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A Note on Unilateral Weighted Left Shift Operators
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Abstract. We give an estimation of the spectrum and the surjective spectrum of unilateral weighted left
shifts L : `∞ → `∞, where `∞ is the space of all bounded complex sequences.

1. Introduction

Let `∞ be the Banach space of all bounded sequences of complex numbers with usual linear operations
and sup norm. A unilateral weighted left shift L : `∞ → `∞ is defined by

L(ξ1, ξ2, ξ3, · · · ) = (w1ξ2,w2ξ3, · · · ),

where (ξ1, ξ2, ξ3, · · · ) ∈ `∞ and (wn) is a sequence of complex numbers satisfying |wn| ≤ 1 for every n ∈ N.
The objective of this note is to estimate the spectrum of L and the surjective spectrum of L by applying
elementary arguments. In a particular situation when wn = 1 for all n ∈ N we give a complete description
of these spectra.

The following proposition summarizes the basic properties of L.

Proposition 1. A weighted left shift L : `∞ → `∞ with the corresponding weight sequence (wn) satisfying |wn| ≤ 1,
n ∈N, is a bounded linear operator. In addition, ‖L‖ = sup

i∈N
|wi|.

Proof. Let x = (ξ1, ξ2, ξ3, · · · ) ∈ `∞. Since |wnξn+1| = |wn||ξn+1| ≤ supi∈N |ξi| for every n ∈ N, it follows that
Lx = (w1ξ2,w2ξ3, · · · ) ∈ `∞.

Obviously, L is linear. Moreover,

‖L(x)‖ = sup
n∈N
|wnξn+1| ≤ (sup

i∈N
|wi|)(sup

j∈N
|ξ j|) = (sup

i∈N
|wi|)‖x‖,

and hence ‖L‖ ≤ supi∈N |wi|. Now, consider vectors ei = (0, · · · , 0, 1, 0, · · · ), i ∈ N, where 1 is in the ith
position, 0 elsewhere. Clearly, ‖ei+1‖ = 1 and ‖Lei+1‖ = |wi| for all i ∈N, so we have

‖L‖ ≥ sup
i∈N
‖Lei+1‖ = sup

i∈N
|wi|,

and consequently ‖L‖ = sup
i∈N
|wi|.
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Let X be a Banach space and let T be a bounded linear operator on X. The spectrum of T and the
surjective spectrum of T will be denoted by σ(T) and σsu(T), respectively. The injectivity modulus of T is
defined by

j(T) = inf
{
‖Tx‖
‖x‖

: x ∈ X, x , 0
}
.

We say that T is bounded below if j(T) > 0. The approximate point spectrum of T, denoted by σap(T), is
the set of all λ ∈ C such that T − λI is not bounded below. It is well known that ∂σ(T) ⊂ σsu(T) ∩ σap(T) [4,
Theorem 12.11], where ∂σ(T) is the boundary of the spectrum. We will use the symbolD(0, r) to denote the
set D(0, r) = {λ ∈ C : |λ| ≤ r}, r > 0. If |λ| < j(T), λ ∈ C, then T − λI is bounded below [4, Proposition 9.10].
Since σap(T) ⊂ σ(T) ⊂ D(0, ‖T‖), we obtain a rough description of the approximate point spectrum

σap(T) ⊂ {λ ∈ C : j(T) ≤ |λ| ≤ ‖T‖}. (1)

2. The main result

Theorem 2. Let L : `∞ → `∞ be a unilateral weighted left shift with the corresponding weight sequence (wn)
satisfying 0 < inf

i∈N
|wi| ≤ |wn| ≤ 1 for every n ∈N. Then:

(i)D(0, inf
i∈N
|wi|) ⊂ σ(L) ⊂ D(0, sup

i∈N
|wi|);

(ii) σsu(L) ⊂ {λ ∈ C : inf
i∈N
|wi| ≤ |λ| ≤ sup

i∈N
|wi|}.

