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The modulus of nondensifiable convexity and its applications
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Abstract. Based in the so called degree of nondensifiability, denoted by φ, we introduce and analyze the
concepts of modulus of nondensifiable convexity and the nearly uniform convexity characteristic of a given
Banach space X associated to φ, denoted by ∆

φ
X and εφ(X), respectively. Although φ is not a measure of

noncompactness (MNC), we prove that ∆
φ
X and εφ(X) are, respectively, a lower and upper bound for the

modulus of noncompact convexity and the nearly uniform convexity characteristic of X associated to an
arbitrary MNC. Also, we characterize the normal structure of X in terms of φ and, by using εφ(X), we give
a sufficient condition for X has the weak fixed point property.

1. Introduction

To set the notation, (X, ‖ · ‖) will be a Banach space, and UX its closed unit ball. As usual, B and Conv(B)
denote the closure and the convex hull of a non-empty set B ⊂ X, respectively. Also, B(X) is the class of
non-empty and bounded subsets of X.

It is known that many geometric properties of X can be, in a suitable sense, measured by certain functions
(often called moduli) and constants; see [3, 4, 10, 11, 19, 30] and references therein. We recall here some
definitions related with the notion of convexity of X (see, for instance, [3, 11]).

Definition 1.1. The Banach space X is said to be:

(i) Strictly convex (SC) if whenever x, y ∈ X are not collinear then ‖x + y‖ < ‖x‖ + ‖y‖.

(ii) Uniformly convex (UC) if for each ε ∈ [0, 2) there is δ > 0 such that for all x, y ∈ X with

x, y ∈ UX and ‖x − y‖ ≥ ε, then 1 −
‖x + y‖

2
> δ.

(iii) Nearly uniformly convex (NUC) if for every ε > 0 there is δ > 0 such that if (xn)n≥1 ⊂ X is a sequence with

(xn)n≥1 ⊂ UX and inf
{
‖xn − xm‖ : n , m

}
> ε, then

Conv
(
{xn : n ≥ 1}

)
∩ (1 − δ)UX , ∅.

2010 Mathematics Subject Classification. Primary 46B20; Secondary 52A05, 47H08.
Keywords. Geometric moduli; Convexity; Nearly Uniform Convexity; Degree of nondensifiability; Normal structure; Weak Fixed

Point Property.
Received: 12 December 2020; Accepted: 3 April 2021
Communicated by Dragan S. Djordjević
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Is clear that (UC)⇒(NUC) and (UC)⇒(SC). Here, we are interested mainly in the analysis of the uniform
convexity of X. The first modulus for the uniform convexity was introduced in 1936 by Clarkson [8]:

Definition 1.2. The modulus of convexity of X, δX : [0, 2] −→ I := [0, 1], is defined by

δX(ε) := inf
{
1 − ‖

x + y
2
‖ : x, y ∈ UX, ‖x − y‖ ≥ ε

}
, for all ε ∈ [0, 2].

Furthermore, Goebel [17] in 1970 introduced the following:

Definition 1.3. The characteristic of convexity of X is the constant

ε0(X) := sup
{
ε ∈ [0, 2] : δX(ε) = 0

}
.

It is a well known fact (see, for instance, [11]) that some of the concepts given in Definition 1.1 are
intimately related with δX(ε) and ε0(X). For instance, X uniformly convex if, and only if, ε0(X) = 0, and X
is strictly convex if, and only if, δX(2) = 1.

Before to introduce another modulus related with the convexity of X (and more specifically, with the
nearly uniform convexity of X), based on the so called measures of noncompactness, in short MNCs, we recall
three of such MNCs, as well as their basic properties, that we will need later. For a detailed exposition of
the MNCs, we refer to [1–3].

The Hausdorff MNC χ : B(X) −→ R+ := [0,∞) is defined as

χ(B) := inf
{
ε > 0 : B can be covered by finitely many balls with radii ≤ ε

}
and the Kuratowski MNC κ : B(X) −→ R+ by

κ(B) := inf
{
ε > 0 : B can be covered by finitely many sets of diameter ≤ ε

}
.

for every B ∈ B(X).

Example 1.4. (see [1, 3]) If X is finite dimensional then χ(UX) = κ(UX) = 0. Otherwise, χ(UX) = 1 and κ(UX) = 2.

