := Ax+W, x ∈ X, where W is a dense linear subspace of X; to see
this, it is enough to find, for every numbers 0 ≤ n1 < · · · < nk ≤ q−1 (k ∈ N), two open non-
empty subsets U, V of X such that {n ∈ N : [e2πipn/qU +W ] ∩ V ̸= ∅} =

∪
1≤j≤k(qN+ nj).

We can take U = L(v, ν) and V =
∪

1≤j≤k e
2πipnj/qU, where ν > 0 is sufficiently small and

v /∈ W.

(b2) c = e2πiα for some irrational number α ∈ (0, 1). Then {cn : n ∈ N} is a dense subset of the
unit circle of complex plane and it is not so simple to profile the form of family F for which



M. Kostić / Funct. Anal. Approx. Comput. 10 (1) (2018), 41-52 49

A is F-topologically transitive, as well as to prove that any F-topologically transitive MLO
extension A of A has the same form as in the parts (a) and (b1).

(c) If 0 < |c| ̸= 1, then A is F-topologically transitive iff F = P (P (N)). Assume, indeed, that
|c| > 1 (|c| < 1). To see that A is F-topologically transitive iff F = P (P (N)), it is sufficient
to construct, for any given subset D of N, two open non-empty subsets U, V of X such that
{n ∈ N : cnU ∩ V ̸= ∅} = D. This is clear for D = ∅, when we can take V = {x ∈ X : ∥x∥ < 1}
(V = {x ∈ X : ∥x∥ > 1}) and U = {x ∈ X : ∥x∥ > 1} (U = {x ∈ X : ∥x∥ < 1}). If
D = {n1, n2, · · ·, nk, · · ·}, where (nk) is an increasing sequence of natural numbers, we can take
U = {x ∈ X : 1 < ∥x∥ < c} (U = {x ∈ X : c < ∥x∥ < 1}) and V =

∪
k∈N{x ∈ X : cnk < ∥x∥ <

cnk+1} (V =
∪

k∈N{x ∈ X : cnk+1 < ∥x∥ < cnk}). In the case that X is finite-dimensional, we can
easily show that the only F-topologically transitive MLO extension of A is the full relation X×X,
provided that F ̸= P (P (N)). If X is infinite-dimensional and the last condition holds, then, in
the present situation, we cannot tell whether any F-topologically transitive MLO extension A of
A is of the same form as in the parts (a) and (b1).

4. Disjoint F-hypercyclic (MLO) extensions and disjoint F-topologically transitive (MLO)
extensions

In this section, we will analyze disjoint F-hypercyclic (MLO) extensions of binary relations and disjoint
F-topologically transitive (MLO) extensions of binary relations. As before, by X we denote a general
non-trivial topological space.

The following example is very similar to the first example of previous section:

Example. Suppose that N ∈ F , N ∈ N \ {1}, ρj := X × X for j ∈ NN and X is equipped with arbitrary
topology. Then ρ1, · · ·, ρN are disjoint F-hypercyclic with any element x ∈ X being its d-hypercyclic
vector; furthermore, ρ1, · · ·, ρN are disjoint F-topologically transitive, as well. A class of very elementary
counterexamples shows that these binary relations cannot be strongly disjoint F-hypercyclic or strongly
disjoint F-topologically transitive.

Because of that, we assume henceforth that N ∈ F and focus our attention only to disjoint F-hypercyclicity
and disjoint F-topological transitivity.

Let N ≥ 2, and let ρ1, ···, ρN be given binary relations on X. Then the binary relations X×X, ···, X×X,
totally counted N times, are both disjoint F-hypercyclic and disjoint F-topologically transitive. Set

S
(
ρ1, · · ·, ρN

)
:=

{(
σ1, · · ·, σN

)
: σi ⊆ X ×X and ρi ⊆ σi for all i ∈ NN

}
.

We say that the tuple (σ1, ···, σN ) of binary relations onX is a disjoint F-hypercyclic (disjoint F-topologically
transitive) extension of (ρ1, · · ·, ρN ) iff (σ1, · · ·, σN ) ∈ S(ρ1, · · ·, ρN ) and the binary relations σ1, · · ·, σN are
disjoint F-hypercyclic (disjoint F-topologically transitive). By SF

dh(ρ1, · · ·, ρN ) and SF
dtt(ρ1, · · ·, ρN ) we

denote the sets consisting of all disjoint F-hypercyclic extensions and all disjoint F-topologically transitive
extensions of tuple (ρ1, · · ·, ρN ), respectively. These sets are non-empty, clearly. Disjoint F-hypercyclic
(disjoint F-topologically transitive) extension will be shortly called dF-hypercyclic (dF-topologically tran-
sitive) extension; the same terminology will be accepted for disjoint F-hypercyclic (disjoint F-topologically
transitive) MLO extensions introduced below.

