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Abstract. The residual spectrum of a power bounded operator lies in the open unit disk.

1. Introduction

A well-known open question on Hilbert-space operators asks whether a power bounded operator has
the residual spectrum included in the unit circle. The purpose of this paper is to offer an answer to this so
far open question. The answer follows from known results and is obtained by elementary arguments.

It has been known for a long time that the above question has an affirmative answer if power bounded
is restricted to contractions. All proofs for the contraction case are elementary. We first give a new but
still elementary proof for the contraction case, which shows that attempts to extend the contraction case
towards the power bounded case might lead to a false start. The power bounded case requires a different
(although still elementary and based on a well-known result) start.

A possible new start that leads to a proof for the power bounded case is the Ergodic Theorem for power
bounded operators. After this, there are certainly a few different (but similar) paths to proceed. We have
chosen what we consider to be an elementary path in the proof of Theorem 4.1. Applications are explored
in Sections 5 and 6.

2. Notation

Throughout the paper H will stand for an infinite-dimensional, complex (not necessarily separable)
Hilbert space. The inner product in H will be denoted by ⟨·; ·⟩. By an operator on H we mean a bounded
linear transformation ofH into itself. Let B[H] stand for the C∗-algebra of all operators onH . Both norms
inH or inB[H] will be denoted by the same symbol ∥ · ∥.An operator T ∈ B[H] is an isometry if ∥Tx∥ = ∥x∥
for every x ∈ H , it is unitary if it is an invertible isometry, a contraction if ∥Tx∥ ≤ ∥x∥ for every x ∈ H (i.e.,
∥T∥ ≤ 1), and power bounded if

sup
n
∥Tn∥ < ∞.
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Equivalently (by the Banach–Steinhaus Theorem), if supn ∥Tnx∥ < ∞ for every x ∈ H (otherwise it is called
power unbounded). It is clear that every isometry is a contraction, and every contraction is power bounded.
A completely nonunitary contraction is an operator onH for which its restriction to any reducing subspace
is not unitary. For any operator T ∈ B[H], letN(T) = T−1({0}) denote its kernel and let I stand for the identity
in B[H]. The set σP(T) =

{
λ ∈ C : N(λI − T) , {0}

}
is the point spectrum of T (i.e., the set of all eigenvalues

of T). Let T∗∈ B[H] stand for the adjoint of T ∈ B[H]. The residual spectrum of T is the set [3, p.5]

σR(T) = σP(T∗)∗\σP(T).

HereΛ∗ = {λ ∈ C : λ ∈ Λ} is the set of all complex conjugates of points in a setΛ ⊆ C. LetD be the open unit
disk (centered at the origin of the complex plane), and let T = ∂D be the unit circle, where D− = D ∪ T is
the closed unit disk.

3. Preliminaries

Consider the above set-up. Take an arbitrary operator T ∈ B[H].

Proposition 3.1. If T is a contraction, then σR(T) ⊆ D.

Proof. Take a contraction T acting on a Hilbert space. Consider the Nagy–Foiaş–Langer decomposition

T = C ⊕U

of T (see e.g., [3, Theorem 5.1]). Here C is a completely nonunitary contraction, U is unitary, and ⊕ stands
for orthogonal direct sum. Since C is a completely nonunitary contraction,

σP(C) ∪ σR(C) ⊆ D

[3, Corollary 7.4 and Proposition 8.4].Recall that the point spectrum of an orthogonal direct sum of operators
is the union of the point spectra. Thus

σP(C ⊕U) = σP(C) ∪ σP(U) [ and σP((C ⊕U)∗) = σP(C∗) ∪ σP(U∗) ].

Since U is normal, σR(U) = σR(U∗) = ∅, and so

σP(U∗)∗ = σP(U).

Therefore,
σR(T) = [σP(C∗)∗ ∪ σP(U)]\[σP(C) ∪ σP(U)] ⊆ σR(C) ⊆ D.

For another proof, still more elementary than the above one see, for instance, [3, Proposition 8.5].
Similarity to a contraction implies power boundedness and similarity preserves the spectrum and its parts.
In particular, if T̃ is similar to T, then σR(T̃) = σR(T). Therefore Proposition 3.1 says

T is similar to a contraction =⇒ σR(T) ⊆ D.

Thus it has been asked in [3, p.114] whether Proposition 3.1 (or its equivalent form in the above displayed
implication) can be extended to power bounded operators: does power boundedness imply inclusion of the
residual spectrum in the open unit disk ? In other words, if supn ∥Tn∥ < ∞, is it true that σR(T) ⊆ D? The
purpose of the note is to answer this question.
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4. Answer

Consider the above set-up. Take an arbitrary operator T ∈ B[H].

