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Common fixed point theorems in partial metric spaces satisfying
common (E.A)-property and an implicit relation
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Abstract. In this article, we prove some common fixed point theorems for pair of mappings in the setting of
partial metric spaces satisfying common (E.A)-property via an implicit relation. We give some consequences
of the established results. Also, we give some examples to demonstrate the validity of the results. Our
results extend, generalize and improve several results from the existing literature regarding contraction
condition involving rational terms and partial metric spaces.

1. Introduction

The first important result on fixed points for contractive mapping was the well-known Banach con-
traction principle appeared in explicit form in Banach’s thesis in 1922, where it was used to establish the
existence of a solution for an integral equation [9]. This theorem provides a technique for solving a variety
of applied problems in mathematical sciences and engineering. In a metric space setting it can be briefly
stated as follows.

Theorem 1.1. ([9]) Let (X, ρ) be a complete metric space and T : X → X be a self-map satisfying

ρ(T (x),T (y)) ≤ k ρ(x, y), for all x, y ∈ X, (1)

where 0 < k < 1 is a constant. Then T has a unique fixed point z in X and the Picard iteration {xn}
∞

n=0 defined by

xn+1 = T xn, n = 0, 1, 2, . . . (2)

converges to z, for any x0 ∈ X.

Remark 1.2. Inequality (1) implies the continuity of T .

There are many generalizations of this principle. These generalizations are made either by using different
contractive conditions or by imposing some additional condition on the ambient spaces. On the other hand,
a number of generalizations of metric spaces have been done and one of such generalization is partial metric
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space introduced in 1992 by Matthews [24, 25]. It is widely recognized that partial metric spaces play an
important role in constructing models in the theory of computation. In partial metric spaces the distance
of a point in the self may not be zero. Introducing partial metric space, Matthews proved the partial metric
version of Banach fixed point theorem ([9]). Then, many authors gave some generalizations of the result of
Matthews and proved some fixed point theorem in this space (see, i.e., [3], [4], [5], [18], [19], [20], [21], [28],
[46] and many others).

In 1976, Jungck [15] initiated the study of common fixed point for a pair of commuting mappings
satisfying contractive type conditions. In 1982, Sessa [43] introduced a weaker concept of commutativity,
which is generally known as weak commutativity and proved some interesting results on the existence
of common fixed points for a pair of self maps. He also showed that weak commuting mappings are
commuting but the converse need not to be true. Later, Jungck [16] generalized the concept of weak
commutativity by introducing the notion of compatible mappings which is more general than weakly
commuting mappings and showed that weak commuting maps are compatible but converse need not
be true. In 1996, Jungck [17] generalized the concept of compatibility by introducing weakly compatible
mappings.

The study of common fixed points for non compatible mappings was initiated by Pant [29]. In 2002,
Aamri and El Moutawakil [1] introduced a new concept called (E.A)-property for pair of mappings which
is a generalization of non compatible mappings and they proved some common fixed point theorems.
The concept of (E.A)-property allows us to replace the completeness requirement of the space by a more
general condition of closeness of range. In [31], Pathak et al. established a common fixed point theorem
in metric space for an integral type condition and using implicit relation and the (E.A) property. Some
authors showed that the notion of weakly compatible mappings and mappings satisfying (E.A)-property
are independent (see, [30], [32]).

In 2005, Liu et al. [23] introduced the notion of common (E.A)-property. Many authors established
common fixed point theorems by using common (E.A)-property in the setting of metric spaces and variants
of metric spaces (see, for example, [6], [12], [13], [27]).

Many classical fixed point theorems and common fixed point theorems have been unified considering
a general condition by an implicit relation in [32], [33] and in some other papers.

This direction of research produced a consistent literature on fixed point, common fixed point and
coincidence point theorems in various ambient spaces. For more details see [7, 10, 11, 14, 34–36, 38–42].