By recalling that B ∈ B(X) is said to be r-separated (or B is an r-separation of X) if ‖x− y‖ ≥ r for all x, y ∈ B,
x , y, the Istrăţescu or separation MNC β : B(X) −→ R+ is defined as

β(B) := sup
{
r > 0 : B has an infinite r − separation

}
=

inf
{
r > 0 : B does not have an infinite r − separation

}
, for all B ∈ B(X).

It is not difficult to prove, from the involved definitions, the inequalities

χ(B) ≤ β(B) ≤ κ(B) ≤ 2χ(B) for all B ∈ B(X). (1)

An essential difference between χ, κ and β is that β(UX) depends of the space X, as we show in the
following example (see, for instance, [3, Chapter II]).

Example 1.5. (see [3]) Fixed 1 ≤ p < ∞, let `p be the Banach space of the (real) sequences (xn)n≥1 such that∑
n≥1 |xn|

p < ∞, and Lp the Banach space of the functions defined on I such that
∫ 1

0 |x(t)|pdt < ∞, the integral means
in the Lebesgue sense, both endowed their usual norms. Then, we have

β(U`p ) = 2
1
p , β(ULp ) =


2

1
p , for 1 ≤ p ≤ 2

21− 1
p , for 2 < p < ∞

.
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In the next result we show some properties of the above MNCs (see [1, 3]).

Proposition 1.6. The MNC µ ∈ {χ, κ, β} satisfies the following properties for all B,B1,B2 ∈ B(X):

1. Regularity: µ(B) = 0 if, and only if, B is precompact.

2. Invariance under closure and convex hull: µ(B) = µ(B) = µ(Conv(B)).

3. Semi-additivity: µ(B1 ∪ B2) = max{µ(B1), µ(B2)}.

4. Algebraic semi-additivity: µ(B1 + B2) ≤ µ(B1) + µ(B2).

5. Semi-homogeneity: µ(λB) = |λ|µ(B), for all λ ∈ R.

6. Invariance under translations: µ(x0 + B) = µ(B), for all x0 ∈ X.

In what follows, 0 is the null vector of X and for a given B ∈ B(X), the distance from 0 to B is denoted
by d(0,B) := inf{‖x‖ : x ∈ B}. Also, BConv(X) stands for the class of nonempty, bounded, closed and convex
subsets of X. With this notation, we can give the following definition (see, for instance, [3]):

Definition 1.7. The modulus of noncompact convexity associated to the MNCµ is the function ∆X,µ : [0, µ(UX)] −→
I defined by

∆X,µ(ε) := inf
{
1 − d(0,B) : B ∈ BConv(X) ∩UX, µ(B) ≥ ε

}
for all ε ∈ [0, µ(UX)],

and the nearly uniform convexity characteristic of X associated to µ, µ-NUC-characteristic, is

εµ(X) := sup
{
ε ∈ [0, µ(UX)] : ∆X,µ(ε) = 0

}
.

Remark 1.8. The name of εµ(X) is justified by the following fact (see [3, Remark V.1.1.4]): X is UNC if, and only if,
εµ(X) = 0 for µ ∈ {χ, κ, β}.

The function ∆X,κ(ε) was introduced and analyzed in [18], ∆X,χ(ε) in [5] and ∆X,β(ε) in [9]. It is not very
hard to prove the following inequalities (see also [3, Remark 1.4, p. 86]).

δX(ε) ≤ ∆X,κ(ε) ≤ ∆X,β(ε) ≤ ∆X,χ(ε), (2)

for all ε ∈ [0, 1], and consequently

ε0(X) ≥ εκ(X) ≥ εβ(X) ≥ εχ(X). (3)

For some Banach spaces, we know an explicit formula for ∆X,µ(ε), µ ∈ {χ, κ, β}.