In particular, if wn = 1 for all n ∈N then σ(T) = σap(T) = D(0, 1) and σsu(T) = {λ ∈ C : |λ| = 1}.

Proof. The proof will be divided into four steps.

Step 1: We solve the equation

(L − λI)(ξ1, ξ2, · · · ) = (η1, η2, · · · ), (2)

where λ ∈ C, I is the identity operator on `∞, y = (η1, η2, · · · ) ∈ `∞ is a given vector, and x = (ξ1, ξ2, · · · ) is
unknown. Precisely, in this step the domain of L and I is extended to the space of all complex sequences
and it is possible that (2) has a solution which is not necessarily in `∞.

Step 2: We apply Step 1 to prove that for |λ| ≤ infi∈N |wi| there exists a non zero vector x = (ξ1, ξ2, · · · ) ∈ `∞
such that (L − λI)x is the zero vector.

Step 3: Using Step 1 we show that for |λ| < infi∈N |wi| the equation (2) has a solution x ∈ `∞ for every
(η1, η2, · · · ) ∈ `∞.

Step 4: The result follows by applying Proposition 1 and Steps 2 and 3. Indeed, it is clear that
σsu(L) ⊂ σ(L) ⊂ D(0, ‖L‖). According to Proposition 1, we have

σsu(L) ⊂ σ(L) ⊂ D(0, sup
i∈N
|wi|). (3)

Further, from Step 2 we conclude that L − λI is not injective for |λ| ≤ infi∈N |wi|. Consequently, L − λI is not
invertible for |λ| ≤ infi∈N |wi|, thus

D(0, inf
i∈N
|wi|) ⊂ σ(L). (4)

From (3) and (4) we obtain (i). Moreover, Step 3 implies that if |λ| < infi∈N |wi| then λ < σsu(L). Using this
fact and (3) gives (ii).

The details are as follows.
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Step 1: (2) can be rewritten in the form

(w1ξ2 − λξ1,w2ξ3 − λξ2, · · · ) = (η1, η2, · · · ),

or equivalently

ηn = wnξn+1 − λξn, n ∈N. (5)

If we put n = 1 in (5) we obtain η1 = w1ξ2 − λξ1, and hence

ξ2 =
η1

w1
+
λξ1

w1
(6)

Let n = 2. (5) becomes η2 = w2ξ3 − λξ2, and thus

ξ3 =
η2

w2
+
λξ2

w2
. (7)

Combining (6) with (7) gives

ξ3 =
η2

w2
+
λη1

w1w2
+
λ2ξ1

w1w2
.

Proceeding further in this direction, we obtain

ξn+1 =
ηn

wn
+
ληn−1

wn−1wn
+

λ2ηn−2

wn−2wn−1wn
+ · · · +

λn−1η1

w1 · · ·wn
+

λnξ1

w1 · · ·wn
(8)

for every n ∈ N. It follows that x = (ξ1, ξ2, · · · ), where ξ1 is arbitrary and ξn, n ≥ 2, is as in (8), is a formal
solution of the equation (L − λI)x = y.

Step 2: Let |λ| ≤ infi∈N |wi|. Using Step 1 we see that the equation (L − λI)(ξ1, ξ2, · · · ) = (0, 0, · · · ) has a
particular solution x = (ξ1, ξ2, · · · ) such that

ξ1 = 1, ξn+1 =
λn

w1 · · ·wn
, n ∈N.

Clearly, x is not the zero vector. Further,

|ξn+1| =
|λ|n

|w1| · · · |wn|
≤

(
|λ|

infi∈N |wi|

)n

≤ 1, n ∈N,

which proves that x ∈ `∞.

Step 3: Let |λ| < infi∈N |wi| and y = (η1, η2, · · · ) ∈ `∞. According to Step 1, x = (ξ1, ξ2, · · · ), where

ξ1 = 0, ξn+1 =
ηn

wn
+
ληn−1

wn−1wn
+

λ2ηn−2

wn−2wn−1wn
+ · · · +

λn−1η1

w1 · · ·wn
, n ∈N,

satisfies (L − λI)x = y. We have the following estimation

|ξn+1| ≤
supi∈N |ηi|

|wn|

[
1 +

|λ|
|wn−1|

+
|λ|
|wn−2|

|λ|
|wn−1|

+ · · · +
|λ|
|w1|

|λ|
|w2|
· · ·

|λ|
|wn−1|

]
, n ≥ 2.