In 2016, Tiwari and Gupta [44] proved some common fixed point theorems in metric spaces satisfying
an implicit relation involving quadratic terms. In 2019, Neog et al. [27] prove common fixed results of set
valued maps for Aφ-contraction and generalized ϕ-type weak contraction in the setting of metric spaces.

Recently, Tiwari and Thakur in [45] proved some common fixed point theorems for pair of mappings
satisfying common (E.A)-property in the setting of complete metric spaces and give application of the
established result.

Motivated by the work of [27, 44, 45] and some others, the main purpose of this work is to prove
some common fixed point theorems for contractive condition involving rational terms satisfying common
(E.A)-property and an implicit relation in the framework of partial metric spaces.

2. Preliminaries

In this section, we recall some basic definitions, properties and auxiliary results of partial metric spaces.

Definition 2.1. ([25]) LetX be a nonempty set and p : X×X → [0,∞) be such that for all u, v,w ∈ X the followings
are satisfied:

(P1) u = v⇔ p(u,u) = p(u, v) = p(v, v),
(P2) p(u,u) ≤ p(u, v),
(P3) p(u, v) = p(v,u),
(P4) p(u, v) ≤ p(u,w) + p(w, v) − p(w,w).
Then p is called partial metric on X and the pair (X, p) is called partial metric space (in short PMS).
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Remark 2.2. It is clear that if p(u, v) = 0, then u = v. But, on the contrary p(u,u) need not be zero.

Example 2.3. ([8]) Let X = R+, where R+ = [0,+∞) and p : X × X → R+ given by p(u, v) = max{u, v} for all
u, v ∈ R+. Then (R+, p) is a partial metric space.

Example 2.4. ([8]) Let X = {[a, b] : a, b ∈ R, a ≤ b}. Then p
(
[a, b], [c, d]

)
= max{b, d} −min{a, c} defines a partial

metric p on X.

Various applications of this space has been extensively investigated by many authors (see, for example,
Künzi [22], Valero [46] for details).

Remark 2.5. ([19]) Let (X, p) be a partial metric space.
• The function dp : X×X → R+ defined as dp(u, v) = 2p(u, v)− p(u,u)− p(v, v) is a metric on X and (X, dp) is a

metric space.
• The function ds : X × X → R+ defined as ds(u, v) = max{p(u, v) − p(u,u), p(u, v) − p(v, v)} is a metric on X

and (X, ds) is a metric space.

Note also that each partial metric p onX generates a T0 topology τp onX, whose base is a family of open
p-balls {Bp(u, ε) : u ∈ X, ε > 0}where Bp(u, ε) = {v ∈ X : p(u, v) < p(u,u) + ε} for all u ∈ X and ε > 0.

On a partial metric space the notions of convergence, the Cauchy sequence, completeness and continuity
are defined as follows [24].

Definition 2.6. ([24]) Let (X, p) be a partial metric space. Then
(Γ1) a sequence {rn} in (X, p) is said to be convergent to a point r ∈ X if and only if p(r, r) = limn→∞ p(rn, r),
(Γ2) a sequence {rn} is called a Cauchy sequence if limn,m→∞ p(rn, rm) exists and finite,
(Γ3) (X, p) is said to be complete if every Cauchy sequence {rn} in X converges to a point r ∈ X with respect to τp.

Furthermore,

lim
n,m→∞

p(rn, rm) = lim
n→∞

p(rn, r) = p(r, r).

(Γ4) A mapping G : X → X is said to be continuous at r0 ∈ X if for every ε > 0, there exists α > 0 such that
G
(
Bp(r0, α)

)
⊂ Bp

(
G(r0), ε

)
.

Definition 2.7. ([26]) Let (X, p) be a partial metric space. Then
(∆1) a sequence {rn} in (X, p) is called 0-Cauchy if limn,m→∞ p(rn, rm) = 0,
(∆2) (X, p) is said to be 0-complete if every 0-Cauchy sequence {rn} in X converges to a point r ∈ X, such that

p(r, r) = 0.