Example 1.9. Fixed 1 < p < ∞, let `p be as in Example 1.5. Then, we have (see [3, Chapter V])

∆`p,κ(ε) = 1 −
(
1 −

(
ε
2

)p) 1
p

,∆`p,β(ε) = 1 −
(
1 − εp

2

) 1
p
,

∆`p,χ(ε) = 1 −
(
1 − εp

) 1
p
,

where, in each case, ε is in the interval [0, µ(UX)], with µ ∈ {χ, κ, β}.
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However, at the present day, the value of ∆X,µ(ε) is unknown for an arbitrary Banach space X and a
MNC µ. For instance, the exact values of ∆Lp,κ are unknown if 1 < p < 2, although they are different from
those of ∆`p,κ (see, for instance, [29]). Anyway, the analysis of the geometry of X based on the modulus
∆X,µ, as well as εµ(X) for a given MNC µ, is based in inequalities. We will recall in Section 3 some important
results, related with the geometry of X, which are given in terms of certain inequalities that involve ∆X,µ
and/or εµ(X), for µ ∈ {χ, κ, β}.

On the other hand by using the so called degree of nondensifiablity, denoted by φ and explained in detail
in Section 2, our main goal is to introduce and analyze the modulus of nondensifiable convexity ∆

φ
X(ε) and

the φ-NUC-characteristic of X, εφ(X). Such concepts, as well as its main properties, are given in Section
3. We show that, although φ is not a MNC, ∆

φ
X(ε) and εφ(X) share some properties with ∆X,µ and εµ(X),

respectively, for a given MNC µ. Also, we prove in Theorem 3.8 that ∆
φ
X (resp. εµ(X)) is an upper (resp.

lower) for ∆X,µ (resp. εµ(X)), for an arbitrary MNC µ.
To conclude our exposition, in Section 4 we characterize the normal structure of X in terms of φ. Also,

by using εφ(X), we give a sufficient condition for X has the so called weak fixed point property.

2. The degree of nondensifiability and some relationships with the MNCs

In what follows, (E, d) will be a metric space and B(E) the class of non-empty and bounded subsets of
E. As in Sectino 1, (X, ‖ · ‖) is a Banach space. For a better comprehension of the manuscript, we start this
section by recalling the following (see, for instance, [25]).

Definition 2.1. Let α ≥ 0 and B ∈ B(E). A continuous mapping γ : I −→ (E, d) is said to be an α-dense curve in B
if it satisfies:

(i) γ(I) ⊂ B.

(ii) For any x ∈ B there is t ∈ I such that d(x, γ(t)) ≤ α.

If for every α > 0 there exists an α-dense curve in B then B is said to be densifiable.

For a detailed exposition of the above concepts, we refer to [7, 24–27]. From the concept of α-dense
curve, we can give the following (see [16, 26]):

Definition 2.2. For each α ≥ 0 we denote by Γα,B the class of α-dense curves in B ∈ B(E). The degree of nondensifi-
ability, DND, is the mapping φ : B(E) −→ R+ defined as

φ(B) := inf
{
α ≥ 0 : Γα,B , ∅

}
, for all B ∈ B(E).

Let us note that φ is well defined. Indeed, given B ∈ B(E) take x0 ∈ B and define γ(t) := x0 for all t ∈ I.
Thus, γ is an α-dense curve in B for any α ≥ Diam(B) (the diameter of B). So, φ(B) ≤ Diam(B).

Example 2.3. (see [26]) We have:

φ(UX) =

{
0, if X is finite dimensional
1, if X is infinite dimensional .

From now on, Barc(E) will be the class of nonempty, bounded and arc-wise connected subsets of E, and
the some notation for X. We state some basic properties of the DND in the following result (see [15, 16]):

Proposition 2.4. The DND φ satisfies the following properties:
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(M1) Regularity on Barc(E): φ(B) = 0 if, and only if, B is precompact, for all B ∈ Barc(E).

(M2) Invariant under closure: φ(B) = φ(B), for all B ∈ B(E).

In particular, for E := X we hav:

(B1) Semi-homogeneity: φ(λB) = |λ|φ(B), for any λ ∈ R and B ∈ B(X).

(B2) Invariant under translations: φ(x0 + B) = φ(B), for all x0 ∈ X and B ∈ B(X).

(B3) φ(Conv(B1 ∪ B2)) ≤ max{φ(Conv(B1)), φ(Conv(B2))}, for all B1,B2 ∈ B(X).

(B4) Algebraic semi-additivity: φ(B1 + B2) ≤ φ(B1) + φ(B2), for all B1,B2 ∈ B(X).