The notions of a disjoint quasi F-hypercyclic extension and a disjoint quasi F-topologically transitive
extension of tuple (ρ1, · · ·, ρN ) is introduced by

˜(
ρ1, · · ·, ρN

)
F :=

∩{(
σ1, · · ·, σN

)
∈ S

(
ρ1, · · ·, ρN

)
: σ1, · · ·, σN are dF-hypercyclic

}
and

̂(
ρ1, · · ·, ρN

)
F :=

∩{(
σ1, · · ·, σN

)
∈ S

(
ρ1, · · ·, ρN

)
: σ1, · · ·, σN are dF-topologically transitive

}
,
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respectively. Here, the intersection is taken with respect to the components.
Assume also that X is a linear vector space. Then we define

S
(
ρ1, · · ·, ρN

)
:=

{(
A′

1, · · ·,A′
N

)
: A′

i ∈ MLO(X) and ρi ⊆ A′
i for all i ∈ NN

}
.

Then it is said that an element (A′
1, · · ·,A′

N ) of S(ρ1, · · ·, ρN ) is a disjoint F-hypercyclic (disjoint F-
topologically transitive) MLO extension of tuple (ρ1, ···, ρN ) iffA′

1, ···, A′
N are disjoint F-hypercyclic (disjoint

F-topologically transitive). If the condition (I) holds and (σ1, · · ·, σN ) is a dF-hypercyclic extension (dF-
topologically transitive extension) of tuple (ρ1, ···, ρN ), resp. (A1, ···,AN ) ∈ S(ρ1, ···, ρN ) is a dF-hypercyclic
MLO extension (dF-topologically transitive MLO extension) of (ρ1, · · ·, ρN ) and σi ⊆ σ′

i for all i ∈ Nn, resp.
(A′

1, · · ·,A′
N ) ∈ S(A1, · · ·,AN ), then (σ′

1, · · ·, σ′
N ) is a dF-hypercyclic extension (dF-topologically transitive

extension) of tuple (ρ1, · · ·, ρN ), resp. (A′
1, · · ·,A′

N ) is a dF-hypercyclic MLO extension (dF-topologically
transitive MLO extension) of (ρ1, · · ·, ρN ).

The set consisting of all disjoint F-hypercyclic MLO (disjoint F-topologically transitive MLO) extensions
of (ρ1, · · ·, ρN ), denoted by SF

dh,MLO(ρ1, · · ·, ρN ) (SF
dtt,MLO(ρ1, · · ·, ρN )), is non-empty. The disjoint quasi

F-hypercyclic MLO extension and disjoint quasi F-topologically transitive MLO extension of (ρ1, · · ·, ρN ),
are defined respectively through

˜(
ρ1, · · ·, ρN

)
F,MLO

:=
∩{(

A′
1, · · ·,A′

N

)
∈ S

(
ρ1, · · ·, ρN

)
: A1, · · ·,AN are dF-hypercyclic

}
and

˜(
ρ1, · · ·, ρN

)
F,MLO

:=
∩{(

A′
1, · · ·,A′

N

)
∈ S

(
ρ1, · · ·, ρN

)
: A1, · · ·,AN are dF-topologically transitive

}
.

By our definitions, we have that ˜(ρ1, · · ·, ρN )F ∈ (P (X × X))N and ̂(ρ1, · · ·, ρN )F ∈ (P (X × X))N as

well as ˜(ρ1, · · ·, ρN )F,MLO ∈ (MLO(X))N and ̂(ρ1, · · ·, ρN )F,MLO ∈ (MLO(X))N . Denote by Pi : (P (X ×
X))N → P (X×X) the i-th projection defined by Pi(ρ1, · · ·, ρN ) := ρi, (ρ1, · · ·, ρN ) ∈ (P (X×X))N (i ∈ NN ).

The following disjoint analogue of Proposition 3.1, stated here without a simple proof, holds good:

Proposition 4.1. (i) We have span(Pi( ˜(ρ1, · · ·, ρN )F )) ⊆ Pi( ˜(ρ1, · · ·, ρN )F,MLO) and

span(Pi(( ̂(ρ1, · · ·, ρN )F ))) ⊆ Pi( ̂(ρ1, · · ·, ρN )F,MLO) for all i ∈ NN .