Definition 2.8. Let X be a non-empty set and let P,Q : X → X be two self mappings of X. Then a point u ∈ X is
called a

(Λ1) fixed point of operator P if P(u) = u;
(Λ2) common fixed point of P and Q if P(u) = Q(u) = u.

Definition 2.9. ([2]) Let A and B be single valued self-mappings on a set X. If u = Az = Bz for some z ∈ X, then z
is called a coincidence point point of A and B, and u is called a point of coincidence of A and B.

Definition 2.10. ([16]) Let R and T be single valued self-mappings on a set X. Mappings R and T are said to be
commuting if RTw = TRw for all w ∈ X.

Definition 2.11. ([17]) Let C and D be single valued self-mappings on a set X. Mappings C and D are said to be
weakly compatible if they commute at their coincidence points, i.e., if Cu = Du for some u ∈ X implies CDu = DCu.
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Definition 2.12. ([1]) Let H and K be two self-mappings of a partial metric space (X, p). We say that H and K satisfy
(E.A)-property if there exists a sequence {rn} in X such that

lim
n→∞

Hrn = lim
n→∞

Krn = t,

for some t ∈ X.

Definition 2.13. ([23]) Two pairs (A,S) and (B,T) of self-mappings of a partial metric space (X, p) are said to satisfy
common (E.A)-property if there exists two sequence {rn} and {zn} in X such that

lim
n→∞

Arn = lim
n→∞

Srn = lim
n→∞

Bzn = lim
n→∞

Tzn = t,

for some t ∈ X.

Lemma 2.14. ([24, 25]) Let (X, p) be a partial metric space. Then
(Θ1) a sequence {rn} in (X, p) is a Cauchy sequence if and only if it is a Cauchy sequence in the metric space

(X, dp),
(Θ2) (X, p) is complete if and only if the metric space (X, dp) is complete,
(Θ3) a subset E of a partial metric space (X, p) is closed if a sequence {rn} in E such that {rn} converges to some

r ∈ X, then r ∈ E.

Lemma 2.15. ([4]) Assume that rn → r as n → ∞ in a partial metric space (X, p) such that p(r, r) = 0. Then
limn→∞ p(rn,u) = p(r,u) for every u ∈ X.

Remark 2.16. (see [19]) Let (X, p) be a PMS. Therefore, for all u, v ∈ X
(i) if p(u, v) = 0, then u = v;
(ii) if u , v, then p(u, v) > 0.

Definition 2.17. ([37]) Consider the class of functions Φ = {ϕ|ϕ : [0,∞) → [0,∞)}, which satisfy the following
assertions:

(Φ1) t1 ≤ t2 implies ϕ(t1) ≤ ϕ(t2);
(Φ2) (ϕn(t))n∈N converges to 0 for all t > 0;
(Φ3)

∑
∞

n=1 ϕ
n(t) is convergent for all t > 0.

If conditions (Φ1)-(Φ2) hold, then ϕ is called a comparison function and if the comparison function satisfies (Φ3),
then ϕ is called a strong comparison function.

Remark 2.18. ([37]) If ϕ : [0,∞) → [0,∞) is a comparison function, then ϕ(t) < t for all t > 0, ϕ(0) = 0 and ϕ is
right continuous at 0.

Recently, Tiwari and Tripathi [45] introduced the following notion.

Definition 2.19. ([45]) Let R+ be the set of all non-negative real numbers and Aφ be the collection of all functions
α : R+ → R+ which satisfy the conditions:

(1) α is continuous on R4
+ (with respect to the Euclidean metric on R4

+);
(2) for all u, v ∈ R+, if
(2a) u ≤ α(u, v, v, v) or
(2b) u ≤ α(v,u, v, v) or
(2c) u ≤ α(v, v,u, v), then u ≤ φ(v), where φ is a strong comparison function. If φ(t) = kt for k ∈ [0, 1) and for

all t > 0, then we have α ∈ Aφ.

Now, we define the following implicit relation.