Despite the above properties, the DND φ is not a MNC:

Example 2.5. In the space L1 (see Example 1.5), consider the set

B :=
{

f ∈ L1 : f ≥ 0 and
∫ 1

0
f (x)dx = 1

}
.

Then, φ(B) = 2 (see [16]) and noticing Example 2.3

1 = φ(UL1 ) = φ(B ∪UL1 ) < 2 = max
{
φ(B), φ(UL1 )

}
.

Other examples that evidence the differences between the DND φ and the MNCs are given in [12–15].
However, the DND φ and the MNCs are related by the following result (see [16]):

Theorem 2.6. For every B ∈ B(X), the inequality µ(B) ≤ µ(UX)φ(B) holds.

Furthermore, for the MNCs given in Section 1 we can provide these others inequalities:

Proposition 2.7. For µ ∈ {χ, κ, β} and B ∈ Barc(X), we have:

1. χ(B) ≤ φ(B) ≤ 2χ(B).

2. 1
2κ(B) ≤ φ(B) ≤ κ(B).

3. 1
β(UX)β(B) ≤ φ(B) ≤ 2β(B).

Moreover, these inequalities are the best possible in infinite dimensional Banach spaces.

Proof. The inequalities in (1) were proved in [16], and they are the best possible. The left hand-side
inequalities in (2) and (3) follow from Theorem 2.6, and the right hand-side inequality of (3) is a consequence
of the inequalities (1) and (1). So, we prove the right hand-side inequality of (2).

Given B ∈ Barc(X) taking any δ > κ(B), there are B1, . . . ,Bn ∈ B(X), with Diam(Bi) ≤ δ such that B ⊂ ∪n
i=1Bi.

Take xi ∈ B ∩ Bi, for i = 1, . . . ,n, and let γ : I −→ B be a continuous mapping joining the vectors x1, . . . , xn.
We can define such γ because of B is arc-wise connected. Then, for a given x ∈ B, taking ti ∈ I such that
γ(ti) = xi and ‖x − xi‖ ≤ Diam(Bi) ≤ δ, we have

‖x − γ(ti)‖ = ‖x − xi‖ ≤ δ,

and therefore γ is a δ-dense curve in B and so φ(B) ≤ δ. By letting δ→ κ(B), we infer that φ(B) ≤ κ(B).
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On the other hand, from the properties of φ and the MNCs κ, β, if B ∈ Barc(X) is precompact, all the
inequalities in (2) and (3) become (trivially) into equalities. Noticing Examples 1.4 and 2.3, we have

1 =
1
2
κ(UX) = φ(UX) < κ(Ux) = 2,

and the inequalities in (2) can be strict. Let c0 be the sequence space of the null sequences, endowed its
usual supremum norm, and {en : n ≥ 1} its standard basis. Let B := Conv({en : n ≥ 1}). Then, κ(B) = 1 and
as was proved in [16], φ(B) = 1. Therefore, 1

2κ(B) < φ(B) = κ(B).
For the inequalities in (3), from Examples 1.5 and 2.3, we find

β(U`p )

β(U`p )
= 1 = φ(U`p ) < 2β(U`1 ) = 21+ 1

p , for all p ≥ 1.

Let {en : n ≥ 1} be the standard basis of `1 and B := Conv({en : n ≥ 1}). If γ is an α-dense curve in B, for
some α > φ(B), as γ(I) is compact for a given 0 < ε < 1 there exists n0 ≥ 1 such that (see [3, Theorem 2.4.1])∑

n≥n0+1

yn ≤ ε, for all y := (yn)n≥1 ∈ γ(I).

Thus, for x := en0+1 ∈ B, there is y ∈ γ(I) such that ‖x − y‖ ≤ α and from the above inequality

α ≥ ‖x − y‖ =

n0∑
n=1

yn + |1 − yn0+1| +
∑

n≥n0+2

yn ≥

n0∑
n=1

yn + 1 − ε,

and by the arbitrariness of ε > 0, α > φ(B) and n0 > 1, we infer that φ(B) ≥ 2. But, from the right-hand side
inequality (1) of the statement, φ(B) ≤ 2χ(B) ≤ 2 and consequently φ(B) = 2. So, again noticing Example
1.5, we have

β(B)
β(U`1 )

=
2
2

= 1 < φ(B) < 4 = 2φ(B).