Theorem 4.1. If T is power bounded, then σR(T) ⊆ D.

Proof. Consider the Cesàro means associated with the operator T ∈ B[H],

Cn =
1
n

n−1∑
k=0

Tk ∈ B[H].

Recall: If T is power bounded, then the sequence of Cesàro means {Cn} converges strongly. [In other words, every
power bounded operator is (strongly) ergodic].

This is the well-known Mean Ergodic Theorem for power bounded operators (which holds on reflexive
Banach spaces; see e.g., [1, Corollary VIII.5.4]). The B[H]-valued sequence {Cn} converges strongly, which
means the H-valued sequence {Cnx} converges in H for every x ∈ H . The Banach–Steinhaus Theorem
ensures the existence an operator E ∈ B[H] for which Cnx→ Ex for every x ∈ H . Notation:

Cn
s−→ E.

Since each Cn is a polynomial in T, Cn and T commute, and so E and T commute. Since CnT = Cn +
1
n Tn − 1

n I
and T is power bounded, ET = E. Therefore,

ET = TE = E.

If T is power bounded, then r(T) ≤ 1 where r(T) stands for the spectral radius of T (see e.g., [3, p.10]), which
implies σR(T) ⊆ D−. Suppose

σR(T) ∩T , ∅.
Take any λ ∈ σR(T) ∩ T. Thus |λ| = 1,

T∗x0 = λx0 for some nonzero vector x0 ∈ H (i.e., λ ∈ σP(T∗)∗),

Tx , λx for every nonzero vector x ∈ H (i.e., λ < σP(T)).

Set
T# = 1

λ
T∗ ∈ B[H],

which is power bounded since T is and |λ| = 1. So there is an E#∈ B[H] such that

C#
n =

1
n

n−1∑
k=0

T#k s−→ E#, E#T# = T#E# = E# and E#x0 = C#
n x0 = x0.

(Indeed, since T∗kx0 = λ
k
x0 we get C#

n x0 =
1
n
∑n−1

k=0 T#kx0 = x0.) Moreover, set

y0 = E#∗x0 ∈ H ,

which is nonzero since x0 is: 0 , ∥x0∥ = ⟨x0 ; x0⟩ = ⟨E#x0 ; x0⟩ = ⟨x0 ; y0⟩. Hence

⟨Ty0 ; x⟩= ⟨TE#∗x0 ; x⟩= ⟨x0 ; E#T∗x⟩= ⟨x0 ;λE#T#x⟩= ⟨x0 ;λE#x⟩= ⟨λy0 ; x⟩

for every x ∈ H , and so
Ty0 = λy0.

Since y0 , 0 this contradicts the fact that Tx , λx for every 0 , x ∈ H . Then the assumption σR(T) ∩ T , ∅
fails, and consequently σR(T) ⊆ D.
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5. Remarks

Let σ(T) be the spectrum of an operator T in B[H] and consider its continuous spectrum σC(T) =
σ(T)\[σP(T) ∪ σR(T)] so that {σP(T), σR(T), σC(T)} is a classical partition of σ(T).

Recall: (i) similarity preserves the spectrum and its parts (i.e., if W∈ B[H] is invertible with an inverse
W−1 in B[H], then the parts of the spectrum of WTW−1 coincide with the respective parts of the spectrum
of T), and (ii) similar to a power bounded is again power bounded. Hence Theorem 4.1 says

(a) T is similar to a power bounded =⇒ σR(T) ⊆ D.

Thus everything that has been said above (and below) about power bounded operators applies “ipsi literis”
to operators similar to a power bounded operator.

Theorem 4.1 also characterizes the peripheral spectrum (i.e., σ(T) ∩ T) of a power bounded operator:

(b) T is power bounded =⇒ σ(T) ∩ T ⊆ σP(T) ∪ σC(T).

However, the boundary ∂σ(T) of the spectrum σ(T) of a power bounded operator is not necessarily included
in σP(T)∪σC(T). For instance take a unilateral weighted shift T = shift{wk} inB[ℓ2+] with weighting sequence
{wk} such that wk =

1
k for each positive integer k. This is a quasinilpotent compact contraction (thus power

bounded) with ∥T∥ = 1 for which
∂σ(T) = σ(T) = σR(T) = {0}.

On the other hand Theorem 4.1 leads to a conjugate symmetry between the intersection of the unit circle
with the point spectra of T and T∗ (so that eigenvalues in the unit circle of a power bounded operator are
normal eigenvalues), namely,

(c) T is power bounded =⇒ σP(T∗)∗ ∩ T = σP(T) ∩ T.