Implicit Relation.
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Definition 2.20. Let R+ be the set of all non-negative real numbers and Aϕ be the collection of all functions
α : R+ → R+ which satisfy the following conditions:

(1) α is continuous on R5
+ (with respect to the Euclidean metric on R5

+);
(2) for all x, y ∈ R+, if
(α2a) x ≤ α(y, y, x, y, x) or
(α2b) x ≤ α(y, x, y, x, y) or
(α2c) x ≤ α(x, y, y, x, y), then x ≤ ϕ(y), where ϕ is a strong comparison function. If ϕ(t) = qt for q ∈ [0, 1) and

for all t > 0, then we have α ∈ Aϕ.

3. Main Results

In this section, we shall prove some common fixed point theorems in the setting of partial metric spaces
using common (E.A)-property and an implicit relation.

Theorem 3.1. Let (X, p) be a partial metric space and let A,B,S,T : X → X be four self-mappings of X. If there
exists some α ∈ Aϕ such that for all x, y ∈ X satisfying the following conditions:

(i)

p(Tx,Sy) ≤ α
(
p(Ax,By), p(Ax,Tx), p(Sy,By), p(Tx,By),

p(Sy,By)[1 + p(By,Tx)]
[1 + p(Ax,By)]

)
, (3)

(ii) the pairs (A,T) and (B,S) are weakly compatible;
(iii) the pairs (A,T) and (B,S) satisfy common (E.A)-property;
(iv) A(X) ⊆ S(X) and B(X) ⊆ T(X).
Also, assume that A(X) or B(X) is closed inX. Then A, B, S and T have a unique common fixed point z ∈ X with

p(z, z) = 0.

Proof. Since the pairs (A,T) and (B,S) satisfy the common (E.A)-property, then by definition 2.13, there
exists two sequence {xn} and {yn} in X such that

lim
n→∞

Axn = lim
n→∞

Txn = lim
n→∞

Byn = lim
n→∞

Syn = z,

for some z ∈ X. Further, since B(X) is closed subset of X, there exists u ∈ X such that Bu = z. We claim that
Su = z. If not, then from equation (3), we have

p(z,Su) = p(Txn,Su)

≤ α
(
p(Axn,Bu), p(Axn,Txn), p(Su,Bu), p(Txn,Bu),

p(Su,Bu)[1 + p(Bu,Txn)]
[1 + p(Axn,Bu)]

)
,

taking the limit as n→∞, using (P3) and by hypothesis p(z, z) = 0, we obtain

p(z,Su) ≤ α
(
p(z, z), p(z, z), p(Su, z), p(z, z),

p(Su, z)[1 + p(z, z)]
[1 + p(z, z)]

)
= α

(
0, 0, p(z,Su), 0, p(z,Su)

)
,
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by Definition of (α2a), we get p(z,Su) = 0, that is, Su = z. Therefore, Su = Bu = z. Hence u is a coincidence
point of the pair (B,S). Now, since A(X) ⊆ S(X), there exists v ∈ X such that Av = z. We claim that Tv = z.
From equation (3), we have

p(Tv, z) = p(Tv,Syn)

≤ α
(
p(Av,Byn), p(Av,Tv), p(Syn,Byn), p(Tv,Byn),

p(Syn,Byn)[1 + p(Byn,Tv)]
[1 + p(Av,Byn)]

)
= α

(
p(z,Byn), p(z,Tv), p(Syn,Byn), p(Tv,Byn),

p(Syn,Byn)[1 + p(Byn,Tv)]
[1 + p(z,Byn)]

)
,

taking the limit as n→∞, using (P3) and by hypothesis p(z, z) = 0, we obtain

p(Tv, z) ≤ α
(
p(z, z), p(z,Tv), p(z, z), p(Tv, z),

p(z, z)[1 + p(z,Tv)]
[1 + p(z, z)]