(ii) We have
∩

(σ1,···,σN )∈SF
dh(ρ1,···,ρN )(span(σ1), · · ·, span(σN )) ⊆ ˜(ρ1, · · ·, ρN )F,MLO and∩

(σ1,···,σN )∈SF
dtt(ρ1,···,ρN )(span(σ1), · · ·, span(σN )) ⊆ ̂(ρ1, · · ·, ρN )F,MLO.

(iii) Suppose that F satisfies (I). Then
∩

(σ1,···,σN )∈SF
dh(ρ1,···,ρN )(span(σ1), ···, span(σN )) = ˜(ρ1, · · ·, ρN )F,MLO

and
∩

(σ1,···,σN )∈SF
dtt(ρ1,···,ρN )(span(σ1), · · ·, span(σN )) = ̂(ρ1, · · ·, ρN )F,MLO.

It would be interesting to construct an example in which we have that the inclusions span(ρ̃F ) ⊆ ρ̃F,MLO

and span(ρ̂F ) ⊆ ρ̂F,MLO are strict (see Proposition 3.1). A similar question can be posed in the case of
consideration of Proposition 4.1.

Concerning disjoint F-hypercyclic (F-topologically transitive) extensions of N copies of the complete
graph Kn, where n, N ≥ 2, we have the following:

Example. Let Kn be equipped with discrete topology, and let ρ be the associated binary relation. Then the
following holds:

(i) n = 2 : Then the graphs Kn, · · ·,Kn, totally counted N times, are F-hypercyclic (F-topologically
transitive) iff {∅, 2N, 2N + 1} ⊆ F ; this simply follows from the statement (D) and an elementary
argumentation. If this is not the case, then the analysis of possible subcases is, more or less, not
difficult to be handle out, and we would like to note the following, only: If N \ {1} ∈ F , then adding
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any of two loops x1 7→ x1 or x2 7→ x2 to the first component Kn, and repeating this procedure for all
other components (it is not prohibited to add the loop x1 7→ x1 to the first component and the loop
x2 7→ x2 to the second component), has as a result that the obtained tuple of binary relations is a
disjoint F-hypercyclic (disjoint F-topologically transitive) extension of (Kn, · · ·,Kn). If N \ {1} /∈ F ,
then the tuple consisting of full relations is the only disjoint F-topologically transitive extension of
tuple (Kn, ···,Kn), which is not the case for disjoint F-hypercyclic extensions; strictly speaking, adding
the loop x1 7→ x1 to any component has as a result that the obtainted binary relations are disjoint
F-hypercyclic with x1 being its disjoint F-hypercyclic vector.

(ii) n ≥ 3 : Then ρkxi = {x1, x2, · · ·, xn}, k ≥ 2, 1 ≤ i ≤ n and, because of that, the graphs Kn, · · ·,Kn,
totally counted N times, are F-hypercyclic (F-topologically transitive) iff N\{1} ∈ F . In the case that
N \ {1} /∈ F , the smallest disjoint F-topologically transitive tuple containing (Kn, · · ·,Kn) is that one
consisting of full relations, while adding the loop x1 7→ x1 to any component has as a result that the
obtainted binary relations are disjoint F-hypercyclic with x1 being its disjoint F-hypercyclic vector.

In our previous analyses, we have seen that for a given digraph G with n ≥ 3 nodes, the validity of
condition N\{1} ∈ F ensures one to see that there is an F-hypercyclic (F-topologically transitive) extension
of G within the class of simple graphs. By the previous example, for a given tuple G = (G1, G2, · · ·, GN )
of digraphs, each of which has n ≥ 3 nodes, the validity of condition N \ {1} ∈ F ensures the existence of
a disjoint F-hypercyclic (disjoint F-topologically transitive) extension of G satisfying that each component
of this extension belongs to the class of simple graphs.

Suppose now that T is a tournament with n vertices. Denote by E(T ) the set consisting of all arcs in
T. Then it is well known that the changing of orientation of just one arc in T can turn T into a strongly
connected tournament (equivalently, Hamiltonian or topologically transitive tournament; see [16]). Since

|E(T )| = n(n−1)
2 , this immediately implies the first part of the following result; combining the above fact

with [6, Theorem 5.9], we can deduce the second part of the following theorem:

Theorem 4.2. (i) Let T be a tournament with n vertices, and let T be equipped with discrete topology.