Finally, noticing inequalities (1), for the set B ⊂ L1 of Example (2.5), we have β(B) ≥ 1. Fixed ε > 0, for
each n > 1, if 1A denotes the characteristic function of the set A ⊂ I

β(B) + ε ≥ ‖2n1[0, 1
2n ] − n1[0, 1

n ]‖ =

∫ 1
2n

0
ndx +

∫ 1
n

1
2n

ndx = 1,

and therefore, by the arbitrariness of ε, β(B) = 1. Then, we conclude that φ(B) = 2β(B) and this completes
the proof.

3. Main results

Let us note that given B ∈ BConv(X) ∩ UX and an α-dense curve in B, put γ, for some α ≥ 0, for every
x ∈ B and y ∈ γ(I) we have ‖x − y‖ ≤ ‖x‖ + ‖y‖ ≤ 2. Thus, φ(B) ≤ 2 and therefore

ς(UX) := sup
{
φ(B) : B ∈ BConv(X) ∩UX

}
≤ 2.

Also, this bound is attained, for instance, in L1 (see Example 2.5). However, at the present day, we do
not know if ς(UX) = 2 for every infinite dimensional Banach space X. Without loss of generality, in what
follows we assume that ς(UX) is achieved for some B ∈ BConv(X) ∩ UX, otherwise in the below definitions
and results we replace the closed interval [0, ς(UX)] by the semi-open interval [0, ς(UX)).

The main concepts of this paper are given in the following definition:
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Definition 3.1. The modulus of nondensifiable convexity is the function ∆
φ
X : [0, ς(UX)] −→ I defined by

∆
φ
X(ε) := inf

{
1 − d(0,B) : B ∈ BConv(X) ∩UX, φ(B) ≥ ε

}
for all ε ∈ [0, ς(UX)],

and the nearly uniform convexity characteristic of X associated to φ, φ-NUC-characteristic, is

εφ(X) := sup
{
ε ∈ [0, ς(UX)] : ∆

φ
X(ε) = 0

}
.

Remark 3.2. The name of εφ(X) will be justified in Corollary 3.14.

For clarity, we divide the remainder of this section into two parts.

3.1. Some properties of the modulus of nondensifiable convexity
The results of this section are devoted to prove some properties of the modulus of nondensifiable

convexity ∆
φ
X.

Related with the continuity of ∆
φ
X, we have the following:

Proposition 3.3. The function ∆
φ
X is continuous on [0, 1).

Proof. Fixed ε1 ∈ [0, 1) take ε2 ∈ [ε1, 1) and r > 0 such that φ(B1) > ε1, for some B1 ∈ BConv(X) ∩UX, and

1 − d(0,B1) ≤ ∆
φ
X(ε1) + r. (4)

Define B2 := kB1, with k := 1−ε2
1−ε1

. Then, ‖x‖ ≤ k for all x ∈ B2, d(0,B2) = kd(0,B1) and from (3) of
Proposition 2.4 φ(B2) = kφ(B1). Putting C := ∪x∈B2 B̄(x, 1 − k) (the closed ball centered at x and radius 1 − k),
we have

d(0,C) = kd(0,B1) − 1 + k,

and noticing [3, Theorem II.2.10], χ(C) = kχ(B1) + 1 − k > ε2. Consequently, by Proposition 2.7, φ(C) ≥
χ(C) > ε2. Then, from (4), we have

∆
φ
X(ε2) ≤ 1 − d(0,C) = 1 − kd(0,B1) + 1 − k = k

(
1 − d(0,B1)

)
+ 2(1 − k) ≤

k
(
∆
φ
X(ε1) + r

)
+ 2(1 − k),

and letting r→ 0,

∆
φ
X(ε2) ≤ k∆

φ
X(ε1) + 2(1 − k).

So,

∆
φ
X(ε2) − ∆

φ
X(ε1) ≤ (1 − k)

(
2 − ∆

φ
X(ε1)

)
≤ 2(1 − k) = 2

ε2 − ε1

1 − ε1
−→ 0,

as ε2 → ε1, and the result holds.

The above result was proved in [5, Theoem 3] for ∆X,χ, and in [31] for ∆X,µ, µ being a MNC satisfying
certain properties.