)
= α

(
0, p(Tv, z), 0, p(Tv, z), 0

)
,

by Definition of (α2b), we get p(Tv, z) = 0, that is, Tv = z. Therefore, Tv = Av = z. Hence v is a coincidence
point of the pair (A,T). Thus Bu = Su = Av = Tv = z and by weak compatibility of the pairs (A,T) and
(B,S), we deduce that Bz = Sz and Az = Tz. Now, we show that z is a fixed point of T. By equation (3) and
using p(z, z) = 0 for some z ∈ X, we have

p(Tz, z) = p(Tz,Su)

≤ α
(
p(Az,Bu), p(Az,Tz), p(Su,Bu), p(Tz,Bu),

p(Su,Bu)[1 + p(Bu,Tz)]
[1 + p(Az,Bu)]

)
= α

(
p(Tz, z), p(Tz,Tz), p(z, z), p(Tz, z),

p(z, z)[1 + p(z,Tz)]
[1 + p(Tz, z)]

)
= α

(
p(Tz, z), 0, 0, p(Tz, z), 0

)
,

by Definition of (α2c), we get p(Tz, z) = 0, that is, Tz = z. Hence z is a fixed point of T. Since Az = Tz = z, we
conclude that z is a fixed point of A. Now, we show that z is a fixed point of S. For this, using equation (3)
and p(z, z) = 0 for some z ∈ X, we have

p(z,Sz) = p(Tv,Sz)

≤ α
(
p(Av,Bz), p(Av,Tv), p(Sz,Bz), p(Tv,Bz),

p(Sz,Bz)[1 + p(Bz,Tv)]
[1 + p(Av,Bz)]

)
= α

(
p(z,Sz), p(z, z), p(Sz,Sz), p(z,Sz),

p(Sz,Sz)[1 + p(Sz, z)]
[1 + p(z,Sz)]

)
= α

(
p(z,Sz), 0, 0, p(z,Sz), 0

)
,
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by Definition of (α2c), we get p(z,Sz) = 0, that is, z = Sz. Hence z is a fixed point of S. Since Bz = Sz = z, we
conclude that z is a fixed point of B. Thus, z is a common fixed point of A, B, S and T.

Now, we show the uniqueness of the common fixed point. For this, we assume that z′ is another common
common fixed point of A, B, S and T such that Az′ = Bz′ = Sz′ = Tz′ = z′ with z′ , z. From equation (3) and
p(z, z) = 0 for some z ∈ X, we obtain

p(z, z′) = p(Tz,Sz′)

≤ α
(
p(Az,Bz′), p(Az,Tz), p(Sz′,Bz′), p(Tz,Bz′),

p(Sz′,Bz′)[1 + p(Bz′,Tz)]
[1 + p(Az,Bz′)]

)
= α

(
p(z, z′), p(z, z), p(z′, z′), p(z, z′),

p(z′, z′)[1 + p(z′, z)]
[1 + p(z, z′)]

)
= α

(
p(z, z′), 0, 0, p(z, z′), 0

)
(4)

by Definition of (α2c), we get p(z, z′) = 0, that is, z = z′. This shows the uniqueness of the common fixed
point of A, B, S and T. This completes the proof.

If we take T = S and B = A in Theorem 3.1, then we have the following result.

Corollary 3.2. Let (X, p) be a partial metric space and let A,S : X → X be two self-mappings of X. If there exists
some α ∈ Aϕ such that for all x, y ∈ X satisfying the following conditions:

(i)

p(Sx,Sy) ≤ α
(
p(Ax,Ay), p(Ax,Sx), p(Sy,Ay), p(Sx,Ay),

p(Sy,Ay)[1 + p(Ay,Sx)]
[1 + p(Ax,Ay)]

)
,

(ii) the pair (A,S) is weakly compatible;
(iii) the pair (A,S) satisfying (E.A)-property;
(iv) A(X) ⊆ S(X).
Also, assume that A(X) is closed subset of X. Then A and S have a unique common fixed point z ∈ X with

p(z, z) = 0.

If we take B = A and α(t1, t2, t3, t4, t5) = α(t1, t2, t3, t4) in Theorem 3.1, then we have the following result.