Using 1/|wk| ≤ 1/ infi∈N |wi|, k ∈N, we deduce

|ξn+1| ≤
supi∈N |ηi|

infi∈N |wi|

1 + ∞∑
k=1

(
|λ|

infi∈N |wi|

)k
 , n ≥ 2.

Since
|λ|

infi∈N |wi|
< 1, the above series converges, and hence x ∈ `∞.

To prove the last statement, let wn = 1 for all n ∈ N. Since infi∈N |wi| = supi∈N |wi| = 1, σ(L) = D(0, 1)
and σsu(L) ⊂ {λ ∈ C : |λ| = 1} by (i) and (ii). In addition, we have {λ ∈ C : |λ| = 1} = ∂σ(L) ⊂ σsu(L),
and consequently σsu(L) = {λ ∈ C : |λ| = 1}. Furthermore, it is easy to see that σ(L) = σap(L) ∪ σsu(L) and
∂σ(L) ⊂ σap(L) imply σap(L) = σ(L) = D(0, 1), which completes the proof.
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3. Remarks

A unilateral weighted right shift operator R : `∞ → `∞ is defined similarly as

R(ξ1, ξ2, · · · ) = (0,w1ξ1,w2ξ2, · · · ), (ξ1, ξ2, · · · ) ∈ `∞.

The following result provides a first insight into the spectral properties of R. For completeness of exposition,
we include the proof.

Proposition 3. Let R : `∞ → `∞ be a unilateral weighted right shift with the corresponding weight sequence (wn)
satisfying 0 < inf

i∈N
|wi| ≤ |wn| ≤ 1 for every n ∈N. Then:

(i)D(0, inf
i∈N
|wi|) ⊂ σ(R) ⊂ D(0, sup

i∈N
|wi|);

(ii) σap(R) ⊂ {λ ∈ C : inf
i∈N
|wi| ≤ |λ| ≤ sup

i∈N
|wi|}.

In particular, if wn = 1 for all n ∈N then σ(R) = σsu(R) = D(0, 1) and σap(R) = {λ ∈ C : |λ| = 1}.

Proof. It is easily seen that ‖R‖ = supi∈N |wi| and j(R) = infi∈N |wi|. The statement (ii) follows immediately
from (1).
(i). It is clear that σ(R) ⊂ D(0, supi∈N |wi|). Since R is not surjective, 0 ∈ σ(R). Let 0 < |λ| < infi∈N |wi|. We
consider the equation (R−λI)(ξ1, ξ2, · · · ) = (−λ, 0, 0, · · · ). An easy computation shows that the only solution
of this equation is

x = (ξ1, ξ2, · · · ), ξ1 = 1, ξn+1 =
w1 · · ·wn

λn , n ∈N.

From

|ξn+1| =
|w1|

|λ|
· · ·
|wn|

|λ|
≥

( infi∈N |wi|

|λ|

)n

→∞ (n→∞),

we see that x < `∞. It follows that R − λI is not surjective, i.e. λ ∈ σ(R). Since σ(R) is closed,D(0, inf
i∈N
|wi|) ⊂

σ(R).
The remaining part follows by the same method as in Theorem 2.

Unilateral weighted shifts (left and right) can be considered in other sequence spaces (say `p, 1 ≤ p < ∞)
and have been widely studied in the literature. It is worth noting that our primary goal is to localize the
surjective spectrum and the spectrum of L using a simple approach. For a comprehensive treatment on the
subject one may refer to [1, Problems 89-94], [2, Examples III-3.16, IV-5.3 and IV-5.4], [3, Section 1.6] and [5].
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