When X is reflexive, ∆X,χ(ε) is a subhomogeneous function (see [5, Theorem 4]). The same result holds
for ∆

φ
X(ε):
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Theorem 3.4. Let X be a reflexive Banach space. Then, for every k ∈ (0, 1) we have

∆
φ
X(kε) ≤ k∆

φ
X(ε), for all ε ∈ [0, ς(UX)].

Proof. Fixed k ∈ (0, 1) and ε ∈ [0, ς(UX)], let any r > 0. Then, there exists B ∈ BConv(X) ∩UX such that

1 − d(0,B) ≤ ∆
φ
X(ε) + r and φ(B) ≥ ε. (5)

As X is reflexive, there is x0 ∈ X such that d(0,B) = ‖x0‖ (see, for instance, [22]). Define the set

B1 := kB +
1 − k
‖x0‖

x0 ∈ BConv(X) ∩UX.

Thus, φ(B1) = kφ(B) ≥ kε (see Proposition 2.4) and d(0,B1) = kd(0,B) + 1 − k. Therefore,

d(0,B) =
1
k

[
d(0,B1) + k − 1

]
. (6)

So, noticing (5) and (6), we have

1 − ∆
φ
X(ε) ≤ d(0,B) + r =

1
k

[
d(0,B1) + k − 1

]
+ r ≤

1
k

[
1 − ∆

φ
X(kε) + k − 1

]
+ r ≤ 1 −

∆
φ
X(kε)

k
+

r
k
,

and as r > 0 can be arbitrarily small, the result follows.

Remark 3.5. The above result is trivial for k = 0, 1 and the reflexivity of X is not required. Indeed, for k = 1 the
equality ∆

φ
X(kε) = k∆

φ
X(ε) is trivial, while for k = 0 we have ∆

φ
X(0) = 0 (taking, for instance, any x1 ∈ UX with

‖x1‖ = 1, for B := {x1} we obtain the desired result).

Now, we give some consequences of the above theorem.

Corollary 3.6. If X is reflexive, then ∆
φ
X is strictly increasing on the interval [εφX, ς(UX)].

Proof. Let ε1, ε2 ∈ [εφX, ς(UX)], ε1 < ε2 and define k := ε1/ε2 < 1. Then, by Theorem 3.4

∆
φ
X(ε1) = ∆

φ
X(kε2) ≤ k∆

φ
X(ε2) < ∆

φ
X(ε2),

and the result holds.

Corollary 3.7. If X is reflexive, then ∆
φ
X(ε) ≤ ε for all ε ∈ [0, ς(UX)].

Proof. As we have noted in Remark 3.5, ∆
φ
X(0) = 0 and the inequality ∆

φ
X(1) ≤ 1 holds trivially from the

definition of the modulus of nondensifiable convexity ∆
φ
X.

If ε ∈ (0, 1) then by Theorem 3.4

∆
φ
X(ε) ≤ ε∆φ

X(1) ≤ ε.

If ε ∈ (1, ς(UX)], by Corollary 3.6, we have

∆
φ
X(ε) ≤ ∆

φ
X

(
ς(UX)

)
≤ 1 < ε,

and this completes the proof.
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3.2. Some relationships between the moduli ∆
φ
X and ∆X,µ

Taking into account Theorem 2.6, we can provide a lower bound for the function ∆X,µ:

Theorem 3.8. Let µ be MNC defined on B(X). Then, we have

∆X,µ(ε) ≥ ∆
φ
X

( ε
µ(UX)

)
, for all ε ∈ [0, µ(UX)].

Consequently, εµ(X) ≤ µ(UX)εφ(X).

Proof. We only prove the second inequality, because of the first can be obtained directly from Theorem 2.6
and the definitions of ∆X,µ and ∆

φ
X. As{

ε ∈ [0, µ(UX)] : ∆X,µ(ε) = 0
}
⊂

{
ε ∈ [0, µ(UX)] : ∆

φ
X

( ε
µ(UX)

)
= 0

}
,

noticing the definition of εµ(X) and the properties of the supremum, we have

εµ(X) ≤ sup
{
ε ∈ [0, µ(UX)] : ∆

φ
X

( ε
µ(UX)

)
= 0

}
.