Corollary 3.3. Let (X, p) be a partial metric space and let A,S,T : X → X be three self-mappings ofX. If there exists
some α ∈ Aϕ such that for all x, y ∈ X satisfying the following conditions:

(i)

p(Tx,Sy) ≤ α
(
p(Ax,Ay), p(Ax,Tx), p(Sy,Ay), p(Tx,Ay)

)
,

(ii) the pairs (A,S) and (A,T) are weakly compatible;
(iii) the pairs (A,S) and (A,T) satisfying common (E.A)-property;
(iv) A(X) ⊆ S(X) and A(X) ⊆ T(X).
Also, assume that A(X) is closed subset of X. Then A, S and T have a unique common fixed point z ∈ X with

p(z, z) = 0.

If we take B = A and α(t1, t2, t3, t4, t5) = α(t1, t2, t3) in Theorem 3.1, then we have the following result.
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Corollary 3.4. Let (X, p) be a partial metric space and let A,S,T : X → X be three self-mappings ofX. If there exists
some α ∈ Aϕ such that for all x, y ∈ X satisfying the following conditions:

(i)

p(Tx,Sy) ≤ α
(
p(Ax,Ay), p(Ax,Tx), p(Sy,Ay)

)
,

(ii) the pairs (A,S) and (A,T) are weakly compatible;
(iii) the pairs (A,S) and (A,T) satisfying common (E.A)-property;
(iv) A(X) ⊆ S(X) and A(X) ⊆ T(X).
Also, assume that A(X) is closed subset of X. Then A, S and T have a unique common fixed point z ∈ X with

p(z, z) = 0.

Remark 3.5. By using similar fashion we can find some more results from Theorem 3.1.

If we take A = I (where I is an identity mapping) and α(t1, t2, t3, t4, t5) = q t1, where q ∈ [0, 1) in Corollary
3.2, then we obtain the following result.

Corollary 3.6. ([25]) Let (X, p) be a complete partial metric space and let S : X → X be a self-mapping ofX satisfying
the condition:

p(Sx,Sy) ≤ q p(x, y),

for all x, y ∈ X, where q ∈ [0, 1) is a constant. Then S has a unique fixed point z ∈ X with p(z, z) = 0.

Remark 3.7. Corollary 3.6 extends the well-known Banach fixed point theorem [9] from complete metric space to the
setting of complete partial metric space.

Corollary 3.8. Let (X, p) be a complete partial metric space and let S : X → X be a self-mapping of X satisfying the
condition:

p(Snx,Sny) ≤ r p(x, y),

for all x, y ∈ X, where n is some positive integer and r ∈ [0, 1) is a constant. Then S has a unique fixed point z ∈ X
with p(z, z) = 0.

Proof. By Corollary 3.6, there exists u ∈ X such that Snu = u. Then

p(Su,u) = p(SSnu,Snu)
= p(SnSu,Snu)
≤ r p(Su,u),

which is a contradiction, since 0 ≤ r < 1 and so p(Su,u) = 0, that is, Su = u. This shows that S has a unique
fixed point in X. This completes the proof.

Remark 3.9. Corollary 3.6 is a special case of Corollary 3.8 for n = 1.

Now, we give some examples to demonstrate the validity of Theorem 3.1 and Corollary 3.6.

Example 3.10. Let X = [3, 15]. We define the function p : X2
→ [0,+∞) by p(x, y) = max{x, y} for all x, y ∈ X.

Then (X, p) is a partial metric space.
Define four self-maps A,B,S,T : X → X on X by

A(x) =
{

3, if x ∈ {3} ∪ (5, 15],
5, if x ∈ (3, 5],
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B(x) =
{

3, if x ∈ {3} ∪ (5, 15],
4, if x ∈ (3, 5],

S(x) =


3, if x = 3,

10, if x ∈ (3, 5],
x+1

2 , if x ∈ (5, 15],

T(x) =


3, if x = 3,

5 − x, if x ∈ (3, 5],
x+1

2 , if x ∈ (5, 15],

(1) Now, we take the sequences {xn} = {5 + 1
n } and {yn} = {3}. Now, we observe that

lim
n→∞

Axn = lim
n→∞

Txn = lim
n→∞

Byn = lim
n→∞

Syn = 3 ∈ X.