Then there exists a topologically transitive extension of T with less or equal than n(n−1)
2 + 1 arcs.

(ii) Let T1, T2, · · ·, TN be tournaments with n ≥ 4 vertices, and let each of them be equipped with discrete
topology. Then there exists a d-topologically extension of (T1, T2, · · ·, TN ) which has less than or equal

to n(n−1)N
2 +N arcs totally counted.

Example. It is a well known fact that there exist only four non-isomorphic tournaments of order four. Only
two of them, T1 and T2, defined as explained below, are hypercyclic: T1 is the union of the Hamiltonian
circle x2 7→ x3 7→ x4 and oriented segments x2 7→ x1, x3 7→ x1, x4 7→ x1, while T2 is the union of the
Hamiltonian contour x1 7→ x2 7→ x3 7→ x4 and oriented segments x1 7→ x3, x2 7→ x4. Furthermore, T1 is
not topologically transitive while T2 is; see [6, Example 5.10] for more details. As a consequence, we have
that the tuple (T1, T1, · · ·, T1) containing N components is not d-topologically transitive. Adding exactly
one of oriented arcs x1 7→ x2, x1 7→ x3 or x1 7→ x4 to T1 leads us to a new strongly connected digraph
T ′
1 satisfying that the tuple (T ′

1, T
′
1, · · ·, T ′

1) is d-topologically transitive (we can apply here [6, Theorem
5.9] again because T ′

1 contains a topologically transitive tournament as a subgraph). This d-topologically

extension of (T1, T2, ···, TN ) has exactly n(n−1)N
2 +N arcs totally counted (n = 4). If n ≥ 5, then there exist

a topologically transitive tournament and a hypercyclic, non-Hamiltonian tournament with n nodes (the
existence of such a tournament having a node with the outdegree equals to zero can be proved inductively).
Summa summarum, for any given numbers n ≥ 4, N ≥ 2 and j ∈ NN , we can simply construct examples of

tuples (T1, T2, ···, TN ) such that one of their d-topologically transitive extensions having exactly n(n−1)N
2 +j

arcs totally counted.

Let n ≤ 3, and let T1, T2, · · ·, TN be tournaments equipped with discrete topologies. By [6, Theorem
5.8], T1, T2, · · ·, TN cannot be d-topologically transitive (d-hypercyclic). The interested reader will probably
find some relief in computation of their d-topologically transitive (d-hypercyclic) extensions.
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Concerning disjoint F-hypercyclic (disjoint F-topologically transitive) MLO extensions of linear contin-
uous operators on Fréchet spaces, we want to note only the following:

(i) Suppose that X is a finite-dimensional Banach space and A1, A2, · · ·, AN ∈ L(X). If ∅ /∈ F , then the
tuple (A1, A2, · · ·, AN ) cannot be disjoint F-hypercyclic (disjoint F-topologically transitive) and the
only disjoint F-hypercyclic (disjoint F-topologically transitive) MLO extension of this tuple is that
one consisting of full relations on X. If ∅ ∈ F , then the tuple (A1, A2, · · ·, AN ) is already disjoint
F-hypercyclic (disjoint F-topologically transitive) with zero being its disjoint F-hypercyclic vector.

(ii) Suppose that X is a Fréchet space, A1, A2, · · ·, AN ∈ L(X), W1,W2, · · ·,WN are dense linear subspaces
of X and Aix := Aix+Wi, x ∈ X, i ∈ NN . Then the tuple (A1,A2, · · ·,AN ) is disjoint F-topologically
transitive (see also [5, Example 4.6(iv)]).

The precise characterizations of families F for which the tuple (c1I, c2I, · · ·, cNI), where ci ∈ K for
1 ≤ i ≤ N, is disjoint F-topologically transitive could be also leave to our readers. The situation in which
there exists a number i ∈ NN such that |ci| = 1 and ci /∈ e2πiQ is delicate, as well as the corresponding one
in which X is infinite-dimensional and there exists a number i ∈ NN such that 0 < |ci| ̸= 1.

We deeply believe that the study of F-hypercyclic MLO extensions and disjoint F-hypercyclic MLO
extensions of binary relations over topological spaces will receive certain attention and find some worthwhile
applications in the field of linear topological dynamics soon. Many intriguing questions and problems can
be proposed, so that further analysis is completely without scope of this paper.
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