Indeed, set A = σP(T) and B = σP(T∗) so that σR(T) = B∗\A and σR(T∗) = A∗\B. Suppose T is power bounded.
Thus T∗ is again power bounded. By Theorem 4.1, (B∗\A) ∩ T = (A∗\B) ∩ T = ∅. Equivalently, (B∗\A) ∩ T =
∅ and (A∗\B)∗ ∩ T = ∅, (i.e., (A\B∗) ∩ T = ∅). Therefore (B∗ ∩ T)\(A ∩T) = ∅ and (A ∩T)\(B∗ ∩ T) = ∅,
which means B∗ ∩T = A ∩ T.

6. Applications

Take an arbitrary T ∈ B[H]. LetR(λI−T) = (λI − T)(H) denote the range of λI − T for an arbitrary λ ∈ C
and consider the set

M(T) =
{
u ∈ H : sup

n

∥∥∥∑n
k=0Tku

∥∥∥ < ∞},
which are linear manifolds ofH invariant under T. Take y ∈ R(I − T) arbitrary so that y = Tx − x for some
x ∈ H . Then for each nonnegative integer n∑n

k=0Tky = Tn+1x − x. (∗)

Proposition 6.1. R(I − T) ⊆ M(T) if and only if T is power bounded.

Proof. Take any x ∈ H and set y = Tx − x so that y ∈ R(I − T). If R(I − T) ⊆ M(T), then supn ∥Tn+1x − x∥ < ∞
according to (∗), and hence supn ∥Tnx∥ < ∞. Since this holds for every x ∈ H , T is power bounded by the
Banach–Steinhaus Theorem. Conversely, if T is power bounded, then R(I − T) ⊆ M(T) by (∗).

Corollary 6.2. If R(I − T) ⊆ M(T), then σR(T) ⊆ D.

Proof. This follows by Proposition 6.1 and Theorem 4.1.
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By Proposition 6.1 T is power unbounded if and only if R(I − T) ̸⊆ M(T).
In particular, if a power unbounded operator is such that supn ∥Tnx∥ = ∞ for every nonzero x ∈ H , then

M(T) ∩ R(I − T) = {0}.
Indeed, ifM(T) ∩ R(I − T) , {0} and 0 , y ∈ M(T) ∩ R(I − T), then by (∗) there exists 0 , x ∈ H such that

∥Tn+1x − x∥ = ∥∑n
k=0 Tky∥ for each nonnegative integer n, and hence supn ∥Tnx∥ < ∞ because y ∈ M(T).

More particularly, there are power unbounded operators with supn ∥Tnx∥ = ∞ for every nonzero x ∈ H for which
{0} =M(T) ⊂ R(I − T) = H . (Set T = 2I.) On the other hand, there exist power bounded operators for which
R(I − T) =M(T). (Trivial examples: T = O, I, 1

2 I — less trivial: T = (I ⊕ 1
2 I), (O ⊕ 1

2 I).)
The noninclusionM(T) ̸⊆ R(I − T) can be characterized as follows.

Proposition 6.3. M(T) ̸⊆ R(I − T) if and only if there exists a nonzero operator L ∈ B[H] for whichR(L) ∩ R(I − T) =
{0} and R(L) ⊆ M(T).

Proof. If T ∈ B[H] is such that M(T) ̸⊆ R(I − T), then take an arbitrary nonzero y ∈ M(T)\R(I − T), and
consider the orthonormal projection E ∈ B[H] for which R(E) = span{y} so that R(E) ∩ R(I − T) = {0} and
R(E) ⊆ M(T) (since R(E), R(I − T), andM(T) are linear manifolds ofH). Conversely, if L and T in B[H] are
such that {0} , R(L) ⊆ M(T) ⊆ R(I − T), then R(L) ∩ R(I − T) , {0}.

And the inclusion R(L) ⊆ M(T) is characterized as follows.

Proposition 6.4. R(L) ⊆ M(T) if and only if supn

∥∥∥∑n
k=0 TkL

∥∥∥ < ∞.

Proof. Take arbitrary operators L and T in B[H]. By the Banach–Steinhaus Theorem, supn

∥∥∥∑n
k=0 TkL

∥∥∥ < ∞
if and only if supn

∥∥∥∑n
k=0 TkLx

∥∥∥ < ∞ for every x ∈ H . Equivalently, supn

∥∥∥∑n
k=0 Tky

∥∥∥ < ∞ for every y ∈ R(L),
which means R(L) ⊆ M(T).