Thus the pairs (A,T) and (B,S) satisfy common (E.A)-property.
Again, we observe that the pairs of mappings (A,T) and (B,S) commute at 3 which is the coincidence point.
Also,

A(X) = {3, 5} ⊆ [3, 8] ∪ {10} = S(X) and B(X) = {3, 4} ⊆ [3, 8] ∪ (8, 10] = T(X).

Now, we can verify the contractive condition (3) of Theorem 3.1 for the case x, y ∈ [3, 5], by a simple calculation
we see that

p(Tx,Sy) = 10, p(Ax,By) = 5, p(Ax,Tx) = 10, p(Sy,By) = 10, p(By,Tx) = 10,

p(Sy,By)[1 + p(By,Tx)]
[1 + p(Ax,By)]

=
10[1 + 10]

[1 + 5]
=

55
3
.

Now using the inequality (3), which yields

10 ≤ α
(
5, 10, 10, 10,

55
3

)
,

where α(x, y, z, t,w) = max{x, y, z, t,w} and ϕ(t) = 2t
3 . Thus, we see that

10 ≤ ϕ
(55

3

)
=

110
9

or 90 ≤ 110,

which is true. Similarly, we can verify for other cases. Thus all the conditions of Theorem 3.1 are satisfied and 3 is the
unique common fixed point of the mappings A, B, S and T.

(2) Now using inequality of Corollary 3.6, if we take x = 3 and y = 7, then we see that S(3) = 3 and S(7) = 4.
Now, we have

p(Sx,Sy) = max{3, 4} = 4 and p(x, y) = max{3, 7} = 7.

Consequently, we have

p(Sx,Sy) = 4 ≤ q p(x, y) = 7 q,
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or,

4 ≤ 7q,

or,

q ≥
4
7
.

If we take 0 ≤ q < 1, then all the conditions of Corollary 3.6 are satisfied and 3 is the unique fixed point of S. Hence
we conclude that

p(Sx,Sy) ≤ q p(x, y).

Example 3.11. Let X = {1, 2, 3, 4} and p : X ×X → R be defined by

p(x, y) =


|x − y| +max{x, y}, if x , y,

x, if x = y , 1,
0, if x = y = 1,

for all x, y ∈ X. Then (X, p) is a complete partial metric space.
Define the mapping S : X → X by

S(1) = 1, S(2) = 1, S(3) = 2, S(4) = 2.

Now, we have

p(S(1),S(2)) = p(1, 1) = 0 ≤
3
4
.3 =

3
4

p(1, 2),

p(S(1),S(3)) = p(1, 2) = 3 ≤
3
4
.5 =

3
4

p(1, 3),

p(S(1),S(4)) = p(1, 2) = 3 ≤
3
4
.7 =

3
4

p(1, 4),

p(S(2),S(3)) = p(1, 2) = 3 ≤
3
4
.4 =

3
4

p(2, 3),

p(S(2),S(4)) = p(1, 2) = 3 ≤
3
4
.6 =

3
4

p(2, 4),

p(S(3),S(4)) = p(2, 2) = 2 ≤
3
4
.5 =

3
4

p(3, 4).

Thus, S satisfies all the conditions of Corollary 3.6 with q = 3
4 < 1. Now by applying Corollary 3.6, S has a unique

fixed point. Indeed 1 is the required unique fixed point in this case.

4. Conclusion

In this paper, we prove some common fixed point theorems in the setting partial metric spaces using
common (E.A)-property and an implicit relation. We give some consequences of the main result as corol-
laries. We also give some examples to demonstrate the validity of the results. The results presented in
this paper extend, generalize and enrich several results from the existing literature regarding partial metric
spaces.
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