Then, by putting ε̃ := ε/µ(UX) we find

εµ(X) ≤ µ(UX) sup
{
ε̃ ∈ I : ∆

φ
X(ε̃) = 0

}
≤

µ(UX) sup
{
ε̃ ∈ [0, ς(UX)] : ∆

φ
X(ε̃) = 0

}
= µ(UX)εφ(X).

As consequence of the above result, we obtain the next:

Corollary 3.9. If εφ(X) < 1, then X is reflexive.

Proof. Assume that X is not reflexive. Then, following the proof of [3, Theorem V.1.7], we find that εχ(X) ≥ 1
and therefore, noticing Theorem 3.8, εφ(X) ≥ 1.

On the other hand, bearing in mind Proposition 2.7 and Theorem 3.8, we can relate the moduli ∆
φ
X and

∆X,µ in the following way:

Proposition 3.10. For all ε where the below functions are well defined we have:

(1) ∆
φ
X(ε) ≤ ∆X,χ(ε) ≤ ∆

φ
X(2ε).

(2) ∆
φ
X

(
ε
2

)
≤ ∆X,κ(ε) ≤ ∆

φ
X(ε).

(3) ∆
φ
X

(
ε

β(UX)

)
≤ ∆X,β(ε) ≤ ∆

φ
X(2ε).

From the above result we can derive a lower bound for the modulus of nondensifiable convexity:

Corollary 3.11. For every ε ∈ [0, ς(UX)], ∆
φ
X(ε) ≥ δX(ε). In particular, if X is a Hilbert space then we have

∆
φ
X(ε) ≥ 1 −

√
1 −

ε2

4
.
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Proof. Noticing (2) and (2) of Proposition 3.10, the inequality ∆
φ
X(ε) ≥ δX(ε), for all ε ∈ [0, ς(UX)] ⊂ [0, 2],

follows. When X is a Hilbert space, it is known that δX(ε) = 1 −
√

1 − ε2

4 (see, for instance, [3]).

In Remark 1.8 has been justified the name of the function εµ(X): X is UNC if, and only if, εµ(X) = 0
for µ ∈ {χ, κ, β}. To conclude this section, we will prove the same result for the φ-NUC-characteristic of X,
εφ(X). Before, we show two examples of not NUC Banach spaces for which εφ(X) > 0.

Example 3.12. Let L1 be the Banach space of Example 1.5. Then, ∆
φ

L1 (ε) = 0 for every ε ∈ [0, 2]. Indeed, given

ε ∈ [0, 2], let B ⊂ L1 be the set of Example 2.5. So, as φ(B) = 2 ≥ ε and d(0,B) = 1 we infer that ∆
φ

L1 (ε) = 0 for all
ε ∈ [0, 2]. Consequently, εφ(L1) = 2.

Example 3.13. Let C(I) the Banach space of the continuous functions defined on I, endowed its usual supremum
norm, and consider

B :=
{
x ∈ C(I) : 0 = x(0) ≤ x(t) ≤ x(1) = 1, for all t ∈ I

}
∈ BConv(X) ∩UC(I).

Then, in [12, Example 3.4] we proved that φ(B) = 1 and so, ∆
φ
C(I)(ε) = 0 for all ε ∈ [1, ς(UX)]. Therefore, we have

εφ(C(I)) ≥ 1.

Corollary 3.14. X is NUC if, and only if, εφ(X) = 0.

Proof. If εφ(X) = 0, then by Theorem 3.8 εχ(X) = 0 and, noticing Remark 1.8, X is NUC.
If X is NUC then, again by Remark 1.8, εκ(X) = 0. This means that ∆X,κ(ε) > 0 for all ε ∈ (0, 2]. Therefore,

from (2) of Proposition 3.10, ∆
φ
X(ε) > 0 for each ε ∈ (0, 2] ⊃ (0, ς(UX)]. So, εφ(X) = 0 as ∆

φ
X(0) = 0 (see Remark

3.5) and the result holds.

4. Normal structure

Other important geometric property of a Banach space is that of normal structure, introduced by Brodskiı̆
and Mil’man [28] in 1948. We recall such concept in the following lines.

For a given B ∈ B(X) which contains more than one point, the Chebyshev radius of B (see, for instance,
[3]) is the number

r(B) := inf
{

sup{‖x − y‖ : x ∈ B} : y ∈ B
}
.