As it is well known, the spectral radius r(T) = maxλ∈σ(T) |λ| of an operator T on a Banach space is less
than 1 if and only if the operator T is uniformly stable (notation: Tn u−→ O), which completely characterizes
uniform stability; that is,

∥Tn∥ → 0 if and only if r(T) < 1.

Clearly, uniform stability implies power boundedness, which implies r(T) ≤ 1. The above equivalence has
been extended in [4] where it was given a complete characterization (in terms of an ergodic condition and
the peripheral spectrum) for uniform convergence to zero of {TnL} for operators L in the commutant of a
power bounded operator T. We state the result from [4] below. Take any operator T ∈ B[H] and let {T}′
denote its commutant (the subalgebra of B[H] consisting of all operators L ∈ B[H] that commute with T).

Proposition 6.5. [4] If T ∈ B[H] is a power bounded operator and L lies in {T}′, then ∥TnL∥ → 0 if and only if
1

n+1

∥∥∥∑n
k=0

(
T
λ

)k
L
∥∥∥→ 0 for every λ ∈ σ(T) ∩ T.

The above statement is vacuous for the particular case of L being an isometry in {T}′ (e.g., for L = I).
Indeed, if L is an isometry then ∥TnL∥ = ∥Tn∥, and r(T) < 1 makes the peripheral spectrum σ(T) ∩ T empty.
In fact, r(T) < 1 if and only if ∥Tn∥ → 0, which implies ∥TnL∥ → 0 for all L ∈ B[H]. Thus we assume the
power bounded operator T is not uniformly stable; equivalently, the power bounded operator T is such that
r(T) = 1.Also, if T is an isometry and ∥TnL∥ → 0, then L = O.Actually, if L is not injective (i.e., ifN(L) , {0}),
then there exists 0 , x0 inH for which ∥TnLx0∥ =

∥∥∥∑n
k=0( T

λ )kLx0

∥∥∥ = 0 for every n ≥ 0 and every λ ∈ C.

Corollary 6.6. Let T ∈ B[H] be a power bounded operator with r(T) = 1 and let L be an injective operator in {T}′.
Then

∥TnL∥ → 0 if and only if 1
n+1

∥∥∥∑n

k=0

(
T
λ

)k
L
∥∥∥→ 0 for every λ ∈ σC(T) ∩ T,

and σ(T) ∩ T = σC(T) ∩ T , ∅ whenever any of the above limits hold.
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Proof. If r(T) = 1, then σ(T) ∩ T,∅. If T is a power bounded, then σR(T) ∩ T = ∅ according to Theorem
4.1. If L ∈ {T}′ is injective and the claimed equivalence holds, then σP(T) ∩ T = ∅. Indeed, if L ∈ {T}′ and
σP(T) ∩ T , ∅, then there is an λ ∈ T such that Tx0 = λx0 for some 0 , x0 ∈ H (thus x0 = Tkx0/λk). Hence

∥Lx0∥ = ∥TnLx0∥ → 0 (also ∥Lx0∥ = 1
n+1

∥∥∥∑n
k=0 Lx0

∥∥∥ = 1
n+1

∥∥∥∑n
k=0

(
T
λ

)k
Lx0

∥∥∥ → 0) and so 0 , x0 ∈ N(L), which
implies L is not injective. Thus

σ(T) ∩ T = σC(T) ∩ T , ∅,
and the claimed result follows from Proposition 6.4.

An important particular case of Proposition 6.4 is that of L = I − T so that TnL = Tn − Tn+1 for every
integer n ≥ 0. This leads to a classical result from [2] (which holds for contractions acting on Banach spaces).

Proposition 6.7. [2] Let T ∈ B[H] be a contraction. Then ∥Tn − Tn+1∥ → 0 if and only if σ(T) ∩T ⊆ {1}.

If the contraction T is uniformly stable (i.e., if r(T) < 1), then σ(T) ∩ T = ∅. Otherwise it is a normaloid
contraction of unit norm, which means r(T) = ∥T∥ = 1.

Corollary 6.8. If r(T) = 1, then the above unique point λ = 1 in the peripheral spectrum σ(T) ∩ T is either an
eigenvalue (i.e., lies in σP(T)), or lies in σC(T).

Proof. IfN(I − T) , {0} (i.e., if I − T is not injective), then 1 ∈ σP(T).Otherwise 1 ∈ σC(T) becauseσR(T) ∩T = ∅
by Proposition 3.1 since T is a contraction (or by Theorem 4.1 since contractions are power bounded).
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