In what follows, as the Chebyshev radius will be used in the below definitions and results, the closed,
bounded and convex sets considered will have more than one point. That is, BConv(X) will be the class of
bounded, closed and convex subset of X with more than one point. Likewise, we denote Bw

Conv
(X) will be

the class of bounded, closed, weakly compact and convex subset of X with more than one point.

Definition 4.1. A set B ∈ BConv(X) is said to have normal structure if r(B) < Diam(B). If each B ∈ BConv(X) (resp.
B ∈ Bw

Conv
(X)) has normal structure, X is said to have normal structure (resp. weak normal structure).

Clearly, the above definition is equivalent to the following one: B ∈ BConv(X) has normal structure if,
and only if, there exists some x0 ∈ B such that

sup
{
‖x0 − x‖ : x ∈ B

}
< Diam(B).

Often, such x0 is called a non-diametral point of B.
In our next result, we prove that the concepts of normal structure of a set B ∈ BConv(X) and the DND of

B, φ(B), are closely related.
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Proposition 4.2. A set B ∈ BConv(X) has normal structure if, and only if, φ(B) < Diam(B).

Proof. Let B ∈ BConv(X). If B has normal structure, take any non-diametral point of B, put x0, and define
α := sup{‖x0 − x‖ : x ∈ B} < Diam(B). Let γ : I −→ X be the mapping defined as γ(t) := x0 for all t ∈ I. Then,
is clear that γ is an α-dense curve in B, and therefore φ(B) ≤ α < Diam(B).

Now, assume φ(B) < Diam(B) and take φ(B) < α < Diam(B). If γ is an α-dense curve in B, by the
compactness of γ(I), for 0 < ε < Diam(B)−α there exists {y1, . . . , yn} ⊂ γ(I) such that γ(I) ⊂ {y1, . . . , yn}+εUX.
Therefore, we have

B ⊂ γ(I) + αUX ⊂ {y1, . . . , yn} + (α + ε)UX. (7)

Now, for each x ∈ B noticing (7) there is 1 ≤ j ≤ n such that ‖x − y j‖ ≤ α + ε. Thus, if x0 := 1
n
∑n

i=1 yi ∈ B,
we find

‖x − x0‖ ≤
1
n

( n∑
i=1

‖x − yi‖
)
≤

1
n

( n∑
i=1

‖x − y j‖ +

n∑
i=1

‖y j − yi‖
)
≤

1
n

(
α + ε + (n − 1)Diam(B)

)
,

and so, taking into account the choice of ε

sup
{
‖x − x0‖ : x ∈ B

}
≤

1
n

(
α + ε + (n − 1)Diam(B)

)
<

1
n

(
Diam(B) + (n − 1)Diam(B)

)
= Diam(B),

or, in other words, x0 is a non-diametral point of B and consequently B has normal structure.
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On the other hand, the concept of normal (and weak normal) structure is specially important in the
metric fixed point theory and, in particular, to state the existence of fixed points of nonexpansive mappings,
i.e. of those mappings T : C ⊆ X −→ X such that ‖T(X) − T(y)‖ ≤ ‖x − y‖ for all x, y ∈ C. The fixed point
theory for such mappings is very rich; for concrete references and results, see the recent papers [20, 32].

At this point, it is convenient to recall the following:

Definition 4.3. X is said to have the fixed point property, if every nonexpansive mapping T : C −→ C, with
B ∈ BConv(X), has some fixed point. If this condition holds for each weakly compact C ∈ BConv(X), X is said to have
the weak fixed point property.

In 1965 Kirk [21] published his germinal paper which proved the existence of fixed points for nonex-
pansive mappings in reflexive Banach spaces with normal structure:

Theorem 4.4. If X has normal structure, then has the weak fixed point property.

To conclude our exposition, we provide a sufficient condition, in terms of the φ-NUC-characteristic, for
X has the weak fixed point property:

Theorem 4.5. If εφ(X) < 1/β(UX), then X has the weak fixed point property.

Proof. Assume εφ(X) < 1/β(UX). Then, in view of Theorem 3.8, we have εβ(X) < 1 and therefore X has
normal structure (see [3, Corollary VI.4.7]). So, by virtue of Corollary 3.9, as X is reflexive the result follows
noticing Theorem 4.4.
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